
Modeling Diverse and Complex Interactions Enabled by Middleware as

Connectors in Software Architectures

Yali ZHU, Gang HUANG*, Hong MEI

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.

E-mail: zhyl@sei.pku.edu.cn, huanggang@sei.pku.edu.cn , meih@pku.edu.cn

Abstract

Middleware enables distributed components to

interact with each others in diverse and complex

manners. Such interactions should be modeled at

architecture level for controlling the complexity of

incorporating middleware into the target system. This

paper extends a traditional architectural description

language for describing the diverse and complex

interactions enabled by middleware as complex

connectors and constraints on them in a model driven

process. Such functions and qualities of connectors that

satisfy the requirements of the target system are

modeled without any consideration of middleware at

first. Then the connectors and constraints on them are

refined by the characteristics induced by middleware.

All information of connectors produced in the two-step

process can be described at three levels, including the

connection, coordination and context. The language and

process are illustrated and evaluated by applying them

into J2EE (Java 2 Platform Enterprise Edition)

applications.

1. Introduction

Recognized as an important and practical approach

for reducing the complexity and cost of the development

and evolution of complex software systems, component

based software engineering (CBSE) is receiving more

and more attention from the industrial and academic

communities. In CBSE, there are two main research

fields – middleware and software architecture.

Middleware, that resolves heterogeneity and facilitates

communication and coordination of distributed

components [26], acts as the runtime infrastructure for

 * Corresponding author

components. Software architecture, that describes the

gross organization of the system as a collection of

interacting components [4], acts as a blueprint for

guiding the composition of prefabricated components

[11][26]. Traditionally, software architectures look

middleware as a set of, such as object oriented or event

based, message passing primitives [19]. However, such

way becomes difficult and inefficient to guide the

component composition because of the proliferation of

middleware today.

Firstly, the major functionalities of middleware (i.e.,

to support interoperability among components), are

proliferating for meeting diverse requirements of

multiple application domains. Besides the popular and

matured interoperability protocols supporting intranet

distributions like IIOP (Internet Inter-ORB Protocol) [14]

and JRMP (Java Remote Method Protocol) [22], there

are also emerging some interoperability protocols for

internet distributions like SOAP (Simple Object Access

Protocol) [24], WSCI (Web Service Choreography

Interface) [25] and BPEL (Business Process Execution

language) [2]. Secondly, some quality related

considerations are also incorporated in the middleware

layer. For example, IIOP provides the functions of client

authentications, delegations and privileges to overcome

the deficiencies of transport layer via SSL [14]. Thirdly,

middleware changes the actual structures and behavior

of the target system. For example, complex interactions

among components may be traditionally be implemented

by the codes scattered in the interacting components.

But now, such complex interactions can be implemented

as BPEL processes which are isolated from the

interacting components and executed by an independent

BPEL engine. Naturally, the composition of components

has to cope with the changes of the structure of the

target system.

The above discussion reveals that modern middleware

puts much more and usually important impacts on the

development and evolution of distributed software

systems. Particularly, middleware enables distributed

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

components to interact with each others in diverse and

complex manners. However, such interactions enabled

by middleware are usually represented as message

passing primitives or simple connectors in traditional

architecture description languages. As a result, the

architects cannot record, analyze and evaluate the

impacts of the interactions enabled by middleware on

software architectures and then cannot directly and

efficiently control the complexity of incorporating

middleware into the target system.

This paper tries to investigate and deal with the

impact of middleware on software architecture at the

design phase using the notation of connectors, that is,

the interoperability functions of middleware are

represented as complex connectors and constraints on

them. Firstly, we identify five characteristics of

connectors induced by middleware. Then, we extend an

architectural description language, called ABC/ADL

[10], to describe connectors with these characteristics at

three levels. In order to ease the work of modeling such

complex connectors, we define platform independent

architecture models and platform specific architecture

models, both of which are similar with Platform

Independent Model (PIM) and Platform Specific Model

(PSM) in MDA (Model Driven Architecture) [16]. In the

platform independent architecture model, connectors are

designed in terms of the functionalities and qualities of

system requirements. In the platform specific

architecture model, the details of middleware, such as

the underlying interoperability protocols, their support

for the non-functional requirements, etc., are considered

to make the connectors consistent with the target system.

To demonstrate the solution, we apply the language and

process into J2EE applications.

The rest of the paper is organized as follows. Section

2 discusses the characteristics of connectors induced by

middleware and related work. Section 3 introduces a

typical J2EE application which will serve as the case

study in the following sections. Section 4 describes the

two-step process for modeling the connectors. Section 5

presents the extended architectural description language.

Section 6 summarizes the contributions and identifies

the future work.

2. Connectors Induced by Middleware

2.1. Characteristics of Connectors Induced by

Middleware

After a thorough and careful investigation on

middleware, five representative characteristics of

connectors induced by middleware can be identified as

follows.

Diversity of Interoperability Protocols: The core of

middleware is the interoperability protocol.

Typically, CORBA has IIOP, RMI has JRMP and

COM has RPC. Recently, web services define

SOAP to support the interactions across Internet.

The diversity of interoperability protocols brings us

flexibility as well as complexity. For instance, an

EJB (Enterprise Java Bean) can be directly invoked

through IIOP or JRMP to interact with CORBA

components or other Java-based components

within the boundary of enterprise, or be released as

a web service to be indirectly invoked through

SOAP which can penetrate the firewalls. At the

same time, the proliferations of them also promote

the establishment of a common glossary among

software developers.

Enhancement of interoperability protocols: Besides

the functionality of facilitating communication

among distributed components, middleware has

also incorporated some application-level

non-functional aspects in the interoperability

protocols. For examples, an extension of SOAP

messaging framework is “SOAP feature” including

reliability, security, correlation, routing, and

message exchange patterns etc. [26].

Pub/Sub among multiple components: A Pub/Sub

system is the event-based system that establishes

implicit connections between the publishers who

produce topics and subscribers who register their

interests in the same topics so that both of them are

not aware of the connections. CORBA event

service [17] and JMS [24] are the typical

middleware services supporting Pub/Sub in the

Internet-based setting, providing the common

vocabulary among components that solves the

mismatches due to assumption conflicts [5].

Choreography between two components:

Choreography means that a component works well

only when its services are invoked in a given order.

The business logic contained in some components,

i.e. booking airline ticket before making hotel

reservation, makes the connection an inherent

choreography to satisfy the temporal dependencies

among activities. WSCI describes the behavior of a

web service in terms of choreographed activities in

the context of different message exchanges.

Execution flow among multiple components:

Execution flow specifies the potential execution

order of operations from a collection of

components. From the perspective of SA, it

handles the coordination between multiple

components. Typically, BPEL allows specifying

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

business process and identifying required web

services in the process.

The above characteristics have great influences on the

design of the target system including the structuring

elements as components, connectors, and topology i.e.

Pub/Sub among multiple components, the behavioral

aspect of the system i.e. control flow among components

by execution flow among multiple components, as well

as the quality attributes of the system i.e. security,

modifiability and flexibility by enhanced interoperability

protocols. In order to shorten the gap between

architecture based design and implementation as well as

to make proper and sufficient use of current middleware

technologies, middleware should be incorporated into

earlier design phase instead of just considered as pure

message passing primitives.

2.2. Existing Approaches to Modeling

Connectors Induced by Middleware

Several existing Architectural description languages

are studied and discussed on their support for

middleware-induced styles in [13]. As for connector, the

author argued that the definition is associated with a too

restrictive semantics. Though it can be described as

components, the architectural definitions are more

readable and clear when the special purpose of these

architectural elements for component interoperability is

made explicit [13]. The explicit definition can also drive

middleware into early consideration which may in return

save the labor the developer due to the powerful

capabilities supported by middleware infrastructure.

Though different middleware infrastructures have

their own features, but the five characteristics mentioned

above cover the most important aspects of connector

including its main content (protocol), non-functional

requirement, its effect on topology of the system, its

relationship with components and its own behaviors. So

to incorporate the middleware related information for

later composition and deployment, connectors in

architecting should have the following capabilities:

explicit description or identification of interoperability

protocols; support for non-functional properties

provided by enhanced protocols; ability to model

implicit, event-based connection; record of

choreography requirement of the components for further

validation of the connection; specification for temporal

dependences among connected components.

According to these requirements, we examine the

existing ADLs, including Wright [1], Armani [19],

UinCon [22], C2 [10], Rapide [15], and Darwin [9] –

with the purpose to investigate their modeling abilities

to middleware-based systems and the result is shown in

Table 1. We can see that since these ADLs matured

before middleware proliferation, none of them fully

support all the characteristics of connectors induced by

middleware. Firstly, none of them takes the

interoperability protocols explicitly in the definition of

connectors. ADL like UniCon that supports predefined

connector types has not covered all the functionalities

provided by current interoperability protocols. While

ADL like Wright that defines connectors using formal

method can only describe interoperability protocols in

such a perplexing way while specific interoperability

protocol by itself contains certain syntactic and semantic

information which is shared by software developers

without ambiguity. Secondly, only UniCon and Armani

partially describe non-function properties in their

connector definition counting on the support of certain

underlying environments. Thirdly, event-based

connection is supported by the most ADLs except

UniCon. But such connection is indirectly addressed

with the different semantics. Fourthly, ADLs equipped

with formalization tools can record the choreography

Table 1 ADL support for middleware-induced connectors

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

requirements of the components, but lack the related

information in the connector definition except in Wright

where the role in connector and player in component are

modeled in the same way using CSP. Lastly, only

Wright has the notation glue for the temporal

dependence for the workflow among components. So in

order to better support the architecting of

middleware-based system, the description for connector

must be modified or extended in ADL.

3. The Sample of J2EE Application

As regarded as the technical environment which will

influence and actually change the software engineering

culture for the first decade of the twenty-first century [1],

J2EE is selected as the typical middleware for our study

on middleware-induced connectors. In this section, we

will first examine a typical J2EE application server –

PKUAS to have a concrete image of J2EE technologies,

and then introduce a J2EE-based application as the case

study for the paper.

3.1. A Typical J2EE Application Server -

PKUAS

PKUAS (PeKing University Application Server) [13]

is a J2EE application server, which is the platform

including J2SE (Java 2 Standard Edition), common

services and one or both of Web Container and EJB

Container. In general, a system based on PKUAS has

typical 3-tier architecture, as shown in Figure 1.

Via its customizable and extensible interoperability

framework [5], PKUAS provides many interoperability

protocols which have all characteristics of the

connectors induced by middleware. In details, PKUAS

provides Internet and Web protocols include TCP/IP,

HTTP, HTTPS (HTTP over SSL) and SOAP and

Intranet protocols including IIOP, RMI-IIOP,

RMI-IIOP-SSL and RMI-JRMP. To optimize the

interactions among the components collocated in the

same virtual machine, two private protocols, EJBLocal

(all parameters are passed by references without

marshalling) and RMI-IntraVM (all parameters except

interfaces are passed by values without marshalling) are

provided. JMS supports Pub/Sub interactions. JDBC

supports the interactions with the backend databases.

JCA (Java Connector Architecture) enables J2EE

components to interact with some special enterprise

applications, like ERP (Enterprise Resource Planning)

and CRM (Customer Relationship Management).

3.2. A Typical J2EE application – Java Pet

Store

The Java Pet Store (JPS) is a sample application by

the Java Blue Prints program at Java Software, Sun

Microsystems. It is a typical e-commerce application: an

online pet store enterprise that sells animals to

customers.

Figure 2. Configuration view of JPS

As shown in Figure 2, JPS can be divided into four

main parts – FrontEnd, OPC (Order Process Center),

Admin and Supplier – that asynchronously communicate.

The OPC controls the main workflow of the whole

application. In detail, it receives orders from the

FrontEnd, if the total price is more than 500 dollars, then

it send the unapproved order to the Admin for validation,

and wait until receiving the approved order from Admin;

otherwise it approves the order directly. Once the order

is approved, it is sent to the Supplier to ship the products

for the customer. And the OPC is waiting for the

invoices from the Supplier. In the problem space, OPC

is treated as a complex connector among the other three

components and will be modeled step by stop in the rest

of paper.

4. Modeling Connector Induced by

Middleware

4.1. Overview of ABC

The architecture-based component composition

Figure 1. Interoperability mechanisms in PKUAS

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

(ABC) approach employs SA descriptions as

frameworks to develop components as well as blueprints

for constructing systems, while using middleware as the

runtime scaffold for component composition [12]. In

ABC approach, SA runs through the whole life cycle of

software applications including requirements analysis,

architecting, composition, deployment, maintenance and

evolution [5]. ABC also provides a set of supporting

tools for different engineering phases, including an

architecture description language called ABC/ADL, a

deployment and runtime environment PKUAS, etc.

ABC takes views as the mechanism for separating

concerns, and as for connector, we draw three views –

type, configuration, and flow view. The Type view

concerns the types of the sub-components and

sub-connectors that directly take part in the fulfillment

of providing services with the intention to draw the

developers’ attention on current developing stage and

effectively support stage-by-stage refinement and

creation. The Configuration view pictures the structural

dependencies among sub-elements presented in the type

view with the aim for configuring a runnable connector

and providing a possible plan for further deployment.

The Type and Configuration view exist for complex

connectors that need refinement. The Flow view is to

express the execution flow among roles in the connector

for the sake of coordination, is checked for valid against

the choreography requirements of participants, and is

optional if there is no coordination requirements.

Connectors are treated as the first-class entities as

components in problem space, so explicit connection

specifications should be documented in the requirement

specification. Connector in problem space will be

refined and implemented in design phase [12]. In this

section, we will illustrate the modeling process of

connector using OPC as the example. The modeling

process of connectors is centered on the creation of the

three views in two steps – platform independent model

and platform dependent model.

4.2. Modeling Views in Platform Independent

Models

The modeling of connector as well as the whole

system begins with the modeling of the three views.

Following we will take the OPC as the example to

illustrate the modeling process of connector.

First of all, we must determine whether OPC is a

complex connector or a primitive one. If it is a primitive

one that means it is totally supported by the underlying

infrastructure, only the flow view may be defined if it

has the coordination responsibility. Otherwise, the other

two views should also be defined to support refinement.

Obviously, OPC has the responsibility to connect the

other three components and ensure the temporal

relationship between them according to the business

logic. If the other three components are released as web

services, then OPC can be seen as a primitive connector

supported by some work flow engine in the middleware

infrastructure. All the architect should do is to describe

the work flow in certain work flow language like BPEL

or WSFL etc. The details associated with the concrete

control and invocation of certain activities is shield in

the primitive connector. The flow can be derived from

the following steps. Firstly, we analyze the parties that

participate in the interaction mediated by the connector.

There are five parties in OPC – one for sending order

from the front end named PurchaseOrderSender, one

for receiving the unapproved order for validation named

Administration, one for sending the approved order from

Admin named OrderApprovalSender, one for receiving

the order from OPC to ship animals to customers named

SupplyApprove, and one for sending invoices to the OPC

named InvoiceSender. These parties are modeled as

roles in ABC indicating that some components play the

role in the interaction. As described in section 3.2, the

Flow view of OPC is shown in Figure 3.

Figure 3 Flow view of OPC

If the other three components are not released as web

services, then the OPC must be a complex connector

that needs refinement. Then the three views must all be

decided in the development. Firstly, the five roles

mentioned above is recorded in the Type and

Configuration views and can be seen as the start point of

the modeling process and must be mapped to the roles of

primitive connectors for implementations or be refined

in the lower level. So now we must refine our design by

determining the sub elements of the complex connector

in the configuration view as shown in Figure 4. Two

kinds of primitive connectors – RemoteRrocedureCall

with two roles caller and callee and Message with two

roles sender and receiver are employed as

sub-connectors to fulfill the concrete task of linking the

outer roles. In detail, InvoiceSender,

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

PurchaseOrderSender, and OrderApprovalSender are

mapped to the sender role of Message, while

SupplyApprove is mapped to receiver role of Message,

and Administration is mapped to callee role of

RemoteProcedureCall. The roles of the primitive

connector must be connected with the players (the

functional parts in the component). Driven by that

principle, we can get more components in the

Configuration view until it is valid. By valid we mean

that the outer role of complex connector is mapped and

there is no pending roles or players of the sub-elements.

Eventually, we get the Configuration view of OPC in

Figure 4, while the type view is omitted here.

Figure 4. Configuration view of OPC

As shown in Figure 4, InvoiceReceiver,

PurchaseOrderReceiver, OrderApprovalReceiver are to

receive message from outside the connector,

OrderApprovalSender is for sending the order to the

supplier. The admin can directly manipulate the OPC

through the OPCAdminFacade. All the activities in the

OPC are managed by a workflow manager –

ProcessManager, which records the status of current

processing order and controls the temporal order of the

five roles. By far, the structural aspect of the connector

is achieved, and then the behavioral aspect of the

connector should be considered.

Finally, no matter it is the primitive connector or the

complex one, all non-functional requirements derived in

the analysis are recorded and will be dealt with in the

platform specific architecture model. In OPC, one of the

main non-functional requirements is security, which

required the message exchanging between OPC and

other parts of the system to satisfy the integrity and

confidentiality requirements. These requirements must

be supported by underlying platform for primitive

connector, implemented by the specific component, or

be implicit achieved by the certain architectural

solutions i.e. topology for complex connector.

4.3. Refinement in Platform Specific Model

After the platform independent architecture model is

achieved, the logic entities in the model should be

implemented by selecting, qualifying and adapting

components, connectors and constraints in the reusable

assets repositories. In other words, the designed

architecture model is refined with the details of the

implementation which is closely coupled with

middleware. Typically, the underlying interoperability

protocol for the primitive connectors should be selected

in this phase. Assume that there are two logical

components interacting with each other. If one is

implemented by an EJB and another is implemented by

a CORBA object, the connector between them should

take IIOP as the underlying interoperability protocol.

More complex, assume that both are implemented by

EJBs, the underlying interoperability protocol can be

RMI-IIOP if they are distributed or be EJBLocal if they

are collocated in the same host.

Here for OPC, BPEL can be selected as the

interoperability protocol if it is the primitive one. In the

second situation, we can select RMI-IIOP as the

interoperability protocol for RemoteProcedureCall and

JMS for Message. The inner components are also

mapped to corresponding implementations i.e. the

PurchaseOrderReceiver is mapped to a Message Driven

Bean in the sample application.

At the same time, non-functional properties of

connectors should be enforced by utilizing the

mechanism provided by middleware. For examples, both

RMI-IIOP-SSL and HTTPS can transfer messages in a

secure way. If the transaction property of an EJB is

Mandatory, Required or Supported [25], the connectors

associated with the EJB should be able to transfer

transaction contexts. If an EJB defines the method

permission [25], its connectors have to be able to

transfer security contexts.

Here for OPC, in order to satisfy the security

requirements identified above, the transport-layer

encryption by SSL is required and then modeled as the

properties for the connector RemoteProcedureCall as we

can see in section 5.2.3.

5. The Extension of Description for

Connectors in ABC/ADL

ABC/ADL, as the basic tool for ABC

(Architecture-Based Component Composition) method

[10], is defined to support component composition. It

has the ability not only to describe the system structure

but also to help refinement and creation of software

system and support automatic composition and

verification. As a modularly extensible language, XML

is used in ABC/ADL to support an extensible

framework.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

5.1. Three levels of Connector Model

The connector model in ABC concerns three levels to

cover all currently known circumstantialities induced by

middleware.

The connection level is the basic level that focuses on

the connecting aspect of the connector, including the

explicit description of interoperability protocols, the

syntactic description of its interior structure in case of

complex connection and the connection points with the

components. In essence, it addresses the structural

aspect of the connector.

The coordination level deals with the coordinating

functionality description of the connector based on

connection, including satisfaction of choreography

requirements of components and the execution flow of

the connected multiple components. From other

perspective, it captures the behavioral aspect of the

connector.

The context level pays attention to the desired

environmental requirements for the connector to fulfill

the connection and coordination functionalities.

Typically, non-functional requirements as load balance,

security, and response time etc., which are probably

supported by middleware infrastructures are taken into

consideration. In other words, it is aimed to guarantee

the non-functional requirements of the connector.

Table 2. Relationship between ABC connector model and

connectors induced by middleware

Connection

(structure)

Coordination

(behavior)

Context

 (non-functional quality)

diversity of interoperability protocol +

enhanced interoperability protocols + +

Pub/Sub among multiple
components

+

choreography between two

components
 +

execution flow among multiple
components

 +

Table 2 shows the relationship between the three

levels of ABC connector model and the five

characteristics of connectors induced by middleware

mentioned in section 2.

5.2. Definition of Connectors

All the information derived in the modeling process is

recorded in ABC/ADL. The definition of connector

shown in Figure 5 has two parts – VisiblePart and

InvisiblePart. The VisiblePart describes the elements

that visible to the accomplishment of the functionalities

provided by the connector, including Role, Protocol and

Property. The InvisiblePart describes the

InnerArchitecture of the complex connector with the

Mapping from inner roles to outer ones to support

refinement.

Figure 5. Definition of connector in ABC/ADL

5.2.1 Role. It defines the participant in the interaction,

connected with the players of the components.

Figure 6. One of the roles in OPC

Figure 6 shows the PurchaseOrderSender role. It is

assigned the attribute request to identify the role of the

connected player. The main part of the role is the

description of the message sending from the

PurchaseOrderSender to OPC, with the content type of

PurchaseOrder.

5.2.2 Protocol. It describes the communication protocol

implemented by the underlying language, operating

system or middleware like JRMP, IIOP or SOAP etc. in

the predefined field of the primitive connector. But for

complex connector, it must describe the userdefined

protocol with the detail shown in Figure 7.

The description is aim to model the control flow in

the connector, which supports all the basic control

patterns – sequence, parallel split, synchronization,

exclusive choice, and simple merge [28] while maintains

a relative simple definition. A unit corresponds to an

independent role in the connector definition, which

represent the simple activity in the flow; the entry

describes the parallel execution of certain activities with

the parallel split as the start point and synchronization as

the end point; predecessor and successor are the pair to

<Role name="PurchaseOrderSender" attribute="request">

<Message>
 <sender>PurchaseOrderSender</sender>

<receiver>OPC</receiver>

<sendingTime/> <receivingTime/>
<Priority>high</Priority>

<MessageContent type="PurchaseOrder"/> </Message>

<Property>
<name>resource-env-ref-type</name>

 <value>javax.jms.Queue</value>

 <name>SSL</name> <value>required</value>
 </Property>

</Role>

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

model the consecutive steps in the flow; if shows the

conditional execution of certain activities, temporal4T

stands for the activities chosen in case the expression in

the if block is satisfied, and temporal4F otherwise; case

and doWhen extends the former one by adding more

choices.

Figure 7 User-defined protocol for connector

Figure 8. User-defined protocol in OPC

Figure 8 shows the userdefined protocol used by OPC

to coordinate interaction among the connected

components and it formally records the workflow in

Figure 3 . The protocol shows that PurchaseOrder is the

start point of the whole process. If the total price is more

than 500 dollars, the order is sent to the Administration

for validation until receiving the approved order from

OrderApprovalSender. Otherwise, the order is directly

approved by the OPC. Then, the approved order is sent

to the SupplyApproval and OPC will wait until the

InvoiceSender send the invoices.

5.2.3 Property. It shows the properties the connector

should have, including non-functional properties i.e.

load balance and security context etc. supported by

underlying platforms with the Parameters as the

measurement for such requirements. Each Property is

associated with an Objective, which stands for the

non-functional requirement of the connector that causing

the existence of the property.

Quality attribute scenarios are used in ABC method to

specify non-functional requirement. A quality attribute

scenario is a quality-attribute-specific requirement [3]. It

uses six elements to identify a specific scenario: a

source (some entity outside the system) generated a

stimulus (a condition need to be considered when it

arrives at a system) to some artifact (the stimulated

artifact in the system) in a specific environment (the

condition of the system when the stimulus occurs) and

the artifact responses (the activity undertaken after the

arrival of the stimulus) to the stimulus by some measure

(the response should be measurable in some fashion so

that the requirement can be tested).

The addition of Objective is to remain traceability of

the non-functional requirement to certain properties of

the architecture elements. An Objective associated with

a complex connector can be associated with the

Properties of its sub-elements (sub-connectors or

sub-components) or the Property of sub-architecture as

its topology or behavior. All the information can be

recorded through the definition of Property with the

same Objective. It can be seen as the rationale of the

design that supports the verification and reuse of the

architecture. It can also be used as the runtime detection

for violation of certain quality requirement.

A security scenario in OPC is as follows: when a

customer (source) requests an order from the FrontEnd

(stimulus) in normal operation (environment), the OPC

(artifact) should guarantee that the content of the order

(response) are remain integrity and confidential

(measure).

As shown in Figure 9, the OPC has the security

requirements, that is, its four roles –

PurchaseOrderSender, InvoiveSender, OrderApproval-

Sender, and Administration must ensure the integrity

and confidentiality. In the sample application, it is

implemented by the SSL transport supported by the

underlying application server as shown in Figure 10.

<Protocol> <userdefined> <description>

<predecessor>PurchaseOrderSender</predecessor>

<successor>
<predecessor>

<if> <expression>

 <predicate xsi:type= “More”>
 <Parameter>TotalPrice</Parameter>

 <value>500</value>

 <unit>dollar</unit>
</predicate>

</expression> </if>

<Temporal4T>
 <predecessor>Administration</predecessor>

 <successor>OrderApprovalSender</successor>

 </Temporal4T>
</predecessor>

<successor>

<predecessor> SuppleApproval</predecessor>
<successor> InvoiceSender </successor>

</successor>

</successor>
</description> </userdefined> </Protocol>

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

Figure 9. Property of OPC

Figure 10. ADL definition for RemoteProcedureCall

5.2.4 InnerArchitecture and Mapping. They are the

reference to the architecture anchor with the unique

name and the corresponding relationship of inner and

outer roles respectively.

Figure 11. InvisiblePart of OPC

Figure 11 indicates that the inner architecture of OPC

is defined by another architecture with the unique name

of OrderProceeCenter, and one of the five roles –

OrderApprovalSender is mapping to the Sender role of

the primitive connector – Message in that architecture.

In summary, Table 3 presents the relation of the

language elements in ABC/ADL with the three levels of

the connector.

Table 3. Relationship between connector model and

description

protocol role

predefined User-defined

property

connection + +

coordination + +

context +

6. Conclusion and Future Work

In [5], Garlan points out that the world of software

development and the context in which software is being

used are changing in significant ways, and these changes

promise to have a major impact on how architecture is

practiced. The use of middleware is highlighted by

Emmerich that it is not transparent for system design

and that the issue should be addressed by existing design

methods [4]. In industrial community, OMG proposes

MDA to explicitly deal with technical details specific to

middleware via the concept of Platform Independent

Model and Platform Specific Model [18]. But as Nitto

mentioned in [13] that the top-down approach adopted

by the software architecture community in the

development of languages and tools seems in many

ways to ignore the results that practitioners have

achieved (in a bottom-up way) in the definition of

middleware. Enlightened by that, we argue that the

involvement of middleware related concerns in the

architectural design will make proper tradeoffs in early

stages of development.

In this paper, we provided a preliminary solution to

model diverse and complex interactions enabled by

middleware using the notion connector. Resemble to

MDA, the modeling process includes platform

independent architecture and platform dependent

architecture design. At first, the functionalities and

quality requirements of the connectors are modeled

without consideration of middleware. Then such

connector along with the constraint on them is refined

using the characteristics supported by middleware. To

record such modeling process and keep the traceability

of target connector, an architecture description language

named ABC/ADL is also extended to incorporate a

three-level connector model including connection,

coordination, and context. To demonstrate our approach,

a J2EE application – Java Pet Store is also introduced

with its core connector – Order Process Center (OPC)

being modeled step by step.

Currently, our method works well on J2EE, one of the

<Property name="Security">

 <Objective>

 <source> customer</source>
 <stimulus> invocation</stimulus>

 <environment> normal</environment>

 <measure>
 <response>integrity</respose>

 <value>required</value>

 <response>confidentiality</response>
 <value>requied</value>

 </measure> </Objective>

<Parameter name="integrity"
 type="Choice">Required</Parameter>

<Parameter name="confidentiality"

 type="Choice">Required </Parameter>
<RelatedRole>PurchaseOrderSender</RelatedRole>

<RelatedRole>InvoiceSender</RelatedRole>

<RelatedRole>OrderApprovalSender</RelatedRole>
<RelatedRole>Administration</RelatedRole>

</Property>

<InnerArchitecture>OrderProcessCenter</InnerArchitecture>

<Mapping>

 <outerrole>OrderApprovalSender</outerrole>
 <innerrole> <connector>Message</connector>

<role>Sender</role>

 </innerrole>
 …

</Mapping>

<connector name="RemoteProcedureCall">
<Role>Caller</Role> <Role>Callee</Role>

<Protocol>RMI-IIOP</Protocol>

<Property>
 <Objective>…</Objective>

<Parameter name="SSL" type="Choice">Required</Parameter>

<RelatedRole>Caller</RelatedRole

<RelatedRole>Callee</RelatedRole>

 </Property>
</connector>

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

most popular middleware based systems, and we plan to

apply the method to other middleware, such as .NET.

We will also do more case studies on realistic projects.

On the other hand, we will apply the consideration of

middleware in software architectures, which contains

plentiful information of the target system, into the

self-adaptation of middleware at runtime.

Acknowledgements

This effort is partially sponsored by the National Key

Basic Research and Development Program of China

(973) under Grant No. 2002CB31200003; the National

High-Tech Research and Development Plan of China

(863) under Grant No. 2004AA112070; the National

Natural Science Foundation of China under Grant No.

60125206, 60233010, 60403030, 90412011; and the

IBM University Joint Study Program.

References

[1] Allen R. J., "A Formal Approach to Software

Architecture", Ph.D. Thesis, May 1997.

[2] Andrews T., F. Curbera etc, Business Process Execution

Language, V1.1,May 2003.

[3] Bass L, P. Clements, R. Kazman Software Architecture

in Practice, Addison Wesley Professional, 2003.

[4] Emmerich, W. "Software Engineering and Middleware:

A Roadmap", ICSE ACM Press, 2000, pp. 117 - 129

[5] Garlan D., Software Architecture: A Roadmap, The

Future of Software Engineering 2000, Proceedings of

22nd International Conference on Software Engineering,

ACM Press, 2000, pp.91-101.

[6] Huang G., H. Mei and F.Q. YANG, "Runtime Software

Architecture Based On Reflective Middleware". Science

in China, Series F, 2004 47(5) pp.555-576.

[7] Huang G., H. Mei, Q.X. Wang, and F.Q. YANG, "A

Systematic Approach to Composing Heterogeneous

Components", Chinese Journal of Electronics, Vol. 12,

No. 4, 2003, pp. 499-505.

[8] Luckham D.C., J. Vera, "An Event-Based Architectural

Description Language", IEEE Transactions On Software

Engineering, Vol.21, No.9, 1995, pp. 717-734.

[9] Magee J., N. Dulay, S. Eisenbach, and J. Kramer,

"Specifying Distributed Software Architectures", in

Proceedings of 5th European Software Engineering

Conference, Spring Verlag, 1995, pp. 137-153.

[10] Medvidovic N., "ADLs and Dynamic Architecture

Changes", Joint proceedings of the second international

software architecture workshop (ISAW-2) and

international workshop on multiple perspectives in

software development (Viewpoints '96) on SIGSOFT '96

workshops, 1996, pp.24-27.

[11] Mei H., F. Chen, Q. Wang and Y. Feng. "ABC/ADL: An

ADL Supporting Component Composition."

ICFEM2002, LNCS 2495, 2002, pp. 38-47.

[12] Mei H., J.C. Chang, F.Q. Yang, "Composing Software

Components at Architectural Level", In Proceedings of

International Conference on Software-Theory and

Practice, IFIP the 16th World Computer Congress, 2000,

pp. 224-231.

[13] Mei, H. and G. Huang. PKUAS: An Architecture-based

Reflective Component Operating Platform, invited paper,

in Proceedings of 10th IEEE International Workshop on

Future Trends of Distributed Computing Systems

(FTDCS), 2004, pp. 163-169.

[14] Microsoft, Component Object Model, http://www.

microsoft.com/com

[15] Nitto D., E. and Rosenblum, D.S. Exploiting ADLs to

Specify Architectural Styles Induced by Middleware

Infrastructures. In Proceedings of the 21st International

Conference on Software Engineering, 1999, pp.13-22.

[16] OMG, Common Object Request Broker Architecture:

Core Specification, v2.1, 2002.

[17] OMG, Event Service Specification, Version 1.1, 2001.

[18] OMG, MDA Guide, Version 1.0.1, 2003.

[19] Oreizy P., Nenad Medvidovic and Richard N. Taylor,

"Architecture-Based Runtime Software Evolution",

ICSE, 1998, pp. 177-186.

[20] Peltz C., Web Services Orchestration and choreography,

Computer, Vol.36, No.10, 2003, pp.46-52.

[21] Shaw M. and D. Garlan. Software Architecture:

Perspectives on an Emerging Discipline. Prentice Hall,

1996.

[22] Shaw M., R. DeLine, and D. V. Klein etc., "Abstractions

for Software Architecture and Tools to Support Them",

IEEE Transactions on Software Engineering, Vol. 21, No.

4, 1995, pp. 314 – 335.

[23] Sun Microsystems, Java Message Service, V1.1, 2002.

[24] Sun Microsystems, Java Remote Method Invocation

Specification. http://java.sun.com/j2se,

[25] Sun Microsystems. Enterprise JavaBeans Specification,

V1.1, Final Release. http://java.sun.com/j2ee, 1999.

[26] W3C, SOAP Version 1.2 Part 1: SOAP Messaging

Framework.

[27] W3C, Web Service Choreography Interface, W3C Note

8 August 2002.

[28] Workflow Patterns, http://tmitwww.tm.tue.nl/research/

patterns/index.htm.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)

0-7695-2284-X/05 $20.00 © 2005 IEEE

