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Abstract—Model continuity refers to the ability to transition
as much as possible a model specification through the stages of
a development process. In this paper, the authors show how a
modeling and simulation environment, based on the discrete event
system specification formalism, can support model continuity in
the design of dynamic distributed real-time systems. In designing
such systems, the authors restrict such continuity to the mod-
els that implement the system’s real-time control and dynamic
reconfiguration. The proposed methodology supports systematic
modeling of dynamic systems and adopts simulation-based tests
for distributed real-time software. Model continuity is emphasized
during the entire process of software development—the control
models of a dynamic distributed real-time system can be designed,
analyzed, and tested by simulation methods, and then smoothly
transitioned from simulation to distributed execution. A dynamic
team formation distributed robotic system is presented as an
example to show how model continuity methodology effectively
manages the complexity of developing and testing the control
software for this system.

Index Terms—Discrete event system specification (DEVS), dis-
tributed real-time systems, dynamic reconfiguration, model conti-
nuity, modeling and simulation, robotic team formation.

I. INTRODUCTION

D ISTRIBUTED real-time systems continuously and au-
tonomously control, and react to, the external environ-

ments. As they usually operate in dynamic environments, they
tend to exhibit dynamic reconfiguration by changing their struc-
tures and operation modes in response to different situations.
This is exemplified by many manufacturing control systems,
distributed robotic systems, and intelligent sensor networks
with mobile devices and computing nodes. The software to
control such dynamic distributed real-time systems is extremely
hard to design and difficult to verify due to several factors
such as their multiple task synchronization as well as dynamic
reconfiguration.

To handle the complexity of developing real-time software
systems, modeling and simulation methods are frequently used.
While simulation methods help to analyze and design the sys-
tems under development, they face a common deficiency—that
the simulation models are discarded as unusable by the im-
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plementation stage. In fact, in most cases, the implementation
artifacts are not derived in any direct way from the simulation
models. This discontinuity between the implementation arti-
facts and analysis, design, and modeling artifacts is a common
deficiency of most design methods [1], [2]. It results in inherent
inconsistency among design, test, and implementation artifacts.
Design of real-time systems can be improved by supporting
consistent artifacts among these design stages, a quality referred
as “model continuity.” This quality of model continuity be-
comes ever more important as real-time systems become more
and more complex. For example, a dynamic distributed real-
time system might include hundreds of computing nodes, smart
sensors, and actuators, and continuously reconfigure itself in an
uncertain or even hostile environment. Without the support of
model continuity, it is very difficult to manage the software’s
complexity during development of systems of this kind.

This paper describes a simulation-based software develop-
ment methodology for distributed dynamically reconfiguring
real-time systems. This methodology supports model continuity
because the same control models that are designed and tested by
simulation methods can be deployed to the real target system
for execution. The methodology is based on discrete event sys-
tem specification (DEVS) modeling and simulation framework
[3], specifically the DEVSJAVA [4] environment. It provides a
“modeling–simulation–execution” process that includes several
stages to develop real-time software. Variable structure model-
ing capability [5]–[7] has been integrated into the methodology
so that real-time systems with self-reconfiguration capabilities
can be naturally modeled and designed. Furthermore, stepwise
simulation methods have been developed so that the control
models of a real-time system can be tested and analyzed incre-
mentally. Because the control model remains unchanged from
the design stage to implementation stage, no transformation
or reconstruction is needed. With this approach, designers can
have more confidence that the final system in operation is the
system that was designed and will carry out the functions as
tested by simulation.

This paper is organized as follows. Section II discusses
related work in model continuity and real-time system devel-
opment. Section III elaborates the model continuity method-
ology for dynamic distributed real-time systems. Section IV
shows how a simulation-based testing process can be applied
to incrementally test the control models under development.
Section V discusses the features that have been implemented
to support model continuity in the DEVSJAVA environment.
Section VI describes a robotic “dynamic team formation”
example to demonstrate the methodology. Section VII provides
conclusions.
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Fig. 1. Modeling, simulation, and execution of a distributed real-time system.

II. RELATED WORK

Ensuring consistency among different development stages
has been a research issue in various areas of design. In software
engineering, traceability, in the form of requirements trace-
ability [8] or design-code traceability [9], has been advocated
to ensure consistency among software artifacts of subsequent
phases of the development cycle. Boyd [10] shows how trace-
ability can be achieved when designing reactive systems. In
hardware/software codesign, Janka et al. [11] described a
methodology that allows the specification stage and design
stage to work together coherently when designing embedded
real-time signal processing systems. The preceding approaches
use different artifacts in different stages. In contrast, our ap-
proach allows the same simulation models to be used in the de-
sign and implementation stages. The following research efforts
are more closely related to our work by applying simulation-
based design. Bagrodia and Shen [12] describe an approach
that supports the design of distributed systems via iterative
refinement of a partially implemented design where some com-
ponents exist as simulation models and others as operational
subsystems. Gonzalez and Davis [13] present a simulation and
control tool that provides the capability to model, as well as to
control, real-world systems. Our work extends the applicability
of simulation-based design in new significant directions. It is
based on a formal modeling and simulation framework that
supports variable structure modeling. Furthermore, it provides
a stepwise simulation-based test process to allow the control
models of a real-time system to be tested and analyzed incre-
mentally. This incremental testing process extends Bagrodia
and Shen’s work on iterative transformation of performance
models by focusing on system testing as opposed to perfor-
mance evaluation.

Other methods for real-time software system development
have focused on exploring the modeling capabilities for real-
time systems. For example, the unified modeling language for
real time (UML-RT) [14] extends UML models to address
special aspects of designing real-time systems. Kim [15] uses
the time-triggered message-triggered object (TMO) model to
capture the timeliness and concurrency properties of real-time

software systems. Several other models and design methods for
real-time systems have been surveyed by Gomaa [16], [17].
None of the above methods use simulation-based design in their
approaches. The Ptolemy project [18], while supporting het-
erogeneous modeling and simulation for concurrent embedded
systems design, does not address the issue of model continuity
throughout the development process.

III. MODEL CONTINUITY METHODOLOGY

Model continuity refers to the ability to transition as much
as possible a model specification through the stages of a devel-
opment process. In the context of this paper, it means that the
control models of a dynamic distributed real-time system can
be designed and tested in a simulation environment, and then,
without essential change, be executed, as the working software,
in a distributed environment [19], [20].

A. Modeling a System and Its Variable Structure

Real-time systems are computer systems that monitor, re-
spond to, or control an external environment. This environment
is connected to the computer system through sensors, actuators,
and other input–output interfaces [21]. A real-time system from
this point of view consists of sensors, actuators, and the real-
time control and information-processing unit. A distributed
real-time system is composed of a collection of subsystems.
Fig. 1(a) shows an example with three subsystems. As shown in
Fig. 1(a), each subsystem has its own control and information
processing unit and interacts with the external environment
through sensors/actuators. These subsystems are connected by a
network and communicate and cooperate to finish systemwide
tasks. For dynamic distributed real-time systems, the connec-
tions among their subsystems may change dynamically, result-
ing in different system configurations. Distributed real-time
systems are much harder to design and test because one
subsystem’s behaviors may affect those of other subsystems.
These subsystems influence each other not only by explicit
communications, but also by implicit environment change as
they all share the same environment. For example, in Fig. 1(a),



HU AND ZEIGLER: MODEL CONTINUITY IN THE DESIGN OF DYNAMIC DISTRIBUTED REAL-TIME SYSTEMS 869

if subSystem1 changes the environment through its actuators,
this change will be noticed by the sensors of subSystem2, thus
affecting subSystem2’s decision making. An integrated design
approach is needed to design this kind of system.

In our approach, a distributed real-time system is modeled
as a coupled model that consists of several subcomponents
[as shown in Fig. 1(b)]. Each subcomponent corresponds to
a subsystem of the distributed real-time system. These sub-
components are coupled together so they can communicate (by
coupling a model’s output ports to other models’ input ports).
The couplings among the models correspond to the communi-
cation connections among the subsystems in the real world.

To model dynamic reconfiguration of a system, four
structure change operations have been developed in the
DEVSJAVA environment. These operations are addModel()/
removeModel () to add/remove components of a system; and
addCoupling()/removeCoupling() to add/remove connec-
tions among two components. Based on the situation, a model
may call these methods to initiate a structure change. For
example, in Fig. 1(b), if a component model, saying Model1,
notices that the environment has changed, it can call a structure
change method, saying removeCoupling (), to remove the
connections between Model2 and Model3. In this case, Model1
acts as a supervisor to monitor the environment change and
to transform the system into a new structure that might better
suit it to the new environment. More information about variable
structure modeling can be found in [5]–[7].

B. Control Model and Sensor/Actuator Activity

For each subsystem, sensors and actuators are modeled as
DEVS activity, a concept introduced by RTDEVS for real-
time system specification [22]. The control and information
processing unit is modeled as a control model that might
be an atomic model or a coupled model with multiple sub-
components. In this modeling approach, the control model
acts as a brain to process data and to make decisions. Sen-
sor/actuator activity acts as the hardware interface to provide
a set of functions for the control model to use. To give an
example, consider the design of a mobile robot. A motor
activity that drives the robot’s motors may be developed.
Some typical functions for this motor activity could be
move(), stop(), turn(), etc. The definition of an activity
and its functions depend on how the designer delineates the
“control model–activity” boundary. For example, the de-
signer can model a sensor module that has its own control logic
as a sensor activity. Or he can include the logic in the control
model and only model the sensor hardware as an activity.

The clear separation of sensor/actuator activity (hardware
interface) from the control model makes it possible for a de-
signer to focus on his design interest. In the context of dynamic
distributed real-time systems, the control logic is typically very
complex, as the systems may operate in a dynamic, uncertain
environment. Thus, the control models are the main interest of
design and test. The separation from the hardware interface also
enables the control models to be disengaged from the hardware,
and thus to be modeled in adequate detail in the design stage.
Techniques have been developed so that the control models can

be tested by simulation methods and then mapped to the real
target system for execution without any change and transforma-
tion. This capability to preserve the same control models in the
transition from simulation-based design to real execution is the
most salient feature of this model continuity methodology. Note
that because a system’s dynamic properties are captured by the
control models, maintaining the control models’ continuity also
implies that the dynamic behavior/structure of the system will
be preserved from the design stage to the final execution stage.

C. Environment Model and Virtual Sensor/Actuator

Simulation-based test is used to test and evaluate the control
models under development. As shown in Fig. 1(b), simulation-
based test is conducted in a virtual test environment. To build
this test environment, a model of the real environment is
built. This environment model is a reflection of how the real
environment affects or is affected by the system under design.
Meanwhile, a “simulated” sensor/actuator hardware interface
is built for the control models to interact with the environ-
ment model. This “virtual sensor/actuator” interface is imple-
mented as abstractActivity. In contrast to an activity,
which drives real hardware and executes in real time, an
abstractActivity imitates the corresponding activity’s
behavior and interfaces and is only used during simulation. A
sensor abstractActivity gets input from an environment
model just as a sensor activity gets input from the real
environment. An actuator abstractActivity does similar
things as an actuator activity. Note that it is important for
an activity and its abstractActivity to have the same
interfaces, which are used by the control model in simulation
and real execution. By imposing this restriction, the control
model can be kept unchanged in the transition from simulation
to execution (it interacts with the environment model and real
environment using the same interfaces).

Within this test environment, different simulation strategies
can be used to test the control models. At the same time, dif-
ferent design alternatives and system configurations can be
applied to experiment and exercise the system under design. As
will be discussed in Section IV, stepwise simulation methods
have been developed so that a model can be simulated and
tested incrementally before its real execution. Note that each
subcomponent can also be tested and simulated independently.

D. Mapping to a Distributed Environment for Execution

After the models are tested through simulations, they are
mapped to the real hardware for execution. During this process,
the “virtual sensor/actuator” interface that is used in simulation
is replaced by real sensor/actuator interface activity. Specif-
ically, each subsystem goes through “activity mapping” to
associate the sensor/actuator activity to the corresponding
sensor/actuators hardware. In addition, as the control models
are actually executed in a distributed environment, a “model
mapping” procedure is applied to deploy the control models to
their corresponding host computers. It is important to note that
during this process, the designed-in couplings among models
are preserved, even though models actually reside on different
computers. As such, model continuity in the methodology
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Fig. 2. Stepwise simulation-based test process.

means that not only the control models, but also the couplings
among them, are maintained from simulation to distributed
execution. By associating the models and activities to their
corresponding hardware, the system can be executed in a real
environment.

In execution, models are executed within a real environment
as shown in Fig. 1(c). The control model of each subsystem
makes decisions based on its control logic. It interacts with the
real environment through sensor/actuator activity. If a model
sends out a message, based on the logic coupling, the message
will be sent across the network and put to another model’s input
port. Because these control models have been tested by simula-
tion methods and are invariant in the transition from simulation
to execution, they should carry out the control logic just the
same way they did when simulated. In practice, one may not be
able to model the real environment in adequate detail, and there
will be potential for design problems to surface in real execu-
tion. When this happens, reiteration through the stages can be
more easily achieved with the model continuity approach.

IV. INCREMENTAL SIMULATION AND TEST

Simulation technologies are being increasingly recognized
in industry as a useful means to assess the quality of design
choices [23]–[25]. For dynamic distributed real-time systems
whose complexity is typically too large to allow an analytical
solution, simulation provides an effective way to analyze and
test the control models and system configurations before a sys-
tem’s real implementation. In [3], the concept of experimental
frame is presented. While experimental frame provides a gen-
eral guideline to establish simulation-based test environments,
this work focuses more on the process to conduct those tests for
distributed real-time software systems. Specifically, a stepwise
simulation-based test process has been developed so that the

control models of a dynamic distributed real-time system can be
tested incrementally. This process includes four steps namely
central simulation, distributed simulation, hardware-in-the-loop
(HIL) simulation, and real system test. Below, Fig. 2 was used
as an example (with two subcomponents) to walk through this
process.

The first step in the process is central simulation (step 1 of
Fig. 2). In central simulation, the two models and the envi-
ronment model are all in one computer. The control models
interact with the environment model through sensor/actuator
abstractActivity. As will be further discussed in Section V,
special couplings between abstractAcitivity and the en-
vironment model are established to allow them to exchange
messages. To model the network latency between the two
models that are actually executed on different computers in real
execution, network delay models are inserted into the couplings
between models. In central simulation, fast-mode simulator
and real-time simulator can be chosen to simulate and test
the models. As fast-mode simulation runs in logical time (not
connected to a wall clock), it generates simulation results as fast
as it can. Based on these results, the designers can analyze the
data to see if the system under test fulfills the dynamic behavior
as desired. In real-time simulation, the simulation speed is
synchronized with the wall clock time. This provides designers
the flexibility to trace the simulation trajectory in real time. For
example, a graphic user interface can be developed to display
the state changing of each model in real time.

While in central simulation, network delay models are used
to model the network latency between different subsystems,
in distributed simulation, the control models are tested on the
real network. As shown in step 2 of Fig. 2, in distributed
simulation, two models reside on two different computers. The
environment model may reside on another computer or on the
same computer with one of the models. All of these models are
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simulated by real-time distributed simulators. These real-time
simulators take care of the underlying network synchroniza-
tion/coordination and make it transparent to the models. The
network delay models are no longer needed because the models
are tested in a real network. Note that in step 2, distributed
simulation has to run in a real-time fashion. This is because
part of the real physical world, the real network, is involved in
this simulation-based test.

In central simulation and distributed simulation, the control
models are tested on computers. However, these computers
often do not represent the real hardware that the models will
actually be executed on. It is known that for real-time systems,
the executing hardware may have significant impact on how
well a model’s functions can be carried out. For example,
processor speed and memory capacity are two typical factors
that can affect the performance of an execution. Thus, to make
sure that the control models, having been tested in central and
distributed simulation, can also execute correctly and efficiently
in the real hardware, hardware-in-the-loop (HIL) simulation
[25], [26] is adopted. As shown in step 3 of Fig. 2, in HIL simu-
lation, the environment model is simulated by a DEVS real-time
simulator on one computer. One or more control models under
test can be deployed to their hardware to be executed by DEVS
real-time execution engines. These DEVS real-time execution
engines are stripped-down versions of DEVS real-time simu-
lators. They provide compact runtime environments to execute
DEVS models [27]. In the example of Fig. 2, Model1 along
with its real-time execution engine reside on the real hardware.
Model2, environment model, and their real-time simulators
reside on other computers. These models still retain the original
couplings. A model on the real hardware may interact with the
environment model through abstractActivity, which acts
as virtual sensors or actuators. In the meantime, real sensors
or actuators can also be included into HIL simulation by using
sensor/actuator activity to interact with the real environment.
The decision of which sensor/actuator is real hardware and
which sensor/actuator is virtual hardware is dependent on the
test engineer’s test objectives. With different test objectives,
different combinations of real sensor/actuators and virtual sen-
sor/actuators can be chosen to conduct an exhaustive test of the
control model. For distributed real-time systems, another valu-
able benefit of HIL simulation is that it allows a subsystem to be
tested without waiting for all other subsystems to be completely
built. This is because HIL simulation still works within a virtual
test environment that can provide virtual subsystems. Thus, in
HIL simulation, real and virtual subsystems can work together
to conduct a meaningful systemwide test. Section VI gives an
example to demonstrate how that can be achieved.

The final step is real system test, where all models are tested
on the real hardware within the real environment. As shown in
step 4 of Fig. 2, DEVS real-time execution engines execute the
models and take care of the underlying network synchroniza-
tion/coordination. The environment model is no longer needed
as the system is tested in the real environment. This is also the
same setup as that in real execution where all models interact
with the real environment through sensor/actuator activities.

One of the basic rules to conduct these stepwise simulation-
based test methods is to put as much as possible of the test

in the early steps. This is because the later the step is, the
more costly and time consuming it is to set up the test environ-
ment. Unfortunately, in reality, many engineers jump directly to
step 4 to start their test.

V. IMPLEMENTATION OF FEATURES TO SUPPORT
MODEL CONTINUITY

The proposed methodology is based on the latest ver-
sion of DEVSJAVA modeling and simulation environment,
which is developed from the previous work of Real Time
DEVS/CORBA (RTDEVS/CORBA) [28]. Several important
features have been taken from the work of RTDEVS/CORBA to
build an efficient real-time modeling, simulation, and execution
infrastructure. These features include a layered implementation
architecture, real-time simulation and execution algorithms,
time management techniques, etc. A detailed description of
these features can be found in [28]. This section describes two
new features that have been implemented: abstractActivity
and network delay model. These two features are developed
specifically to support model continuity, which allows control
models to be tested using simulation methods and then easily
migrated to execution.

A. abstractActivity

The basic idea behind an abstractActivity is to pro-
vide an abstract sensor/actuator to imitate the behavior and
interface of an activity that drives real sensors/actuators. In
this sense, an abstractActivity can be viewed as a virtual
sensor/actuator that is used in simulation. As mentioned before,
an abstractActivity should guarantee that a control model
interacts with the environment model in the same way as the
control model interacts with the real environment through an
activity. To support this, ActivityInterface is developed
to make sure that a DEVS model can treat abstractActivity
and activity in the same way. This ActivityInterface
defines a set of methods that should be implemented by both
activity and abstractActivity.

public interface ActivityInterface{
public void
setActivitySimulator(CoupledSimulator sim);

public String getName();
public void kill();
public void start();
public void returnTheResult(entity myresult);

}

A brief description of these methods is given below. For
simplicity, the authors use Activity to refer to both activity
and abstractActivity

1) Method setActivitySimulator(): Set the atomic mo-
del’s simulator in Activity.

2) Method getName(): Get the name of an Activity.
3) Method kill(): Stop an Activity.
4) Method start(): Start an Activity.
5) Method returnTheResult(): Returns result to the DEVS

model.
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Fig. 3. (a) activity. (b) abstractActivity.

Fig. 4. Network delay model. (a) Distributed execution of a coupled model. (b) Central simulation of a coupled model.

With these methods, the relationship among the control
model, activity, abstractActivity, the environment, and
the environment model is shown in Fig. 3.

Fig. 3 shows that both activity and abstractActivity
have the same interfaces with the DEVS control model. Specif-
ically, a DEVS model can start an Activity by calling
holdIn() or startActivity(). It can stop an Activity
by calling the Activity’s kill() method. An Activity
can return results to the model by calling the method
returnTheResult(), which sends the result as a message to
the model’s reserved input port outputFromActivity. This
message, as an external event, triggers the model’s external
transition function deltext(), which processes the message
and gets the result from Activity. Besides these standard-
defined methods, Fig. 3 shows that an activity can have
user-defined methods, such as move(), stop(), etc. This is
because an activity is a thread (not a DEVS model)
that can have arbitrarily defined methods. These same user-
defined methods should also be defined by the corresponding
abstractActivity.

In the current implementation, both an abstractActivity
and the environment model are DEVS models. To
allow interaction between abstractActivity and the
Environment model, a method addActivityCoupling() is
developed to add couplings between an abstractActivity
and the Environment model. By calling this function, an
abstractActivity establishes a “direct” communication
channel with the Environment model so the message
exchange between them does not interfere with the control

models, which are the ones that need to be maintained with
model continuity. Auxiliary functions sendInstantOutput()
and putInstantInput()were developed to allow an
abstractActivity to imitate the behavior of the user-defined
methods that are defined by activity. These functions allow
the abstractActivity to generate and pass DEVS messages
to the Environment model.

B. Network Delay Model

The network delay model is developed to simulate the net-
work latency so that a distributed real-time system can be
accurately tested in central simulation. In the model continuity
methodology, components of a distributed real-time system are
modeled as DEVS models and their connections are modeled as
DEVS couplings. These couplings are established by method
addCoupling(). In real execution, the models are mapped to
network computers and their couplings remain unchanged. This
is shown in Fig. 4(a). However, due to the network latency, the
actual time for a message to pass through a coupling (0) may
not well represent the latency (> 0) in real execution. This is
why network delay models are developed to be used in central
simulation. Currently, the delay model uses a fixed determin-
istic delay, but stochastic delay could easily be added in the
future. Furthermore, a new method addCouplingWithDelay()
is implemented. This method automatically creates and adds
a network delay model in the middle of a coupling path
as shown in Fig. 4(b). As the addCouplingWithDelay()
method makes this process transparent to the user, it eases
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the transition of models from central simulation to distrib-
uted execution—a user only needs to change the code from
addCouplingWithDelay() to regular addCoupling().

VI. DYNAMIC TEAM FORMATION DISTRIBUTED

ROBOTIC SYSTEM

To illustrate the model continuity methodology, this section
describes the development of a distributed robotic system,
which is considered as a special kind of distributed real-time
system where each subsystem is a robot. These systems often
exhibit dynamic reconfiguration as robots interact and make
decisions in dynamic environments. Specifically, the system
described in this section concerns dynamic team formation in
which independent mobile robots search for each other, form
teams dynamically, and then conduct a leader–follower march.
A detailed description of the system and its models can be found
in [29]. The following discussion focuses on the development
process, especially the stepwise simulation-based test methods,
to demonstrate the model continuity methodology.

A. Modeling the Dynamic Team Formation Process

The team formation process starts with both robots moving
around and trying to find each other. Initially, there is no
connection between the two robots although they are connected
to a software process, called a Manager, on a wireless laptop.
When two robots find each other, the Manager establishes
direct connections between them and asks them to organize into
a team. Then they begin the leader–follower march with the
follower always duplicating the movement of the leader. During
movement, the leader makes decisions to go ahead or turn away
from an obstacle based on its sensor data. It also passes its
motion parameters to the follower. During the march, if two
robots lose each other, they will inform the Manager and then
go back to the initial state to search for each other. The robots
used in this example are car type mobile robots with wireless
communication capability. They can move forward/backward
and rotate around the center. The robots are equipped with
whisker sensors and infrared sensors [30].

Based on the description of this system, three basic com-
ponents can be recognized: the Manager that resides on a
laptop (computer), robot1 and robot2 that reside on mobile
robots. Fig. 5 shows the model of this system, where the
Manager is an atomic model and each robot is a coupled model.
The system has a variable structure because the couplings
among its components change dynamically during runtime.
Initially, the coupling of the system is established as follows
(R1 stands for robot1; R2 stands for robot2 and man stands
for Manager; distData, report, check, etc. refer to the
port names):

addCoupling(R1, ′′distData′′, man, ′′R1Data′′);
addCoupling(R1, ′′report′′, man, ′′R1Report′′);
addCoupling(man, ′′R1Check′′, R1, ′′check′′);
addCoupling(R2, ′′distData′′, man, ′′R2Data′′);
addCoupling(R2, ′′report′′, man, ′′R2Report′′);
addCoupling(man, ′′R2Check′′, R2, ′′check′′);

Fig. 5. Dynamic team formation of a two-robot system.

As can be seen initially, there is no coupling between
robot1 and robot2. Each robot has output ports distData
and report. These ports are coupled to the Manager’s corre-
sponding input ports. Meanwhile, the Manager has output ports
coupled to each robot’s input port check, so that Manager can
ask them to check if they are within line-of-sight. The robots
return the result of such checking through the report port.
When it happens that the report messages returned from the
robots are both positive, this indicates that the robots are close
enough to see each other. In this case, the Manager will change
the couplings of the system dynamically to establish a direct
connection between the two robots. Specifically, the Manager
executes the following DEVSJAVA code:

removeCoupling(R1, ′′distData′′, man, ′′R1Data′′);
removeCoupling(man, ′′R1Check′′, R1, ′′check′′);
removeCoupling(R2, ′′distData′′, man, ′′R2Data′′);
removeCoupling(man, ′′R2Check′′, R2, ′′check′′);
addCoupling(R1, ′′readyOut′′, R2, ′′readyIn′′);
addCoupling(R2, ′′readyOut′′, R1, ′′readyIn′′);

After executing the DEVSJAVA code, bidirectional connec-
tions are established by coupling the robots’ Ready port to
each other. Now, the robots can communicate directly. The
distData and Check couplings between robots and Manager
are removed because they are no longer needed during the
process of robot march. The report coupling remains so robots
can still inform the Manager in case they lose each other.
During the march, if two robots lose each other, they send the
“Lost Partner” message to Manager using the report port.
This will trigger the Manager to add and remove couplings
among the components. As a result, the system goes back to
the situation as it is initially started, where two robots move
independently and try to find each other.

The Robot model is based on Brooks’ subsumption architec-
ture [31]. It is shown in Fig. 6. There are four components in this
model: Avoid, Wander, March, and Monitor. Each of them is
responsible for a specific function. For example, the Wander
model is responsible to move the robot around without hitting
things; the March model organizes robots into a team and then
moves the robot in a leader–follower fashion; the Monitor
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Fig. 6. Robot model.

model checks if two robots really see each other and reports
to the Manager; the Avoid model controls the robot to avoid
contact with objects based on the whisker sensor data. These
models and the couplings among them form the control model
of the robot.

The Avoid model also starts the HWActivity and interacts
with it. This HWActivity acts as the interface between a robot’s
control model and sensor/actuator hardware. It drives the mo-
tors of the robot and reads data from the robot’s whisker sensors
and IR sensors. Conceptually, for each of these sensors or actu-
ators, there should be an activity, such as motorActivity,
whiskerSensorActivity, or IRSensorActivity, corre-
sponding to it. In this example, the authors combine them
into one HWActivity. As will be discussed later, separating
these different activities becomes necessary in the robot-in-the-
loop simulation, where various combinations of real and virtual
sensors/actuators may be employed.

The psuedocode below shows how the Avoid model interacts
with HWActivity in its external transition function.

public void deltext(double e, message x){
. . . . . . . . .

if (messageOnPort(x, ′′outputFromActivity′′, i)){
sensorData

= x.getValOnPort(′′outputFromActivity′′, i);
. . . . . . . . .
if (frontTripped)
HWA.move(′′backward′′, speed, dist);

else if (backTripped)
HWA.move(′′forward′′, speed, dist);

}
else if (messageOnPort(x,′′ move′′, i))
HWA.move(direction, speed, distance);

. . . . . . . . .
}

In the code, HWA is an instance of HWActivity. As
can be seen, in its external transition function deltext(),
the Avoid model processes the sensor data (from port
outputFromActivity) returned from HWActivity. It calls
HWActivity’s move() to move backward/forward if its
front/back Whisker sensors are tripped. Meanwhile, if there is
message on the move port (sent from Wander model or March

model), the Avoid model will call HWActivity’s move() to
move the robot.

To start the HWActivity, the Avoid model initializes an in-
stance of HWActivity and calls the startActivity() method
in its initialize() function. This is shown below.

HWActivity HWA = new HWActivity();
startActivity(HWA);

B. Stepwise Simulation-Based Test

To simulate and test the control models of this system
(including the robot models, the Manager model, and their
dynamic couplings), an Environment model is developed.
The main function of the Environment model is to represent
the time duration of robots’ movement, and to return sensor
data (whisker sensor and infrared sensor) to the control mod-
els. As shown in Fig. 7, there are three components in this
Environment model: TimeManager1, TimeManager2, and
SpaceManager. A TimeManager models a robot’s movement
times. The SpaceManager models the shape, dimension, and
position of robots, obstacles, and the moving field.

Four simulation-based test steps are applied to simulate and
test the control models. These steps are central simulation,
distributed simulation, robot-in-the-loop simulation, and real
system test.
1) Central Simulation: In central simulation, all the

models, Robot1, Robot2, and Manager, along with the
Environment model reside in a single computer. A virtual
hardware interface abstractHWActivity is developed. This
abstractHWActivity shares the same interface functions as
HWActivity. Thus, to regress from simulation-based test to
real execution, the deltext() of Avoid model (as discussed
before) does not need to be changed, nor do any other parts of
the control logic. The initialize() function of Avoid model
is changed to initialize an instance of abstractHWActivity
instead of HWActivity. This is shown below:

abstractHWActivity HWA
= new abstractHWActivity ();

startActivity(HWA);

In central simulation, network delay models are used
to model network latencies. These models are automati-
cally inserted by the addCouplingWithDelay() method of
the teamFormation coupled model as shown below. (For
demonstration purposes, a deterministic 0.2-s network delay is
used. It was noted that in this case study, the network delay
does not have direct impact on system’s behavior. However,
for the systems that have larger network delay or have stricter
time constrains, the impact of network delay will be more
significant.)

public teamFormation(String nm){
double delay = 0.2; // 0.2 s delay

Environment env = new Environment(′′Env′′);
add(env); //add the environment model



HU AND ZEIGLER: MODEL CONTINUITY IN THE DESIGN OF DYNAMIC DISTRIBUTED REAL-TIME SYSTEMS 875

Fig. 7. Environment model.

Robot R1 = new Robot(′′Robot1′′);
add(R1); // add robot1

Robot R2 = new Robot(′′Robot2′′);
add(R2); // add robot2

Manager man = newManager(′′Manager′′);
add(man); //add manager

addCouplingWithDelay
(R1,′′ distData′′, man,′′ R1Data′′, delay);

addCouplingWithDelay
(R1,′′ report′′, man,′′ R1Report′′, delay);

addCouplingWithDelay
(man,′′ R1Check′′, R1,′′ check′′, delay);

addCouplingWithDelay
(R2,′′ distData′′, man,′′ R2Data′′, delay);

addCouplingWithDelay
(R2,′′ report′′, man,′′ R2Report′′, delay);

addCouplingWithDelay
(man,′′ R2Check′′, R2,′′ check′′, delay);

}

Note that the Environment model was added to the
system. This Environment model will interact with
abstractHWActivity. Specifically, couplings between
them are added by abstractHWActivity using the
addActivityCoupling() method. With these couplings,
when the Avoid model calls abstractHWActivity’s move()
method, a message will be passed to the Environment
model, which then updates the corresponding robot’s position
after a period of motion. These couplings also allow sensor
data to be passed from the Environment model to the
abstractHWActivity.

In central simulation, fast-mode simulator and real-time sim-
ulator are applied to simulate and test the control models of the
system. Within real-time simulation, a graphic user interface
was developed to show how robots move and react to the
environment in real time.
2) Distributed Simulation: In distributed simulation, the

three components of the system, Robot1, Robot2, and
Manager, are distributed on different desktops and laptops
across a local area network. Because the system is simulated
in a real network, the network delay models are no longer
needed. Thus, the addCouplingWithDelay() functions of the

teamFormation model are changed back to addCoupling().
With this change, the teamFormation model looks like:

public teamFormation(String nm){
Environment env = new Environment(′′Env′′);
add(env); //add the environment model

Robot R1 = new Robot(′′Robot1′′);
add(R1); // add robot1

Robot R2 = new Robot(′′Robot2′′);
add(R2); // add robot2

Manager man = new Manager(′′Manager′′);
add(man); //add manager

addCoupling(R1, ′′distData′′, man, ′′R1Data′′);
addCoupling(R1, ′′report′′, man, ′′R1Report′′);
addCoupling(man, ′′R1Check′′, R1, ′′check′′);
addCoupling(R2, ′′distData′′, man, ′′R2Data′′);
addCoupling(R2, ′′report′′, man, ′′R2Report′′);
addCoupling(man, ′′R2Check′′, R2, ′′check′′);

}

Distributed real-time simulators are chosen to simulate and
test the system in a distributed environment. In simulation,
the two robots still share the same virtual environment as
represented by the Environment model. In this way, when
model Robot1 moves, model Robot2, which is simulated on
a different computer, will notice it.
3) Robot-in-the-Loop Simulation: In HIL—here called

robot-in-the-loop simulation—one or both of the models,
Robot1 and Robot2, are downloaded to real robot hosts. These
control models of these robots are hosted on Dallas Semicon-
ductor’s Tiny InterNet Interface (TINI) chips. It was noted that
the model code is not altered in this migration since the TINI
chip supports the Java-implemented DEVS real-time execution
environment [27]. Other models such as the Environment
model can reside on other networked computers and are driven
by the DEVS distributed real-time simulators. Depending on
the desired configuration, the DEVS model resident on real
robot may use a robot’s real sensor/actuator (implemented
by activity) to interact with the real environment or use
abstractActivity as virtual sensor/actuators to interact with
the Environment model. This capability allows the control
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model within the TINI environment to be tested with both
simulated and real sensors or actuators.

Below, an experimental setup to see how robot-in-the-loop
simulation can be achieved was considered. In this exper-
iment, model Robot1 is downloaded to a real robot robot1
and is executed by a real-time execution engine that runs
on the TINI chip. Model Robot2, Manager, and the
Environment are simulated on computers; among them,
Robot2 uses abstractHWActivity to interact with the
Environment model. The authors configure Robot1 to use
its real motors to move within a real physical world, and
to use virtual whisker sensors and IR sensors to get sensor
data from the Environment model. To serve this purpose,
motorActivity and sensorAbstractActivity are devel-
oped. The motorActivity defines the move() method that
drives the real robot’s motors; the sensorAbstractActivity
combines the functions of virtual whisker sensors and vir-
tual IR sensors. It gets the virtual sensor data from the
Environment model and calls returnTheResult() to send
the data to the Avoid model. To support model continuity,
the motorActivity and sensorAbstractActivity together
should have the same interface functions as those of the
abstractHWActivity that is used in the previous steps.

After defining the motorActivity and sensorAbstract
Activity, the Avoid model can use them. Specifically, in its
initialize() function, the Avoid model initializes and starts
the motorActivity and sensorAbstractActivity. This is
shown below.

motorActivity motorA = new motorActivity();
startActivity(motorA);
sensorAbstractActivity sensorA

= new sensorAbstractActivity();
startActivity(sensorA);

Then, the motorActivity and sensorAbstractActivity
are used by the Avoid model’s external transition function
deltext() as shown below.

public void deltext(double e, message x){
. . . . . . . . .

if (messageOnPort(x,′′ outputFromActivity′′, i)){
sensorData

= x.getValOnPort(′′outputFromActivity′′, i);
. . . . . . . . .
if (frontTripped)
motorA.move(′′backward′′, speed, dist);

else if (backTripped)
motorA.move(′′forward′′, speed, dist);

}else if (messageOnPort(x,′′ move′′, i))
motorA.move(direction, speed, distance);

. . . . . . . . .
}

As can be seen, the Avoid model processes the sensor
data returned from virtual sensors sensorA. It calls motorA’s
move() to move the real robot backward/forward if the (virtual)
whiskers sensors are tripped. Meanwhile, if there is a message

on the move port (sent from Wander model or March model),
the Avoid model calls motorA’s move() to move the real robot.
It was noted that in the robot-in-the-loop simulation, a virtual
counterpart of the real robot is needed in the virtual envi-
ronment (the Environment model). Thus, when motorA gets
the move command from the Avoid model, a corresponding
message is sent to the Environment model. A standard way
to realize this is under development so that the movement of
the real robot and its agent in the virtual environment can be
effectively synchronized.

This experimental setup shows that the Avoid model uses
its virtual sensor interface sensorA to get sensor data from the
virtual environment and uses its real motor interface motorA
to move the robot. As a result, the real robot robot1 moves
in a physical field based on the sensor data from a virtual en-
vironment. Within this virtual environment, robot1 can “see”
virtual obstacles and other robots, such as Robot2, which are
simulated on computers.
4) Real System Test: In real system test, all the models are

deployed to their real hardware and tested in a real physical
environment. In this example, the Robot1 and Robot2 mod-
els are downloaded to the TINI chips on the respective real
robots while the Manager model is downloaded to a wireless
laptop. All the models are executed by real-time execution
engines. For both robots, virtual sensor/actuator interfaces
(abstractHWActivity) are replaced by real sensor/actuator
interfaces (HWActivity). The Environment model is elimi-
nated since the robots now operate in the real world. With these
changes, the teamFormation model is shown below.

public teamFormation (String nm){
Robot R1 = new Robot(′′Robot1′′);
add(R1); // add robot1

Robot R2 = new Robot(′′Robot2′′);
add(R2); // add robot2

Manager man = new Manager(′′Manager′′);
add(man); //add manager

addCoupling(R1, ′′distData′′, man, ′′R1Data′′);
addCoupling(R1, ′′report′′, man, ′′R1Report′′);
addCoupling(man, ′′R1Check′′, R1, ′′check′′);
addCoupling(R2, ′′distData′′, man, ′′R2Data′′);
addCoupling(R2, ′′report′′, man, ′′R2Report′′);
addCoupling(man, ′′R2Check′′, R2, ′′check′′);

}

Note that this is also the same setup as in the final execution,
where robots move within a physical field and respond to a real
environment.

C. Results and Discussion

This example shows how a “dynamic team formation” sys-
tem can be modeled and then tested by simulation methods.
One of the results for this example is to check if robots
exhibit the same (similar) behavior in real execution as that in
simulation-based test. For that purpose, a movie [32] has been
recorded to show the team formation process in simulation as



HU AND ZEIGLER: MODEL CONTINUITY IN THE DESIGN OF DYNAMIC DISTRIBUTED REAL-TIME SYSTEMS 877

well as in real execution. This movie clearly demonstrates the
continuity between these two stages. It was noted that although
the above example does not involve a complex environment
setting, it is expected that this “continuity” will be preserved
even in complex environments.

VII. CONCLUSION

In this paper, a software development methodology for
dynamic distributed real-time systems was presented. The
methodology is based on DEVSJAVA modeling and simulation
environment. It supports model continuity so that a dynamic
distributed real-time system can be designed, analyzed and
tested by simulation methods, and then migrated to be executed
in a distributed network while preserving its control models.
To handle the dynamic properties of a distributed real-time sys-
tem, the variable structure modeling capability is integrated into
the proposed methodology. Stepwise simulation methods such
as central simulation, distributed simulation, and hardware-in-
the-loop (HIL) simulation are developed to incrementally test
the control models in a virtual environment. A distributed ro-
botic “team formation” example was developed and presented
in the paper to demonstrate how this dynamic system can be
developed by applying the proposed methodology in different
stages.
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