Solution to Quiz#2

Question 1: Simplify the following Boolean function using algebraic manipulation:

$$X'YZ + X'YZ' + XZ$$

Solution:

$$X'YZ + X'YZ' + XZ$$

$$= X'Y (Z + Z') + XZ$$

$$= X'Y + XZ$$

Question 2: Prove the identity of the following Boolean function using algebraic manipulation:

$$A'B'C'D' + A'B'CD' + AB'C'D' + AB'CD' = B'D'$$

Solution:

Solution to Homework#2

Question 2-1

$$\mathbf{a}) \quad \overline{XYZ} = X + Y + Z$$

Verification of DeMorgan's Theorem

X	Y	Z	XYZ	\overline{XYZ}	\overline{X} + \overline{Y} + \overline{Z}
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	0	0

b)
$$X + YZ = (X + Y) \cdot (X + Z)$$

The Second Distributive Law

X	Y	Z	YZ	X+YZ	X+Y	X+Z	(X+Y)(X+Z)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

c)
$$\overline{X}Y + \overline{Y}Z + X\overline{Z} = X\overline{Y} + Y\overline{Z} + \overline{X}Z$$

X	Y	Z	$\overline{X}Y$	$\overline{Y}Z$	ΧZ	$\overline{X}Y + \overline{Y}Z + X\overline{Z}$	$X\overline{Y}$	ΥZ	$\overline{X}Z$	$X\overline{Y}+Y\overline{Z}+\overline{X}Z$
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0	0	1	1
0	1	0	1	0	0	1	0	1	0	1
0	1	1	1	0	0	1	0	0	1	1
1	0	0	0	0	1	1	1	0	0	1
1	0	1	0	1	0	1	1	0	0	1
1	1	0	0	0	1	1	0	1	0	1
1	1	1	0	0	0	0	0	0	0	0

Question 2-2

a)
$$\overline{X}\overline{Y} + \overline{X}Y + XY = \overline{X} + Y$$

$$= (\overline{X}Y + \overline{X}\overline{Y}) + (\overline{X}Y + XY)$$

$$= \overline{X}(Y + \overline{Y}) + Y(X + \overline{X})$$

$$= \overline{X} + Y$$

b)
$$\overline{A}B + \overline{B}\overline{C} + AB + \overline{B}C = 1$$

$$= (\overline{A}B + AB) + (\overline{B}\overline{C} + \overline{B}C)$$

$$= B(A + \overline{A}) + \overline{B}(C + \overline{C})$$

$$= B + \overline{B}$$

$$= 1$$

c)
$$Y + \overline{X}Z + X\overline{Y} = X + Y + Z$$

 $= Y + X\overline{Y} + \overline{X}Z$
 $= (Y + X)(Y + \overline{Y}) + \overline{X}Z$
 $= Y + X + \overline{X}Z$
 $= Y + (X + \overline{X})(X + Z)$
 $= X + Y + Z$

d)
$$\overline{X}\overline{Y} + \overline{Y}Z + XZ + XY + Y\overline{Z} = \overline{X}\overline{Y} + XZ + XY + Y\overline{Z}$$

 $= \overline{X}\overline{Y} + \overline{Y}Z(X + \overline{X}) + XZ + XY + Y\overline{Z}$
 $= \overline{X}\overline{Y} + X\overline{Y}Z + \overline{X}\overline{Y}Z + XZ + XY + Y\overline{Z}$
 $= \overline{X}\overline{Y}(1 + Z) + X\overline{Y}Z + XZ + XY + Y\overline{Z}$
 $= \overline{X}\overline{Y} + XZ(1 + \overline{Y}) + XY + Y\overline{Z}$
 $= \overline{X}\overline{Y} + XZ + XY(Z + \overline{Z}) + Y\overline{Z}$
 $= \overline{X}\overline{Y} + XZ + XYZ + Y\overline{Z}(1 + X)$
 $= \overline{X}\overline{Y} + XZ(1 + Y) + Y\overline{Z}$
 $= \overline{X}\overline{Y} + XZ + YZ + YZ$

Question 2-7

a)
$$\overline{X}\overline{Y} + XYZ + \overline{X}Y = \overline{X} + XYZ = (\overline{X} + XY)(\overline{X} + Z) = (\overline{X} + X)(\overline{X} + Y)(\overline{X} + Z)$$

= $(\overline{X} + Y)(\overline{X} + Z) = \overline{X} + YZ$

$$b) \quad X + Y(Z + \overline{X + Z}) = X + Y(Z + \overline{XZ}) = X + Y(Z + \overline{X})(Z + \overline{Z}) = X + YZ + \overline{X}Y$$

$$= (X + \overline{X})(X + Y) + YZ = X + Y + YZ = X + Y$$

$$\begin{array}{ll} \mathbf{c}) & \overline{W}X(\overline{Z}+\overline{Y}Z) + X(W+\overline{W}YZ) = \overline{W}X\overline{Z} + \overline{W}X\overline{Y}Z + WX + \overline{W}XYZ \\ & = \overline{W}X\overline{Z} + \overline{W}XZ + WX = \overline{W}X + WX = X \end{array}$$

d)
$$(AB + \overline{AB})(\overline{CD} + CD) + \overline{AC} = AB\overline{CD} + ABCD + \overline{AB}CD + \overline{AB}\overline{CD} + \overline{A} + \overline{C}$$

= $ABCD + \overline{A} + \overline{C} = \overline{A} + \overline{C} + A(BCD) = \overline{A} + \overline{C} + C(BD) = \overline{A} + \overline{C} + BD$

Question 2-9

a)
$$\overline{F} = (\overline{A} + B)(A + \overline{B})$$

b)
$$\overline{F} = ((V + \overline{W})\overline{X} + \overline{Y})Z$$

c)
$$\overline{F} = [\overline{W} + \overline{X} + (Y + \overline{Z})(\overline{Y} + Z)][W + X + Y\overline{Z} + \overline{Y}Z]$$

d)
$$\overline{F} = \overline{A}B\overline{C} + (A+B)\overline{C} + \overline{A}(B+C)$$

Question 2-10

a) Sum of Minterms: $\overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$

Product of Maxterms: $(X + Y + Z)(X + Y + \overline{Z})(X + \overline{Y} + Z)(\overline{X} + Y + Z)$

b) Sum of Minterms: $\overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$

Product of Maxterms: $(A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$

c) Sum of Minterms: $\overline{WXYZ} + \overline{WXYZ} + W\overline{XYZ} + WX\overline{YZ} + WX\overline{YZ} + WX\overline{YZ} + WXY\overline{Z}$

+ WXYZ

Product of Maxterms: $(W+X+Y+Z)(W+X+Y+\overline{Z})(W+X+\overline{Y}+\overline{Z})$

 $(W + \bar{X} + Y + Z)(W + \bar{X} + Y + \bar{Z})(W + \bar{X} + \bar{Y} + \bar{Z})$

 $(\overline{W} + X + Y + Z)(\overline{W} + X + Y + \overline{Z})(\overline{W} + X + \overline{Y} + \overline{Z})$

Question 2-12

a)
$$(AB+C)(B+\overline{C}D) = AB+AB\overline{C}D+BC = AB+BC$$
 s.o.p.
= $B(A+C)$ p.o.s.

b)
$$\overline{X} + X(X + \overline{Y})(Y + \overline{Z}) = (\overline{X} + X)(\overline{X} + (X + \overline{Y})(Y + \overline{Z}))$$

= $(\overline{X} + X + \overline{Y})(\overline{X} + Y + \overline{Z})$ p.o.s.
= $(1 + \overline{Y})(\overline{X} + Y + \overline{Z}) = \overline{X} + Y + \overline{Z}$ s.o.p.

c)
$$(A + B\overline{C} + CD)(\overline{B} + EF) = (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + EF)$$

 $= (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + E)(\overline{B} + F)$ p.o.s.
 $(A + B\overline{C} + CD)(\overline{B} + EF) = A(\overline{B} + EF) + B\overline{C}(\overline{B} + EF) + CD(\overline{B} + EF)$
 $= A\overline{B} + AEF + B\overline{C}EF + \overline{B}CD + CDEF$ s.o.p.