
473

Service discovery in a DOM-based middleware architecture

Zhaomin Xu, Ming Cai, Jinxiang Dong
Institute of Artificial Intelligence, Zhejiang University, Hangzhou, P.R. China, 310027

xzm@zju.edu.cn;cm@zju.edu.cn;djx@zju.edu.cn

Abstract

Heterogeneity and uncertainty are two main
characteristics of pervasive computing environment and
CSCW. CSCW can be viewed as a special case of
pervasive computing. Middleware is a good approach to
accommodate heterogeneous and dynamically changing
devices for CSCW and pervasive computing. In this paper,
we propose the service discovery method adopted in our
DOM-based middleware architecture, which aims to
support as many types of pervasive environments as
possible. Services in our middleware architecture are
dynamically structured and can be adapted to the
environments’ changes or users’ requirements. Our
middleware architecture can also be used to support
service collaboration in CSCW.

Keywords: Middleware architecture, Pervasive
computing, Service discovery, Service description.

1. Introduction

The essence of the vision about pervasive computing
was the creation of environments saturated with
computing and communication capability, yet gracefully
integrated with human users. Pervasive computing
represents a major evolutionary step in a line of work
dating back to the mid-1970s. Two distinct earlier steps in
this evolution are distributed systems and mobile
computing [1].

The requirements of pervasive computing, which is
also called ubiquitous computing, covers almost all the
requirements of Computer-Supported Cooperative Work
(CSCW), such as multi-device collaboration, modeled
collaboration mode and flexible coupling, multiple-user
devise, etc. A successful model for collaborative
ubiquitous computing applications must combine the
results of all involved research areas, including Human-
Computer Interaction (HCI), Ubiquitous Computing
(UbiComp), Computer-Supported Cooperative Work
(CSCW) and Software development techniques [2].
Research results of mobile collaboration and service
collaboration in pervasive computing are especially useful
to CSCW.

Service discovery is essential for pervasive computing
environments to gracefully integrate networked
computing devices, and it is also important for service
collaboration in CSCW. Service discovery protocols are
designed to minimize administrative overhead and
increase usability. They can also save pervasive system
designers from trying to foresee and code all possible
interactions and states among devices and programs at
design time. By adding a layer of indirection, service
discovery protocols simplify pervasive system design [3].

Heterogeneity and uncertainty are two main
characteristics of pervasive computing environments and
CSCW. CSCW can be viewed as a special case of
pervasive computing. Middleware are services provided
by a layer in between the operating system and the
applications. It usually requires only minimal changes to
existing applications and Oss [4]. Middleware is a good
approach to accommodate heterogeneous and
dynamically changing devices for pervasive computing
and CSCW.

In this paper, we propose the service discovery method
adopted in our DOM-based middleware architecture.
DOM (Dynamic Object Model) is made up of several
smaller patterns. The most important is Type Object,
which separates an Entity from an Entity Type [5].
Services in our middleware architecture are dynamically
structured and can be adapted to the environments’
changes or users’ requirements. Our service discovery
method aims to support as many types of pervasive
environments as possible. Our middleware architecture
can also be used to support service collaboration in
CSCW.

The rest of this paper is structured as follows: Section
2 discusses related work to this paper. Section 3
introduces our DOM-based middleware architecture.
Section 4 discusses our service discovery method,
including service description, service structure, service
registration and discovery. Section 5 shows an example of
service discovery in our middleware architecture. Finally,
we make a conclusion of this paper and describe our
future work.

2. Related work

Proceedings of the 2007 11th International Conference on Computer Supported Cooperative Work in Design

1-4244-0963-2/07/$25.00 ©2007 IEEE.

474

Over the past few years, many organizations have
designed and developed service discovery protocols. All
these protocols support service discovery in ambient
computing environments in terms of network topology or
location. Each one addresses a different mix of issues, but
most are designed for home or enterprise environments
and thus don’t always apply to pervasive computing
beyond these confines [3].

In paper [3], a taxonomy of existing protocols has been
developed as a basis for analyzing discovery approaches
and identifying problems and open issues relative to
service discovery in pervasive computing environments.
The authors argue that service discovery protocols and the
underlying computing infrastructure must have more
intelligence.

Authors of paper [6] propose a new service discovery
protocol, the Pervasive Discovery Protocol (PDP), which
has been designed to fulfill the requirements of wireless
ad hoc networks comprised of limited devices. PDP
doesn’t include any central server, thus requiring no
infrastructure. Devices multicast their services only when
there is a service request in the network. All devices
within transmission range listen to these announcements
and store them in a cache of known services. Devices
answer a service request with all the known services of
the requested type. The algorithm adopted in PDP awards
fixed devices of less limited resources with more
opportunities of answering requests, thus giving higher
priority to answers coming from devices with longer
estimated availability. This reduces the consumption of
the most limited devices, taking advantage of broadcasts
and multicasts in wireless networks.

VSD (Service Discovery based on Volunteers)
proposed in paper [7], a service discovery architecture for
multi-hop wireless ad hoc networks, exploits node
heterogeneity in terms of mobility and capability. It copes
with uncertainty by duplicating service information
through overlapped clusters. In VSD, relatively stable and
capable nodes called volunteers perform directory
services in the system.

We integrate PDP and VSD into a new discovery
protocol named VPDP (Pervasive Discovery Protocol
based on Volunteers) in our middleware architecture to
accommodate heterogeneity and uncertainty of pervasive
computing environments. We aim to support as many
types of networks as possible, so broadcasts and
multicasts are used with caution. Volunteers in our
middleware architecture are middleware nodes with less
limited resources (Here ‘middleware nodes’ refers to
network devices that have our middleware built in and
can communicate with each other, such as PDA, network
servers, personal computers, etc.). But each client (a
service provider or a service requestor) may have
different number of local volunteers and each volunteer
may maintain different number of the same directory
entries for different clients.

In the middleware architecture of the Gator Tech
Smart House [8], a sensor platform effectively converts
any sensor or actuator in the physical layer to a software
service that can be programmed or composed into other
services. In our DOM-based middleware architecture,
devices (sensors, actuators or other devices) are abstracted
as Type Objects managed by the Object Manager in the
Object Layer [9], and each service corresponds to a group
of devices.

3. Middleware architecture

We have proposed our middleware architecture (Figure
1) and introduced DOM (Dynamic Object Model [5]) in
our previous paper [9]. There are four layers in our
middleware architecture: Environment Layer, Object
Layer, Service Layer and Task Layer. Environment Layer
is a basic abstraction of the real world, which consists of
three parts: Resource Manager, Constraint Manager and
Remote Resource Manager. Object Layer is the most
important layer in our middleware architecture, and DOM
is implemented in this layer. Service Layer is designed to
construct or reconfigure services for the Task Layer. Task
Layer is designed to construct tasks, which are application
units that can fulfill user’s requests.

Figure 1. Middleware architecture based on Dynamic
Object Model

In our middleware architecture, devices are abstracted

as Type Objects managed by the Object Manager. Each
service may contain more than one Type Objects and
these Type Objects are considered to be in the same group.
Tasks are formed by service composition. Information
about devices is generated by and stored in the Resource
Manager in the Environment Layer. Device information
includes device properties, device functions, device
requirements, etc.

475

We haven’t realized any mechanism to fetch device
information from the real world so far. So we assume that
device information of each middleware node has been
generated and is stored in a device information file, which
is in XML format. The Resource Manager just analyzes
the device information file to get device information. This
assumption is reasonable because in reality device
information is usually directly fetched from the operating
system that our middleware lies on. In the future, the
device information file may be managed by the Resource
Manager, which will read device information from the
underlying operating system (like the Sensor Platform [8]
does), or by system administrators. System administrators
can provide their own device information just by
modifying the device information file if they will. We
may provide device management tools to help them.

4. Service discovery

4.1. Service description

When a service requestor (SR) requests for a service, it
has to describe the service it wants. Similarly, when a
service provider (SP) advertises a service, it has to
describe the service it has so that other nodes know how
to use it. There are many approaches to describe a service.
OWL, which is based on eXtensible Markup Language
(XML) and Resource Description Frameworks, is a good
approach that can be chosen to define an ontology to
describe services [10]. But for simplicity we haven’t
chosen OWL. As the prototype of our middleware
architecture evolves, we may use it in the near future.

There are two types of service description in our
middleware architecture: Service Description for Service
Requestor (SDSR) and Service Description for Service
Provider (SDSP). A SDSR (Figure 2) normally contains a
subset of the fields in a SDSP (Figure 3), but it can be
extended to include any information needed to describe a
service. Some fields are predefined and every service
description must provide them. Services are grouped and
subgrouped by their properties. Top level groups are
divided by services’ ‘type’ property. Function Description
(Figure 4) in the SDSP is used to describe service
functions. It is not very convenient for clients to use
services now. They have to understand the meaning of the
service input and output. We will work on to improve it.
Maybe OWL will help.

Figure 2. Format of Service Description for Service
Requestor (SDSR)

Figure 3. Format of Service Description for Service
Provider (SDSP)

Figure 4. Format of Function Description

All the fields of SDSR and most of the fields of SDSP
are attributes-based descriptions. The content of every
field should include the field name and the field value in
two-tuple format like <‘type’, ‘printer’>. The value of
every field is based on natural language. For example, the
value of ‘type’ can be ‘printer’, ‘camera’, ‘projector’, etc.
We’ll construct a knowledge base to group field values of
the same meaning so that our middleware architecture
will be more adaptable, intelligent and convenient.

4.2. Service structure

In our middleware architecture, Type Objects of the
same type on a middleware node are grouped into a single
service. Devices are abstracted as Type Objects which
describe and implement devices’ functions. This means
that a service takes control of devices of the same type on
the same middleware node. A service can serve different
clients in the same time. It will choose which Type Object
to use according to clients’ requests. Some devices can
execute a number of tasks in parallel, so a Type Object
may be related to several contexts. Different contexts
define different running environments of a service. When
service migration happens, all the contexts should be
carefully dealt with.

Properties provide static information of a service,
contexts provide dynamic information that will change
over time, and Type Objects define the service’s behavior.
A context is not only changed by the environment but also
changed by the service itself. Figure 5 depicts the whole
service structure.

476

Figure 5. Service structure

Services can be composed into a task. A task may
contain its own context and it must define the relationship
between services. But the structure of a task is quite
similar to a service. So in this paper we mainly discuss the
service structure of our middleware. As stated in our
previous paper [9], tasks can be generated automatically
by our middleware system. But they can also be defined
by system programmers. In the future, we’ll provide tools
for system programmers to define services and tasks.

4.3. Volunteers selection

In paper [7], volunteers in VSD are elected within a
one-hop range using broadcasts. In our middleware
architecture, volunteers are elected from middleware
nodes within the range of a certain number of hops using
multicasts. The number of hops (denoted as ‘H’) is
defined as a system parameter which can be changed by
system administrators or by the middleware system
automatically. The election method of volunteers in our
middleware architecture is similar to the method
described in paper [7]. We have just made a few
modifications to its parameters.

In our middleware architecture, when a node repeats
the solicit process after it can’t register with k volunteers
within a given time period, it will try to register with max
{(k /2 +1), kmin} volunteers. ‘kmin’ is a system parameter
that defines the minimum number of volunteers a client (a
service provider or a service requestor) should register
with. It also defines the minimum number of volunteers
that maintains the same directory entries for clients.
Although at the start all nodes try to register with k
volunteers, they may end up with different number of
local volunteers that they have registered with. In other
words, each client may have different number of local
volunteers and each volunteer may maintain different
number of directory entries for different clients.

In VSD, each node sets its own retrial times (denoted
as ‘ω’, a integer value indicating the number of times a
node should try to register with a certain number of
volunteers) by considering its willingness, degree of

mobility and amount of resource [7]. The lower value of
ω the higher chance a node can take to be a volunteer.
The opinion is consistent with that of PDP about service
reply. In our middleware architecture, each node turns on
or restarts with the system parameter ω set to a default
value.

The value of ω will be changed over time by a
evaluation function, which depends on the total running
time in hours (TRTh, a value between 1 and 1000) of the
node since it turns on or restarts, changed times of the
network address (CTNA), and the number of services (ns)
on the node (in our middleware architecture the number
of service types is equal to the number of services , so we
just use the notation ‘ns’ defined in paper [7]). The
evaluation function is invoked periodically (for example
every ten minutes) or when some events happen (such as
network address changed, new services mounted on the
node). TRTh and CTNA indicate the degree of mobility
of a node. The number of services indicates the amount of
resources on the node. The willingness of a node is hard
to evaluate. We use the system parameter user willingness
(UW, a value between 0 and 1, high value indicates high
willingness) and ns to evaluate a node’s willingness.

Currently, the evaluation function used in our
middleware architecture is defined as below. If UW
equals 0, ω will be set to 9999 and the node state will be
changed to ‘CLIENT’, which means that the node will
never be a volunteer. If UW equals 1, ω will be set to 0
and the node state will be changed to ‘VOLUNTEER’,
which means that the node will just be a volunteer. The
first part of the function indicates the willingness of a
node. The second part indicates the mobility of the node.
The third part indicates the amount of resource on the
node. Low value of these parts indicates high chance that
the node can take to be a volunteer.

1 1 6

(1) / 7 1
s s

CTNA

UW n TRTh n
ω

+
= × ×

× + +

4.4. Service registration and discovery

We have integrated PDP and VSD into a new
discovery protocol named VPDP (Pervasive Discovery
Protocol based on Volunteers) in our middleware
architecture. A SR is itself a user agent.

A SR can send its service request messages if it has at
least kmin local volunteers. If doesn’t, it will join a
multicast group and tries to find local volunteers within
H-hop range (‘H’ is introduced in previous section). If
there are more than kmin responses from volunteers, the
SR stores information about the first kmin volunteers in its
local volunteers list. If it still has less than kmin local
volunteers, it can send its service requests if there is at
least one volunteer in its local volunteers list.

477

There are two types of queries as stated in paper [6] in
our middleware architecture: one query-one response (1/1)
and one query-multiple responses (1/n). In one query–
one response queries, the SR selects a volunteer in its
local volunteers list in a round-robin fashion and sends a
service request to it. If the SR gets a service response, it
can then directly interact with the SP. Otherwise if it can’t
get any response within a certain amount of time (denoted
as ‘TWspr’, time to wait for SP responses), it will send
the service request to another volunteer in its local
volunteers list. If all the volunteers have been tried and
the SR still can’t get any service response, the discovery
process fails.

On receiving a service request, a volunteer will lookup
services in its service directory. The volunteer will send
the service request to the first matched SP. If the SP
accepts the request, it will send an acknowledgement to
both the SP and the volunteer. The service discovery
process ends successfully. Else if the SP doesn’t respond
within a certain amount of time (denoted as ‘TWspa’,
time to wait for SP acknowledgement), the volunteer will
try to find another matched SP in its service directory. If
the volunteer can’t find any matched SP, it will forward
the service request to its neighbor volunteers (a volunteer
knows its neighbor volunteer in service registration
process). The discovery process will continue in this way
until a matched SP is found or TWspr has expired or all
neighbor volunteers have been tried.

In one query–multiple response queries, the service
discovery process is almost the same as that described in
paper [7]. So is the service registration process. When a
SP registers its services, it will let the volunteer know
about the other local volunteers in its local volunteers list.
This registration process makes volunteers know about
other volunteers and form a logical overlay network.

4.5. Service matching

Service matching is a big problem in service discovery.
Designers must balance between discovery speed and
accuracy. In paper [11], resources are described with
hierarchies of attribute-value pairs and they are split into
strands which service matching is based on. In Paper [12],
service descriptions and service requests are described at
an abstract level in terms of the Inputs, Outputs,
Preconditions and Effects. Service matching is then based
on these terms. Paper [12] also introduces three types of
match: exact match, subsumption and plug-in match.

Service matching in our middleware architecture is
also attribute-based (or property-based). We just compare
property fields of the service request with those of the
service description. When a SP receives a service request,
it will also compare the predefined fields with those of its
type objects (see section 4.2) to make sure that it can
fulfill the SR’s requirements.

5. An example

We have developed a prototype of our middleware
architecture using Eclipse 3 and J2SDK 1.4.2. As
mentioned in section 3, we assume that device
information of each middleware node has been generated
and is stored in a device information file, in XML format.
The file usually contains a few device descriptions as
shown in figure 6. Elements contained in each device
description are used to generate a Type Object, which will
be used to realize communication between services and
devices.

Figure 6. Device description

Values of some system parameters now defined in our
prototype system are listed in the table bellow.

Table 1. Values of system parameters and default
values of some system variables

Parameters Values Description

MULTICAST
_ADDRESS

224.7.7
.7

Multicast address used to join
multicast group.

PORT 7777 Default port for multicast.
H 3 Hop range of volunteer election

and service discovery
k 5 Number of volunteers a node

should try to maintain.
kmin 1 Minimum number of volunteers

a node should maintain.
TWspr 10000 Time to wait for SP responses, in

milliseconds.
TWspa 3000 Time to wait for SP

acknowledgement (millisecond).
TTLr 3 Time to live field of the request

message (hop count).
ω 1 Retrial times in volunteer

election.
TRTh 0 Total running time in hours of

current node (1 - 1000).
CTNA 0 Changed times of the network

address of current node.

<device id='Printer A'>
<type>printer</type>
<description>laser printer</description>
<manufacturer>toshiba</manufacturer>
<serial>toshiba-qkqs-48748</serial>
<quality>wonderful</quality>
<availability>always</availability>
<IO-type>input</ IO-type>
<extended-properties>none</extended-properties>

<functions>printer_a_functions.xml</functions>

</device>
…

478

ns 0 Number of services on current
node.

UW 1 User willingness (0 - 1).

Figure 7 shows information about services of a SP.
Figure 8 shows the services’ information that a SR has
received from the service provider, with IP addresses
concealed. The experiment is taken in our campus
network, which is composed of many Local Area
Networks.

Figure 7. Services’ information of a service provider

Figure 8. Services’ information that a service

requestor has received

6. Conclusions and future work

Middleware is a good approach to accommodate
heterogeneous and dynamically changing devices for
pervasive computing and CSCW. In this paper, we have
discussed the service discovery method adopted in our
middleware architecture. We have integrated PDP and
VSD into a new service discovery protocol named VPDP
to accommodate heterogeneity and uncertainty. Services
in our middleware architecture are dynamically structured
and include three parts: service properties, contexts and
type objects. Currently, service descriptions in our
middleware architecture are very simple. We’ll probably
use OWL in the near future.

As the prototype of our middleware architecture is
under development, the example shown in this paper is
rather simple. We’ll keep on improving it and make
experiments to prove that our middleware architecture is
efficient in pervasive computing environments. In the
future, we will concentrate on another hard problem in
pervasive environments: service migration (or service
roaming). We’ll show that our middleware architecture is
very adaptable to services’ changes.

7. References
[1] M. Satyanarayanan, “Pervasive Computing: Vision and
Challenges”. IEEE Personal Communications, Aug. 2001, 8(4),
10 – 17.
[2] Peter Tandler, “The BEACH application model and software
framework for synchronous collaboration in ubiquitous
computing environments”, Journal of Systems and Software,
January 2004, 69(3), 267-296.
[3] Feng Zhu, Matt W. Mutka and Lionel M. Ni, “Service
discovery in pervasive computing environments”, IEEE
Pervasive Computing, 2005, 4(4), 81 – 90.

[4] Tim Kindberg and Armando Fox, “System software for
ubiquitous computing”, IEEE Pervasive Computing, 2002, 1(1),
70 - 81.
[5] Dirk Riehle, Michel Tilman and Ralph Johnson, “Dynamic
Object Model”, In Proceedings of the 2000 Conference on
Pattern Languages of Programs (PLoP 2000), Washington
University Technical Report number WUCS-00-29, Washington
University, 2000.
[6] Celeste Campo, Carlos García-Rubio, Andrés Marín López
and Florina Almenárez, “PDP: A lightweight discovery protocol
for local-scope interactions in wireless ad hoc networks”,
Computer Networks, December 2006, 50(17), 3264-3283.
[7] M. J. Kim, M. Kumar and B. A. Shirazi, “Service Discovery
using Volunteer Nodes for Pervasive Environments”, In
Proceedings of International Conference on Pervasive Services
2005 (ICPS '05), July 11-14, 2005, 188 – 197.
[8] Sumi Helal, William Mann and Hicham,El-Zabadani, Jeffrey
King, Youssef Kaddoura, Erwin Jansen. “The Gator Tech Smart
House: a programmable pervasive space”, Computer, March
2005, 38(3), 50 – 60.
[9] Zhaomin Xu, Ming Cai and Jinxiang Dong, “A middleware
architecture based on Dynamic Object Model for pervasive
computing”, PerComChina (PCC), 2006, 92-97.
[10] Dipanjan Chakraborty, Anupam Joshi and Yelena Yesha,
“Toward Distributed Service Discovery in Pervasive Computing
Environments”, IEEE Transactions on Mobile Computing, Feb.
2006, 5(2), 97 – 112.
[11] Magdalena Balazinska, Hari Balakrishnan and David
Karger, “INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery”, In Pervasive 2002 – The First
International Conference on Pervasive Computing, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Germany,
August 2002, Vol.2414, 195-210.
[12] P. Fergus, M. Merabti, M. B. Hanneghan, A. Taleb-
Bendiab and A. Mingkhwan, “A semantic framework for self-
adaptive networked appliances”, Consumer Communications
and Networking Conference 2005 (CCNC 2005), Second IEEE,
Jan 3-6, 2005, 229 – 234.

