
2007 4th International Conference on Electrical and Electronics Engineering (ICEEE 2007)

IJu J

Realtss: a real-time scheduling simulator

Arnoldo Diaz, Ruben Batista and Oskardie Castro
Department of Computer Systems

Instituto Tecnol6gico de Mexicali, M6xico

fadiaz, rbatista, ocastroj@ itmexicali. edu.mx

Abstract- Real-time scheduling theory has shown an impressive
evolution in the past few years. As a consequence of the intensive
research done in this area a lot of new scheduling policies had
been proposed to date. Nevertheless, just a few of such scheduling
policies are available in existing Real-Time Operating Systems
(RTOS). In this paper, we describe Realtss, an open source real-
time scheduling simulator which is suited to simulate real-time
scheduling algorithms without the need of implement them in
a RTOS. Realtss is an invaluable teaching and researching tool
since existing and new real-time scheduling policies can be easily
evaluated.

Index Terms- real-time scheduling, real-time simulation

I. INTRODUCTION

Real-time scheduling theory has shown a transition from cycli-
cal executive based infrastructure to a more flexible scheduling
models such as fixed-priority scheduling, dynamic-priority
scheduling, soft real-time applications, feedback scheduling or
extended scheduling [20]. Nevertheless, just a few scheduling
algorithms have been implemented in existing Real-Time
Operating Systems (RTOS). In fact, recent studies show that
almost every existing real-time operating system provides
only POSIX-compliant fixed-priority scheduling [19] since
it can be easily implemented in commercial kernels, even
though real-time systems are commonly composed of hard
and soft real-time tasks and in many cases these systems are
better scheduled using dynamic-priority policies [1]. Also, it's
been shown that dynamic-priority scheduling allows a better
utilization of system resources [6].

In order to test and evaluate existing and new scheduling
policies they could be integrated into a RTOS, but it is neces-
sary to modify the operating system internal structure, which
requires special programming skills. Furthermore, modifying
the operating system internal kernel represents a difficult and
time-consuming task, which is one of the reasons why so few
scheduling policies have been already implemented.

Another alternative to test and evaluate scheduling policies had
been proposed recently through a framework to implement
new scheduling algorithms into a RTOS without modifying
its internal structure [2], [9], [8]. Nevertheless this framework
must be implemented in the RTOS, and the use of its API
implies the use of advanced programming techniques.

1-4244-1166-1/07/$25.00 ©2007 IEEE.

In this paper we describe Realtss, an open source real-time
scheduling simulator which is suited to simulate real-time
scheduling algorithms without the need of implement them
in a RTOS. Realtss is an invaluable researching tool since
existing and new real-time scheduling policies can be easily
implemented and their performance evaluated. Furthermore
the proposed simulator can be used as a teaching tool since
students can learn real-time scheduling without the need of
knowing real-time systems programming.

The remainder of this paper is organized as follows: Section
2 gives a brief overview of the related work. In Section 3 we
show and explain the main characteristics of Realtss. Section
4 presents an example of the use of the simulator. Finally,
Sections 5 is for conclusions and future work.

II. RELATED WORK

The scheduler is an operating system module that implements
a set of algorithms to allocate resources and to control access
to shared resources among jobs [16]. In a real-time oper-
ating system, the scheduling algorithms implemented in the
scheduler must guarantee the accomplishment of the task's
deadlines.

To guarantee the accomplishment of the real-time system
timing constraints a lot of feasibility tests have been proposed.
They can be divided in polynomial time tests and exact tests.
The first ones can be used for on-line guarantee of real-
time applications. However, they provide only a sufficient
schedulability condition, which may cause a poor processor
utilization. On the other hand, exact tests provide a necessary
and sufficient schedulability condition, but are too complex to
be executed on line for large task sets since commonly the
complexity of these tests is pseudopolynomial [5].

On the other hand, the performance of a real-time system
scheduling algorithm can also be evaluated through the use of
exhaustive simulation. Some real-time scheduling simulators
have been proposed. Initially, they were build to address a
particular scheduling problem or execution environment [15],
[22], [23].

One of the first notable works was published in [3], where
Audsley et al. proposed a collection of CASE tools for

165 IEEE Catalog Number: 07EX1762C
ISBN: 1-4244-1166-1
Library of Congress: 2007923398

2007 4th International Conference on Electrical and Electronics Engineering (ICEEE 2007)

2uI0
analyzing and simulating the behavior of hard real-time safety-
critical applications. The proposed simulator, called STRESS,
included a simulation language to specify both the system
environment and the task parameters. It included a graphical
front-end for control and display, some feasibility tests and
support for multiprocessing and networking. Since the simu-
lator was built upon a simulation language, it imposed a limit
in the scope of scheduling algorithms that could be simulated.

De Vroey et al. proposed in [7] a language for defining
scheduling algorithms for hard real-time systems and a tool
to simulate the behavior of such systems on a predefined task
set. Their proposal was similar to STRESS but presented an
extended language in order allow the simulation of newly
devised scheduling policies.

Kramp et al. proposed FORTISSIMO in [14]. It was also based
on STRESS. Their proposal was not a ready-to-run applica-
tion but an open framework to facilitate the development of
tailor-made real-time scheduling simulators for multiprocessor
systems. FORTISSIMO was not a simulation application but
provided a basic infrastructure to build a real-time scheduling
simulator.

In [18] Manacero et al. presented a very interesting project
named RTSIM, a set of real-time scheduling simulator tools
aimed primarily to be used as a teaching tool. It is a collection
of programming libraries written in C++ for simulating real-
time control systems. RTSIM is still an active project and its
code has been recently released as open source.

Finally, Jakovljevic et al. presented in [12] a research in
application of object-oriented language (Java) in development
of real-time system simulation. They described advantages
and disadvantages of Java, and gives a critical overview of
necessary modifications to make Java an acceptable choice
for real-time systems.

The proposals presented so far required the use of a specific
language to define the attributes of the tasks set and the
simulation parameters. In contrast, the tool proposed in this
paper does not required the use of a specific language to build
or use the simulators. It provides a framework for developing
real-time scheduling simulators and it is not limited by any
simulation language. It is composed of a graphical front-end to
use the scheduling algorithms and evaluate their performance.
In the next section we present the architecture of Realtss.

III. REALTSS

Realtss is intended to be used to test and evaluate existing and
new scheduling policies. It has been written in TCL and it is
distributed as open source software. Its modular design allows
the integration of additional scheduling algorithms seamlessly.
New scheduling algorithms can be added as modules written in
TCL, C or C++ and it is not limited by a particular simulation
language. It can be executed in many operating systems, such
as Linux or Windows.

Figure 1 shows the architecture of the proposed tool. Realtss
has a modular design. The Functions module implements a set

166
1-4244-1166-1/07/$25.00 ©2007 IEEE.

Fig. 1. Realtss Architecture

of functions to work with the defined tasks sets. The Algorithm
Loader searches and loads the scheduling simulators modules
that complaints with the definitions of the proposed frame-
work. To add a new scheduling simulator is just needed to
follow a simple definitions guidelines and to add the module
into the .lalgos folder. The scheduling simulator module is
composed of two files. The first one is a .tcl file. It contains the
simulator itself and it can use any of the simulation functions
already available in Realtss. The second one is a def file
and it includes the algorithm definitions in order to be used
by Realtss. On the other hand, the Tests module includes the
schedulability tests for the scheduling policies implemented.
New schedulability tests can be easily added. The parameters
of the tasks sets can be saved in a . rts file in order to be used in
the future with any of the scheduling algorithms implemented
in the simulator.

After a simulation run, some new files are generated. One of
them includes the simulation results to be shown in the Realtss
Graphical User Interface. The other one is a .ktr file, which in
turn is used by the Kiwi program. Realtss is fully integrated
with Kiwi [10], a graphic application which displays tasks
execution trace logs. Results of the simulations are generated
in a kiwi-compatible format in order to be displayed properly
with the use of this tool. After the simulation test have been
executed, the user can analyze the behavior of the tasks set
once it has been scheduled with the scheduling policy selected.
An execution chronogram can be visualized using the kiwi
application.

The use of the simulator involves three steps most of the times:
definition of parameters, simulation and results analysis. In the
first stage the user defines the parameters of the tasks set. The
parameters that can be defined are period, worst-case execution
time, phase and deadline.

The real-time system to be simulated can be composed of hard

IEEE Catalog Number: 07EX1762C
ISBN: 1-4244-1166-1
Library of Congress: 2007923398

2007 4th International Conference on Electrical and Electronics Engineering (ICEEE 2007)

Fig. 3. Execution chronogram displayed using the Kiwi application

IV. EXAMPLE

Fig. 2. Realtss Graphical user Interface

and soft real-time tasks and shared resources. Additionally, if
the scheduling policy involves the use of resources (mutexes)
their parameters can also be defined accordingly. Figure 2
shows the Realtss GUI.

We have already integrated some scheduling algorithms into
Realtss:

* POSIX-complaint Fixed-Priorities [1]
* Rate Monotonic (RM) [17]
* Earliest Deadline First (EDF) [17]
* Deadline Monotonic (DM) [17]
. Priority Inheritance Protocol (PIP) [21]
* POSIX-complaint version of the Priority Ceiling Protocol

(PCP) [13]
. Stack Resource Protocol (SRP) [4]

Scheduling policies can be selected using a selection list. A
simple mechanism has been devised to integrate additional
scheduling policies into Realtss. New scheduling modules
build following a simple guidelines must be in a proper
directory in order to appear in the simulator's selection list.

Once the parameters of the tasks set have been defined and
the scheduling policy has been selected, a feasibility test or a
simulation test can be executed for a given simulation time.

Besides the graphical data displayed, a lot of valuable informa-
tion is provided by Realtss. This information is very useful at
evaluating the performance of the scheduling algorithm used.
The information provided includes:

* Processor utilization
. Response time
. Tasks waiting time
. Deadline misses
. Overruns

Since the parameters of the tasks can be saved into a file,
they can be simulated using different scheduling algorithms
and their performance can be evaluated.

167
1-4244-1166-1/07/$25.00 ©2007 IEEE.

Figure 2 shows a real-time system composed of three hard
real-time tasks. The parameters of the tasks used in the
example are: Ti = (3, 1), T2 = (5, 2) and T3 = (8, 1). The
first parameter represents the task's period and the second one
its worst-execution time. In the example, the scheduling policy
used is Earliest Deadline First. EDF is a dynamic scheduling
policy where the task with the earliest deadline has the highest
priority. The simulation time used in the example was set to
25 units. Simulation results are shown in the Realtss GUI,
as it can bee seen in Figure 2. On the other hand, Figure 3
shows the execution chronogram of the tasks set scheduled
using EDF as displayed by the Kiwi application.

Realtss can be used to evaluate the performance of a schedul-
ing algorithm and to compare different scheduling policies
among them. In order to illustrate the goodness of the proposed
tool, the tasks set used in the previous example was also
scheduled using the RM algorithm. RM is static scheduling
policy where the task with the shortest period has the highest
priority. Figure 4 shows the simulation results and it can be
seen that in the simulation period a task missed its deadline
once. This fact can also be viewed graphically in Figure 5,
where T3 didn't executed its first activation and consequently
missed its deadline. This example shows that EDF is able to
schedule a tasks set that RM can not schedule correctly.

As shown in the example, Realtss can be used as a research
tool since it allows the evaluation of the performance of
scheduling policies and to compare them using the same or
different tasks sets. Furthermore, it can be used as a teaching
tool. For instance, a student can graphically view the difference
between a static scheduling policy against a dynamic one. In
the example discussed in this section, it can be seen how
when using a static scheduling algorithm the priority of tasks
never change. On the other hand, when a dynamic scheduling
algorithm is used the priorities of tasks may change in time.
To illustrate it, in Figure 5 Ti always preempts T2 and T3
since the priority assigned to Ti by the scheduling algorithms
never changes (Ti is always the most priority task). In contrast,
Figure 3 shows how T2 preempts the third activation of Ti
since when using dynamic scheduling algorithms the priority
assigned to every task may change at a given scheduling time
(Tl is not always the most priority task).

IEEE Catalog Number: 07EX1762C
ISBN: 1-4244-1166-1
Library of Congress: 2007923398

2007 4th International Conference on Electrical and Electronics Engineering (ICEEE 2007)

Fig. 4. Example using Rate Monotonic scheduling policy

Fig. 5. Kiwi display of the RM example

V. CONCLUSIONS AND FUTURE WORK

Even though a lot of scheduling algorithms have been pro-
posed just a few of them are available to implement real-
time systems applications. In order to use, test and evaluate a
scheduling policy it must be integrated into a Real-Time Oper-
ating System, which is a complex task. Simulation is another
alternative to evaluate a scheduling policy. Unfortunately, just
a few real-time scheduling simulators have been developed to
date and most of them require the use of a specific simulation
language.

In this paper we have presented Realtss, an open source real-
time scheduling simulator. Realtss is aimed to be used to test
and evaluate existing and new real-time scheduling algorithms.
It is composed of a graphical front-end to set task's parameters
and to view simulation results. Its modular design allows the
integration of additional scheduling policies seamlessly. New
scheduling algorithms can be added as modules written in
TCL, C or C++ and are not limited by a particular simulation
language. It can be executed in many operating systems, such
as Linux or Windows.

On the other hand, the simulation information provided by
Realtss allows the evaluation and comparison of the perfor-
mance of different scheduling algorithms. Its simplicity of use
and its fully integration with Kiwi, a a graphic application
which displays tasks execution trace logs, makes Realtss an
invaluable teaching tool.

Future work includes the integration of more scheduling
policies, in particular to schedule real-time systems constituted

168
1-4244-1 166-1/07/$25.00 ©2007 IEEE.

of periodic and aperiodic tasks with shared resources. Also,
the support for multiple processors and networking.

REFERENCES

[1] Abeni, L. and Buttazzo, G. Integrating multimedia applications in hard
real-time systems. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 4-13, Madrid, Spain, Dec 1998.

[2] Aldea, M. and Gonzalez-Harbour, M. Posix-compatible application-
defined scheduling in marte os. In Proceedings of the 13th Euromicro
Conference on Real-Time Systems, pages 67-75, June 2001.

[3] N. C. Audsley, Alan Burns, M. F. Richardson, and Andy J. Wellings.
Stress: a simulator for hard real-time systems. Software - Practice and
Experience, 24(6):543-564, June 1994.

[4] Baker, T. P. Stack-based scheduling of real-time procesess. Real-Time
Systems Journal, 3(1):67-99, Mar 1991.

[5] Bini, E. and Buttazzo, Giorgio C. Schedulability analysis of periodic
fixed priority systems. IEEE Transactions on Computers, 53(11), Nov.

[6] Buttazzo, G.C. Rate monotonic vs. edf: Judgment day. Journal of Real-
Time Systems, 29(1):5-26, Jan 2005.

[7] Stephane de Vroey, Joel Goossens, and Christian Hernalsteen. A generic
simulator of real-time scheduling algorithms. In Proceedings of the 29th
Annual Simulation Symposium, pages 242-249, New Orlean, LA, April
1996.

[8] Diaz, A., Ripoll, I., and Crespo, A. Extending the posix-compatible
application-defined scheduling model. In Proceedings of the 26th IEEE
Real-Time Systems Symposium (WiP), Miami, Fl, Dec 2005.

[9] Diaz, A., Ripoll, I., and Crespo, A. A library framework for the posix
application-defined scheduling proposal. In Proceedings of the 2nd IEEE
International Conference on Electrical and Electronics Engineering,
pages 21-26, Mexico City, Sep 2005.

[10] Agustin Espinoza. Kiwi user guide. Technical report, Uni-
versidad Politecnica de Valencia, 2003. Available on-line at
http://www.dsic.upv.es/users/ia/sma/tools/kiwi/index.html.

[11] IEEE Std 1003.1, 2004 Edition. The Open Group Technical Standard
Base Specifications, Issue 6. Base Definitions. Institute of Electrical and
Electronic Engineers and The Open Group, Apr, 2004.

[12] G. Jakovljevic, Z. Rakamaric, and D. Babic. Java simulator of real-
time scheduling algorithms. In Proceedings of the 24th International
Conference on Information Technology Interfaces, volume 1, pages 411-
416, Cavtat, Croatia, June 2002.

[13] Klein, M.H. et. al. A Practitioner's Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis of Real-Time Systems. Kulwer
Academic Publishers, 1993.

[14] Thorsten Kramp, Matthias Adrian, and Rainer Koster. An open frame-
work for real-time scheduling simulation. Lecture Notes in Computer
Science, 1800:766+, 2000.

[15] Jane W. S. Liu, Juan-Luis Redondo, Zhong Deng, Too-Seng Tia,
Riccardo Bettati, Ami Silberman, Matthew Storch, Rhan Ha, and Wei-
Kuan Shih. Perts: A prototyping environment for real-time systems.
In Proceedings of the 14th IEEE RealTime Systems Symposium, pages
184-188, Raleigh-Durham, North Carolina, Dec 1993.

[16] Liu, J.W.S. Real-Time Systems. Prentice Hall, 2000.
[17] Liu, J.W.S. and Layland. Scheduling algorithms for multiprogramming

in a hard real-time environment. Journal of the ACM, 20(1):46-61, May
1973.

[18] Eleardo Manacero, Marcelo B. Miola, and Viviane A. Nabuco. Teaching
real-time with a scheduler simulator. In Proceedings of 31st ASEE/IEEE
Frontiers in Education Conference, pages 15-19, Reno, NV, October
2001.

[19] Ripoll I. et al. Rtos state of the art analysis. Technical report, OCERA
Project, 2003.

[20] Sha, L., Abdelzaher, T, Arzen, K., Cervin, A., Baker, T.P., Burns,
A., Buttazzo, G., Caccamo, M., Lehoczky, J., and Mok, A. Real
time scheduling theory: A historical perspective. Real-Time Systems,
28(2):46-61, Nov 2004.

[21] Sha, L., Rajkumar, R., and Lehoczky,J.P. Priority inheritance proto-
cols: An approach to realtime synchronisation. IEEE Transactions on
Computers, 39(9):1175-1185, Sep 1990.

[22] Alexander D. Stoyenko. A schedulability analyzer for real-time euclid.
In Proceedings of the 8th IEEE Real-Time Systems Symposium, pages
218-227, San Jose, CA, Dec 1987.

[23] H. Tokuda and C. W. Mercer. Arts: a distributed real time kernel. ACM
SIGOPS Operating Systems Review, 23(3):29-53, July 1989.

IEEE Catalog Number: 07EX1762C
ISBN: 1-4244-1166-1
Library of Congress: 2007923398

.ff w Of w

... V= .Z"

