TOWARDS FLEXIBLE DISTRIBUTED REAL-TIME
MONITORING AND MANAGING OF WORKFLOWS

Andre Baumgart
Institute of Computer Engineering,
Automation Laboratory
University of Mannheim
andre.baumgart@ti.uni-mannheim.de

Abstract

The unpredictability of business processes requires workflow systems
to support monitoring functions with the ability to flexibly adapt to
the changing environment, in which the activities of the workflow are
distributed and the status of the process has to be presented in real-
time fashion. In this context flexibility refers to the following main
requirements: (a) Adaptation to changes of the different dimensions
of the workflow (process flows, resources and specific cases) (b) Con-
text awareness of the monitoring systems such that the graphical user
interface displays information depending on the situation of the dif-
ferent workflow entities. Previous approaches to workflow monitor-
ing focused on automated routing, distributed monitoring or various
repetitive requests to the workflow system. These approaches did nei-
ther consider real-time data exchange from user interface clients to
the server nor the separation of the process logic from the represen-
tational logic of the graphical user interface.

In this paper flexible distributed real-time workflow monitoring is
realized by: (1) middleware components supporting real-time moni-
toring; (2) different controllers for controlling workflows definitions,
the specification of the graphical user interface and the data that is
managed by the user interfaces. The prototypical software system was
implemented as a client-server application in Java using a real-time
CORBA middleware component. The server component manages the
registration of the user interface clients and controls the data ex-
change with the workflow management system. The definition of the
user interface view, the process data and the managed data is stored
in XML files and transferred as XML streams between the software
components. The prototypical implementation shows that the sepa-
ration of process models, data models and view models can lead to
flexible monitoring and managing of workflows in real-time and thus
guarantee valuable information of business processes at runtime.

Keywords— Workflow Monitoring, Workflow Manage-
ment, Real-Time CORBA, Flexible Service, Context-Aware
User Interface.

1 Introduction

In manufacturing and logistic processes workflows show
complex and dynamic behavior that is hard to monitor and
control. Moreover the unpredictability of the involved busi-
ness processes require workflow systems to support moni-
toring functions with the ability to adapt flexibly to the
changing environment, where the activities of the workflow
are distributed and the status of the process have to be
presented in real-time fashion.

Workflow monitoring is used to monitor the state and
performance of a process instance during its execution. Fig-
ure 1 [14] shows the run time context of the monitoring sys-
tem. During enactment of the process, the WIMS interacts
with users and application tools, e.g. the monitoring ser-
vice. The WIMS automates the continuous collection of the

0-7803-8886-0/05/$20.00 ©2005 IEEE
CCECE/CCGEI, Saskatoon, May 2005

1582

Business Process Analysis.

Build Time Modelling & Definition Tools
Process Design
& Definition
Y
Process
******************* Definition [------
Run Time
Process Instanciation A
L Process changes
& Control | =

‘ Workflow Enactment Service

““““““““““T ““““ #“ -~ < —Workflow Relevant Data
Run Time

—
-

<«—Workflow Control Data

Interaction with
Users & Application Tools

Applications

<— Application Data
& IT Tools

Figure 1: Overview of Data Structures

workflow relevant data at runtime by tracing, storing and
transmitting the audit data on basis of events to users and
applications. Applications and services are thereby exposed
to a specific technological context, and users are situated in
a certain environment mostly defined by their role and or-
ganizational unit. Both contexts impose restrictions on the
data that is exchanged between users, applications and the
workflow engine. As a result, the infrastructure of a pro-
posed monitoring system has to scope with the adaption of
the different dimensions and perspectives of the workflow,
the context awareness of the workflow entities and users
and the application specific environment of software tools.

In this paper we focus on presenting a prototypical dis-
tributed graphical user interface (GUI) application and ser-
vice for displaying process-relevant data in real time. The
prototype addresses most of the above outlined challenges.
Accordingly, in section 2, we give a more detailed outline
of the related work. We subsume and relate workflow mon-
itoring, real time systems and model driven development
to our system realization. Section 3 introduces the general
architecture of the system and a detailed description of its
components. The prototypical implementation is given in
section 4 by presenting simulation results of the software
system. Section 5 concludes the paper by giving some re-
marks in future research directions.

2 Related Work

This section explains the related research that is covered
in the proposed architecture and prototype. Moreover we
review the previous work on workflow monitoring and man-

Authors Absent - Paper Not Presented

aging from a technical perspective for developing software
tools.

2.1 Process Monitoring and Controlling

In order to reduce the complexity, which is related to
process monitoring and managing, it is appropriate to in-
troduce different dimensions of workflows [11]. The funda-
mental property of a workflow process is that every piece
of work is executed for a specific case or workflow instance.
The basis of the enactment of the workflow is the work-
flow process definition which specifies in what order tasks
are executed. A work item which is executed by specific
resource is defined as activity. Detailed knowledge of the
allocation of resources to work items, the duration of activ-
ities, and the timing characteristics of events are decisive
factors when monitoring workflow at runtime and analyzing
the performance of a workflow [12].

The workflow dimensions lead to several perspectives for
workflow modeling and execution [12]. The dimensions and
perspectives of workflow processes help us in identifying
the workflow relevant data stated in section 1. Moreover it
raises the need for flexible adaption. The need for flexibility
raises many challenging and technical questions to workflow
management and monitoring that will lead to our proposed
architecture in chapter 3. [15]

The workflow monitoring system is one component of the
more general workflow management system. The W{MC
identified a reference model that describes the characteris-
tics, terminology and components of the workflow system
[2]. In this framework the workflow monitoring system in-
teracts with the workflow enactment subsystem through
an API, called Interface 5, for audit functions of processes
and activity instances, remote operations, as well as process
definitions [13]. McGregor extended this approach by how
data can be used for better reporting and performance mon-
itoring [7]. This approach proposes workflow monitoring in
the context of a decision support system (DSS) where a
user interface interacts with the workflow model subsystem
and the data warehouse of the DSS. The data warehouse
receives data through the Interface 5 API. We use the ex-
tended approach of McGregor to emphasize the importance
of flexible and adaptive user interfaces for process moni-
toring. Nevertheless, our architecture is more flexible and
not restricted to this view of a WIMS. Next we present
the necessary middleware services for distributed real time
monitoring.

2.2 Distributed Real-time Systems

Many software systems today require the control of dis-
tributed real-time (DRE) systems, including manufactur-
ing plants or workflow monitoring systems, e.g. in hos-
pitals. Software controllers are added to mechanical and
human controllers. Thus we need technologies that can
ensure the quality and cost-effectiveness of DRE systems
[4]. In WIMS monitoring of large-scale distributed real-
time processes require stable applications, latency and de-

pendability requirement if workflow activities are late, and
additionally have to run on a wide variety of computer plat-
forms. Therefore adaptable, robust and platform indepen-
dent middleware that resides between applications and the
operating system, network protocol stack, and hardware.

2.3 Model Driven Software Development

In order to built flexible adaptive software systems, en-
gineers need a development approach that separates busi-
ness and application logic from underlying platform tech-
nology. OMG’s Model Driven Architecture (MDA) pro-
vides an open, vendor-neutral approach to the challenge
of technology changes [5]. In MDA, you develop a model
of your application that is platform-independent, e.g. in
the Unified Modeling Language (UML). This platform in-
dependent model (PIM) is then mapped into one or a set
of appropriate infrastructure and implementation environ-
ments, such as CORBA or Java. The standard mapping is
often done by automated translation tools that map PIM
to the target application and platform into a more detailed
platform-specific model or application (PSM) [3].

2.4 Previous Approaches

Here we give a short review of scientific work done
on workflow monitoring systems. Previous approaches to
workflow monitoring focused on automated routing of work-
flows, distributed monitoring in distributed workflow sys-
tems or various repetitive requests to the workflow system
and its entities. These approaches did neither consider real-
time data exchange from user interface clients to the server
nor the separation of the process logic from the represen-
tational logic. Our perspective concentrates on technical
aspects of the graphical user interface and its necessary
services for workflow monitoring and managing.

Workflow monitoring, managing and controlling have
been under investigation for several years. Due to the
various perspectives and dimensions workflow modeling
monitoring was discussed under different circumstances.
Zachary, Ryder, Ross and Weiland (1992)[8] introduced
user models for human computer interaction in real-time
workflow monitoring system. Aiello(2004)[1] discussed
workflow monitoring and controlling in the context of
performance evaluation and timing behavior of workflow
performance in real-time. Wang and Wang (2002) and
Savarimuthu, Purvis and Fleurke (2004) [9] proposed mon-
itoring systems in a multi-agent based context. All these
systems lack workflow perspective support and flexible
adaption. A comprehensive overview of workflow monitor-
ing is given in [16], where the reviewed monitoring systems
are classified by several perspectives.

3 GUI Prototype for Monitoring

This section describes the GUI Prototype that includes
the described requirements (section 1) and methodologies
(section 2) for flexible adaption in interactive process work-
flow monitoring.

1583

Graphical User Interface Client

View Comiroller

Graphical Interface Server

Client Regisiration Service

Daia Validation Service Daia Component Coniroller

Data Update Service 4 Model Exchange

PIM Model Transformer

Model Update Service

I I

Graphical Interface Real-time Middleware

Implemented by a Java Real-tims Object Request Broksr

1 i i
| WENC Frerface1: Modd Defiraticn ‘ WENC haberface 5 hondtering Tools
Decision Support System Workflow Management Sysiem
Figure 2: Proposed Architecture

3.1 Overall Architecture

The entire architecture of the GUI Prototype is pre-
sented in Figure 2. The main components are the Graphi-
cal Interface Server, the Graphical User Interface Client and
the Graphical Interface Real-time Middleware components.
These components are separated from the workflow man-
agement system and the decision support system (DSS).
The exchanged models are presented in more detail in sec-
tion 3.2.

3.1.1 The Graphical Interface Server

The server acts as a multicast sender that handles the
exchanged models and data and registers the clients. It
consist of the following basic services:

o Client Registration Service: De-/Registers the clients
from the server services; handles the client specific data
exchange according to the security restrictions set out by
clients role and rights.

o Data Validation Service: Validates the process and per-
formance data and assured data consistency for all clients.
o Model Update Service: If models are added, changed or
removed this service handles the updating for the clients
and offers all necessary information for model updating
with regard to user interface presentation.

o Data Update Service: The most frequent service sends
new process and performance data to the clients, e.g. if
a process instance is monitored in real-time activity state
changed by the process participants are transmitted to the
registered clients.

Generally, the server should act as the heavyweight com-
ponent and serves the clients as service pool and computa-
tionally expensive tasks.

3.1.2 The Graphical User Interface Client

The client is responsible for displaying the relevant infor-
mation to the specific user. The data models are received
by a specific PIM transformer and then controlled by spe-
cific control modules. The main components are:

e PIM Tranformers: Tranform PIMs into PSMs, extract
the necessary information for displaying and forwards the
data to the component controllers.

o Data Components Controllers: The different controllers
depend on the models they are processing.

e View Controller: Handles user context information, the
general GUI view and controls the top level container of
the GUI.

The client is the lightweight component of the GUI sub-
system. The workflow participants face the software for
monitoring, controlling and managing workflow processes.

3.1.3 Real-time Middleware

A real-time CORBA-ORB middleware component was
used to address the need for timely behavior. The middle-
ware transmits the XML streams to the clients and guar-
antees the consistency of the exchanged data by adequate
time coordination.

3.2 Used Meta-Models

The models used to exchange information are stored in
an platform independent manner as XML-Schemata for the
meta models and XML for their instances. The informa-
tion stored in the XML files are transferred via the middle-
ware components. This kind of describing models brings
the needed flexibility for the external tools that transfer
the needed information to the GUI components and the
GUI interface components to exchange valid information.
The models used in our implementation are:

o Application Specific Data Model: The Model consists of
the process workflow model, the workflow entities and the
workflow logic in order to display the necessary workflow
information.

o User context model: The user context defines what, when
and how workflow information is displayed.

o Performance model: The performance model hold the
performance specific information, such as the used perfor-
mance metric, e.g. activity based costing.

e View Model: The central model of the GUI. It maps the
other models (PIM) into the platform specific view of the
Java implementation and its data structures.

The view model handles the actual transformation into
the platform specific view. In our implementation we used
the Java GUI libraries for a platform independent realiza-
tion.

3.3 Simulation and evaluation

In order to evaluate the performance of the proposed
architecture and implementation we carried out a simula-
tion study with 10 registered GUI clients per server. The

1584

900

750

150

—+— Data Update [ms] —s—Layout Update [ms]

Figure 3: Simulation Study

simulation server sent multicast messages containing differ-
ent amounts of workflow activities (4, 8, 16, 24 activities).
Moreover we tested view and layout model updating for
the received and at runtime stored workflow processes and
activities at the clients.

Figure 3 summarizes the mean times needed for data up-
dating and model updating. The results clearly shows that
the client performance scales reasonably for the transmit-
ted data and model changes. Thus the architecture and
implementation shows promising behavior for further ex-
ploration.

4 Conclusions and Future Work

We realized a flexible distributed real-time workflow
monitoring by: (1) middleware components supporting
real-time monitoring; (2) different controllers for control-
ling workflows definitions, the specification of the graph-
ical user interface and the data that is managed by the
user interfaces. The prototypical software system was im-
plemented as a client-server application in Java using a
real-time CORBA middleware component. The prototyp-
ical implementation shows that the separation of process
models, data models and view models can lead to flexi-
ble monitoring and managing of workflows in real-time and
thus guarantee valuable information of business processes
at runtime.

The promising approach for flexible user interface design
for workflow monitoring can be extended from technical
perspective to several directions. Currently we work on:

1. the integration of mobility in workflow monitoring by
ubiquitous and pervasive technologies. Many workflows are
executed in mobile environments. Thus monitoring in such
an environment becomes much more complex.

2. extended real time support with regard to quality of ser-
vice requirement. Middleware components should inherit
robust behavior in dynamic environments.

3. the extension to various Workflow performance methods
have to be integrated into the Workflow Monitoring System
to guarantee valuable support for the WIMS users.

1585

References

R. Aiello, “Workflow performace evaluation,” Ph.D.
dissertation, Universita di Salerno, March 2004.

W. M. Coalition, “http://www.wimc.org,” 2005.

B. P. Douglass, Real-Time Design Patterns: robust
scalable architecture for Real-time systems. Phearson
Education, Inc., 2003, vol. 1.

C. D. Gill, C. Andrews, C. Cross, R. Natarajan, and
S. J. Fern, “Towards dependable real-time and embed-
ded CORBA systems,” Mar. 22 2002.

O. M. Group, “Mda specification,” Object Manage-
ment Group, Tech. Rep. formal/01-09-67, 2001.

O. O. M. Group, “http://www.omg.org,” 2005.

C. McGregor, “The impact of business performance
monitoring on wfmce standards,” in Workflow Hand-
book 2002, L. Fischer, Ed. Lighthouse Point (FL):
Future Strategies, 2002.

J. Ryder, L. Ross, M. Z. Weiland, P. D, and
W. Zachary, “Intelligent computer-human interaction
in real-time, multi-tasking process control and moni-
toring systems.”

B. T. R. Savarimuthu, M. Purvis, and M. Fleurke,
“Monitoring and controlling of a multi-agent based
workflow system,” in Australasian Workshop on Data
Mining and Web Intelligence (DMWI2004), ser. CR-
PIT, M. Purvis, Ed., vol. 32. Dunedin, New Zealand:
ACS, 2004, pp. 127-132.

C. Schuler, R. Weber, H. Schuldt, and H.-J. Schek,
“Scalable peer-to-peer process management - the osiris
approach.” in ICWS, 2004, pp. 26—34.

W. M. P. van der Aalst and K. van Hee, Workflow
Management. Models, Methods, and Systems. Cam-
bridge, MA: MIT Press, 2002.

H. M. Verbeek, “Verification of wf-nets,” Ph.D. disser-
tation, University of Eindhoven, 2004.

WIMC, “Interface 1: Process definition interchange
process model,” Workflow Management Coalition,”
Document Number WfMC-TC-1016-P Version 1.1 Fi-
nal, 1999.

, “Terminology and glossary, 3rd edition,” Work-
flow Management Coalition,” Document Number
WFEMC-TC-1011, 1999.

M. W. W.M.P. van der Aalst and G. Wirtz, “Ad-
vanced topics in workflow management: Issues, re-
quirements, and solutions,” Journal of Integrated De-
sign and Process Science, vol. 7, no. 3, pp. 40-77, 2003.
M. zur Muehlen, Workflow-based Process Controlling.
Foundation, Design, and Implementation of Workflow-
driven Process Information Systems., ser. Advances
in Information Systems and Management Science.
Berlin: Logos, 2004.

