

Abstract- The use of middleware to develop distributed

applications liberates the programmer of the concerns
(communication and coordination among software
components) imposed by the distributed network environment.
Besides these concerns, in wireless sensor networks are
considered, also, their specific characteristics (address,
mobility, amount and limited resources of the sensor nodes).
This paper describes the performance evaluation of SensorBus,
a message-oriented adaptive middleware for wireless sensor
networks that uses policies to assist to the several
characteristics of the wireless sensor networks. Policies are
implemented in an application profile, through metadata,
encoded in XML documents. Performance evaluation of
SensorBus is made through their two main services: message
and context. We used measurement techniques to carry out the
experiments with objective of analyzing the impact of two
routing protocols in the middleware also to show that using
metadata to incorporate policies in the middleware does not
imply undue overheads.

Index Terms—Metadata, Middleware, Performance
Evaluation, Wireless Sensor Networks

I. INTRODUCTION
IRELESS sensor networks (WSNs) consist of a group
of sensor nodes distributed in a physical area with

purpose of detecting occurrences in environment. These
networks are used in specific applications as environmental
monitoring, tracking of vehicles, habitat monitoring, among
others. Thus, the utility of a WSN bases on its capacity to
provide information of large areas in response to queries
made by user. Development of WSN applications needs to
consider specific characteristics of these networks, when
compared with traditional wireless networks [1]: (1)
attribute-based naming - sensor nodes can be addressed by
their own attributes or by attributes captured in the physical
environment; (2) variable mobility - sensor nodes dispersed
in a forest for collecting information are static while sensor
nodes put in a surface of a river for collecting information
about pollution are mobiles; (3) high density - due to the
sensing range of covering of a sensor node to be smaller

Admilson R. L. Ribeiro is with the Computing and Electrical
Engineering Department, Federal University of Pará, Belém, Pará, Brazil
(e-mail:admilson@ufpa.br).

Lilian C. Freitas is with the Computing and Electrical Engineering
Department, Federal University of Pará, Belém, Pará, Brazil (phone: +55-
91-3201-7740; fax: +55-91-3201-7740; e-mail: liliancf@ufpa.br).

Carlos R. L. Francês is with the Computing and Electrical Engineering
Department, Federal University of Pará, Belém, Pará, Brazil (e-mail:
rfrances@ufpa.br).

Joâo Crisóstomo W. A. Costa is with the Computing and Electrical
Engineering Department, Federal University of Pará, Belém, Pará, Brazil
(e-mail: jweyl@ufpa.br).

than its range of radio reach, the size of the covering area
demands corresponding size in the amount of sensor nodes;
and (4) limited resources of sensor nodes - energy is more
limited in WSNS than in other types of wireless networks
due to the nature of the sensor devices and to the difficulty
in recharging their batteries in inhospitable areas. Thus, it is
observed that applications are closely related to WSN
design, for each application type there is need to modify the
WSN design to meet certain characteristics. Therefore,
WSN applications need to be adaptive, that introduces an
additional burden on the application programmer.

Middleware tries to solve the adaptation problem of WSN
applications. Several middleware [2]-[6] were developed for
these networks. These solutions support network re-
configuration in two ways: mobile code [2]-[4] and by
flashing the mote's instruction memory [5]-[6]. Solutions
that use memory reprogramming take a long time and
consume a lot of energy transferring every code through
WSN so that modifying memories of sensor nodes.
Solutions by mobile agents support weak mobility, because
the execution state is not transferred.

To outline the limitations of the solutions above, we
developed SensorBus, a middleware for WSN applications
based on principle of metadata. Through metadata, we
obtain separation of concerns, that is, we distinguish what
the middleware does than from how the middleware does it.
Thus, it is possible to add re-configuration in the
middleware through a profile coded in XML (eXtensible
Markup Language) [7]. This profile contains description of
policies to address to the main characteristics of WSNs. The
policies are divided in application policies (for instance,
sampling period), communication policies (central or
distributed routing) and context policies (for instance,
battery level). SensorBus behaves as a provider of
customizable services, where customization happens
through metadata, which encode the behavior of middleware
to answer services request of applications in several
contexts.

In spite of the great amount of middleware for WSN, still
there is not a methodology to do performance evaluation of
this kind of software. Usually, the evaluation is made to
approach certain characteristic, for instance, service quality.
Thus, our main contribution is the implementation of a
methodology for performance evaluation of middleware
based on services, where each service is analyzed in
agreement with its position in the stack of OSI (Open
Systems Interconnection) protocols [8].

The remainder of the paper is organized as follows.
Section II presents the main components of SensorBus and
describes how it was implemented. Section III describes the

Middleware Performance Evaluation in Wireless
Sensor Networks

Admilson R. L. Ribeiro, Lilian C. Freitas, Carlos R. L. Francês, João Crisóstomo W. A. Costa

W

85-89748-04-9/06/$25.00 © 2006 IEEE ITS2006207

performance evaluation platform. Section IV presents the
measurement methodology to carry out the experiments.
Section V presents the performance evaluation results of
SensorBus services. Section VI provides the concluding
remarks of the paper.

II. DESIGN AND IMPLEMENTATION
SensorBus is a message-oriented middleware (MOM)

constituted of three mechanisms: publish-subscribe
paradigm, constraint language and application filters.
Publish-subscribe paradigm is used to meet the attribute-
based naming and also to incorporate the operation way for
occurrence of events. Constraint language is used to
facilitate the work of on-line programming of applications.
Application filters are used to make data internal
aggregation, reducing the data flow in the network,
therefore decreasing the power consumption in sensor
nodes.

As shown in Fig. 1, SensorBus architecture is made up of
three main components: application service, message
service and context service. Application service provides an
API (Application Programming Interface) of high level that
simplifies construction of applications. Message service is
responsible for providing communication and coordination
for distributed components, turning transparent, for user,
these issues. Service context is responsible for managing
heterogeneous sensors that gather information from the
internal and external environment to sensor node. For each
resource that the middleware manages, there is an adapter
that interacts with a physical sensor, processing its
information and thus obtaining a value demanded by
application. Complete description of the SensorBus design
can be found in [9].

Fig. 1. SensorBus Architecture.

The current implementation of SensorBus is constituted
of three software modules: a module that executes in PC
(Personal Computer), another module that executes in the
sensor nodes and a necessary module to interconnect the
previous modules. The module that executes in PC was
implemented in Java using JDK 1.4.2 while application
profiles were codified in XML. XML was used because it
supports a representation of information that is manipulated
easily by computers and well known for people. We used
also some technologies XML, in matter DOM (Document
Object Model) [10] and XPath (XML Path) [11]. The use
available XML parsers reduced considerably the time of
development of the middleware.

In nesC language [12], we developed the module that
executes in the sensor nodes. This module is responsible for
query processing system to extract information from the

WSN. Given determined query, specifying the interest data,
this module collects the data of the sensor nodes in the
environment, filters them, aggregates them and makes the
routing for PC.

We implemented a proxy in Java to do the
interconnection between the PCs network and the sensor
network. The proxy executes in a PC that is connected to
sensor network through the serial port. It is used to read data
packets that arrive for the serial port and to send them
through a TCP/IP (Transmission Control Protocol / Internet
Protocol) port connection [8], so that programs can
communicate with WSN through sink node. We used the
tool MIG (Message Interface Generator) [13] to generate
Java classes automatically that correspond to the types of
active messages used in the components, coded in nesC, that
execute in the motes. Using MIG, we outlined the difficulty
of translating the message formats for use in the proxy in
Java.

To verify the SensorBus usability, we implemented a
query application of environmental variables. The attributes
that can be collected are temperature, light, pressure and
humidity. After, we decided which the policies should be
encoded in the application profiles. As application policies,
we established the sampling period, query type (event-
driven or continuous) and yes/no allowing aggregates. In
relation to communication policies, we used routing type
(central or distributed) and specification of broadcast
interval. Alarm about battery levels, memory, and radio
signal strength were chosen as context policies.

III. PERFORMANCE EVALUATION PLATFORM
The hardware platform for performance evaluation of

SensorBus is constituted of equipments with Intel
processors and interfaces 802.11b for wireless
communication. The PC connected to the sink node consists
of a laptop Dell Latitude equipped with 512 MB of RAM
(Random Access Memory) and Centrino processor with 1.6
GHz executing the Red Hat Linux 9 operating system.

The sensor nodes consist of Micaz motes of Crossbow
Technology, Inc equipped with processor ATMega129L
[14] of 7.3728 MHz with 128 KB of program memory
(FLASH), 4KB of data memory (SRAM). This platform still
has 512 KB of external memory (FLASH) for reading of
measurements of sensor nodes and a module of radio
CC2420 [15] of 2400 MHz capable to offer a bandwidth
total of 250 Kbps. An expansion slot accommodates a
variety of sensing cards such as light, temperature, magnetic
field, sound, and so on. The Micaz motes execute the
TinyOS operating system [13] that has a programming
model based on components, provided by the nesC
language.

To accomplish the measurements, a WSN was used
composed by 8 sensor nodes, including the sink node
(connected to the station base), transmitting in the frequency
of 2,048GHz and power transmission of 0 dBm. The tests
were accomplished in an area of 10m x 50m.

Application/User

Application Service

Message Service

Context Service

Network OS

208

Fig. 2. WSN Configuration.

 We adopted a configuration composed by 3 levels, as
shown in Fig. 2. In the level 1, the sensor nodes are
connected directly to the sink node. In the level 2, the sensor
nodes communicate with an intermediate node, until
arriving to the sink node. Already in the level 3, the sensor
nodes communicate with two intermediate nodes, until
arriving to their destinies. The objective of this
configuration is to force the packet routing in the network.

IV. MEASUREMENT METHODOLOGY
For performance evaluation of SensorBus, we evaluated

their two main services: message service and context
service. Each service suffers the effect that happens in the
several layers of the protocol stack that support WSNs. As
shown in Fig. 3, in these networks, the essential protocol
layers are the MAC protocol on data link layer and the
routing protocol on the network layer. MAC protocol
creates the network topology and shares the transmission
medium among sensor nodes. The routing protocol allows
communication via multi-hop paths. The transport protocol
that implements end-to-end flow control is rarely used in
WSNs. The middleware layer is equivalent to the
presentation layer in the OSI model.

Fig. 3 shows that each SensorBus service is associated to
certain group of layers. For instance, message service is on
the level of the network layer and suffers influence of all
layers that are below it. Application service is on top of
stack and suffers influence of all layers while the
middleware layer is responsible for policies management.

Fig. 3. OSI Model, WSN and SensorBus services.

A. Message Service
For performance evaluation of the message service we

considered packet delivery in the physical layer, MAC layer
and network layer. As the packet delivery in those networks
is influenced strongly by the routing protocol, we analyzed
the impact of two multi-hop protocols in the message
service while we controlled the factors that influence the
physical layer and MAC layer.

In the physical layer, the framing functions and bit error
detection or correction are affected for several factors. First,
environmental characteristics can cause multi-path signal
reception or signal attenuation. Second, distance between
sender and receiver can determine the received signal
strength. Finally, small variations in the circuits of sender
and receiver or in battery levels can affect the functions of
the physical layer. Our experiment was accomplished in a
same stable environment, without environmental
interferences, so that physical layer influences were the
minimum possible.

In addition to the factors that influence the physical layer,
on the MAC layer the functions of access discipline to the
channel and error detection are affected for two factors: the
amount of messages generated by the sensor nodes and the
topology (space relationship among sensor nodes). In the
experiment, we maintained the same topology and workload
to avoid the influence of that layer. We used the B-MAC
data link protocol due its efficiency in packet delivery when
compared with other data link protocols [16].

Multi-hop protocols used to analyze the impact in the
message service were: LEPSM (Link Estimation and Parent
Selection Method) [17] and MintRoute [18]. The LEPSM
multi-hop routing algorithm is based on the mechanism of
link estimate and parent selection for the multi-hop
execution. LEPS algorithm is responsible for monitoring
whole received traffic in the node receiving directly the
updating messages of route in a single hop. These messages
can be sent of the neighbors inside of unique scale of hops.
Internally, LEPS algorithm manages the closer available

OSI-model WSN SensorBus

Middleware

WSN application

Multi-hop routing
protocol

Error control

WSN MAC protocol

Transceiver unit Physical layer

WSN application

Application

Context service

Message

Network OS

Transceiver unit

Session layer

Transport layer

Network layer

 Application layer

Presentation layer

Data link layer

209

neighbors and it decides the destiny of the following hop
based on the semantics of the minimum path. For default,
LEPS algorithm sends a message of route updating to every
10 seconds and it calculates again after 50 seconds (5
messages of route updating).

Another multi-hop routing protocol was MintRoute, also
called WMEMA (Window Mean with Exponentially
Weighted Moving Average). This protocol is based on the
technique of link estimation that calculates the average tax
of success on the period of time and it adjusts through curve
adjustment technique EWMA (Exponentially Weighted
Moving Average) [18].

For performance evaluation of the multi-hop protocols we
used the Surge application [5], an application that
accompanies TinyOS. It is an application to exemplify the
use of the LEPSM multi-hop protocol and it is divided in
two modules: a module developed to execute in the sensor
nodes and a module that executes in the station base. Surge
application that executes in the sensor nodes collects
information of brightness of the sensor nodes and sends to
the network through the station base connected to the sink
node. The module that executes in PC is a Java application
that can be used to visualize the logical network topology
and the sensing readings. Both modules of the Surge
application were used in the evaluation of the multi-hop
routing protocols; however some alterations were necessary
to evaluate the MintRoute protocol. For default, Surge
application uses the LEPSM protocol, so that to use the
MintRoute protocol we have altered the libraries of the
Surge application to configure it in agreement with that
protocol.

We used the measurement technique with the following
metrics: throughput, power consumption and packet
delivery fraction (PDF). Surge application provided
throughput and PDF. Throughput is obtained by the number
of messages that incoming to a determined sensor node by
time unit. In our experiment, as the Surge application
processes and sends messages, the measured throughput was
transmitting messages by second in each sensor node. PDF
is obtained by the relationship between receiving packets
and transmitting packets in each sensor node.

Power consumption was obtained through the measure of
current and voltage of a sensor node, using an oscilloscope
in an electronic laboratory. With the current and the
measured voltage, the consumed energy by an electronic
device is calculated by the equation:
E = V x I x ∆t.

Where E represents energy in Joules; V, voltage in Volts;
I, current in Amperes; and t, time in seconds.

B. Context Service
The main objective of performance evaluation of this

service is to validate the thesis that SensorBus requests only
a small increment in terms of elapsed time to answer a
service request, compared with approach that does not use
policies customization where the provided services are not
configured to assist to the user's preferences and the context
conditions.

In order of validating this service, we implemented a
synthetic benchmark that provides as performance metric,

the elapsed time. The elapsed time (in milliseconds) is
measured among the instant that a service request is issued,
and the instant that a policy is selected and initialized to
answer the service request. We recorded the elapsed time
for 20 measurements and the final result refers to the
average of the measured values in each one of the 20
repetitions.

V. PERFORMANCE RESULTS

A. Message Service
1) Throughput

Fig. 4 shows average throughput obtained for LEPSM
and MintRoute protocols. As it can be observed, the
performance of the LEPSM protocol was superior in most
of the sensor nodes of the network, considering the topology
presented in the section III.

Fig. 4. Throughput for multi-hop protocols.

Doing an analysis for level, we verified that in the level 0
(where it is the sink node) all of the protocols maintained
the expected performance (throughput of 0,5 packets/sec),
because the sink node is connected directly to the computer,
there is not the possibility of packet loss.

In the level 1, for the fact of sensor nodes be connected to
the sink node (destiny node), there was not the need of any
complexity in the algorithm for discovery of the next hop, in
that way, both protocols presented equivalent performance.

In the levels 2 and 3, in that the packet routing demands a
larger efficiency of the routing algorithms, the LEPSM
protocol presented a superior performance in relation to the
MintRoute protocol. Demonstrating that the criterion of
discovery of the next hop through the minimum path is
more efficient than the link estimation. That because in
sensor nodes moved away from the station base, the quality
of the link as criterion can provoke a loop in the routing of
packets.

2) Packet Delivery Fraction
Fig. 5 shows the percentage of packets sent to each sensor

node, obtained for the LEPSM and MintRoute protocols.

Fig. 5. PDF for the multi-hop protocols.

In agreement with the illustration, we observed again that

Throughput

0

0,1

0,2

0,3

0,4

0,5

0 1 2 3 4 5 6 7
Sensor node

Th
ro

ug
hp

ut

(p
ac

ka
ge

s/
se

c LEPSM
MintRoute

Packet Delivery Fraction (PDF%)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Sensor node

PD
F

(%
)

LEPSM

MintRoute

210

the performance of the analyzed protocols does not diverge
when the sensor nodes are connected directly to the sink
node, presenting a PDF close to 100%. Already in the levels
2 and 3, we observed the superior performance of the
LEPSM protocol in relation to the MintRoute protocol.
This is due the great loss of packets generated in
communication loops occurred among the most distant
nodes from the sink node (levels 2 and 3).

3) Power Consumption
The data presented in Fig. 6 represent the average power

consumption for each sensor node. Because usually a sink
node (node 0) is not powered by batteries, we do not study
its power consumption.

Fig. 6. Power consumption for multi-hop protocols.

In agreement with the illustration, the two protocols
presented similar performance just for the nodes 2, 3 and 4,
diverging for the node 1 and for the nodes of the level 3.
Through a quantitative analysis, we observed that the
MintRoute protocol provided a total average consumption
8% larger in relation to the provided by the LEPSM
protocol. This inferior performance presented by
MintRoute protocol is due to the already mentioned
communication loop occurred in the levels 2 and 3,
generated by criterion of hop discovery that take account the
estimate of quality of the link.

B. Context Service
Fig. 7 shows the effect that metadata has on the elapsed

time of a customization of context policy over a basic
middleware without use of policies. The intersection of the
curve with the axis Y represents the use of SensorBus in a
static way (without policies); in this case the elapsed time is
the same for any amount of sensor nodes.

Fig. 7. Impact of Metadata.

As the figure shows, the increment in the elapsed time is
more or less linear in relation to the number of sensor nodes.
Even in a situation with considerable number of sensor
nodes, concerning 100, the performance of SensorBus is
rather good, as the elapsed time is below 0.5 second.

VI. CONCLUSION
In this paper, we described the performance evaluation of

SensorBus, a middleware for WSNs that explores metadata
to meet requirements of the applications. Performance
evaluation of the message service was accomplished with
objective of verifying the effect of the routing protocol in
the middleware, and thus to obtain a protocol of larger
efficiency under the point of view of consumption of
energy. With evaluation of the context service we verified
the impact of the establishment of policies in the
middleware. The evaluation of those two services was
accomplished through measurements obtained in a real
platform of WSN.

From the presented results, we verified that, in general,
the LEPSM and MintRoute protocols presented similar
performance, considering the close sensor nodes to the sink
node. This is due the low demanded complexity of the
routing protocol in these situations. However, evaluating the
behavior of the protocols in the moved away sensor nodes
from the sink node, we verified that the MintRoute protocol
presented an inferior performance in relation to the LEPSM
protocol, demonstrating that the algorithm based on the
criterion of link quality, used by the MintRoute protocol, is
not efficient when the destiny node is moved away from the
origin node, provoking in many cases loops in the routing of
the packets, as exemplified through the presented results.

Thus, we demonstrated that in certain areas of location of
WSN, the LEPSM protocol is more efficient to be used in
the middleware and that the use of policies to accomplish
the middleware re-configuration does not implicate in
significant additional cost in performance.

REFERENCES
[1] Rentala, P., Musunuri, R., Gandham, S. and Saxena, U. “Survey on

Sensor Networks”, University of Texas, Dept. of Computer Science,
2002.

[2] Smart Messages project. http://discolab.rutgers.edu/sm, 2003.
[3] Boulis, A., Han, C.-C., and Srivastava, M. “Design and

implementation of framework for efficient and programmable sensor
networks”, in Proc. of MobiSys, 2003.

[4] Liu, T. and Martonosi, M. “Impala: A middleware system for
managing autonomic, parallel sensor systems.” In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP´03), June 2003.

[5] Crossbow Technology, Inc., XNP – X Network Programming.
http://www.tinyos.net/tinyos-1.x/.

[6] Hui, J. and Culler, D. “The dynamic behavior of a data dissemination
protocol for network programming at scale”, in Proceedings of the
2nd International conference on Embedded networked sensor systems.
ACM Press, 2004.

[7] Bray, T., Paoli, J., and Sperberg-McQueen, C. M. Extensible Markup
Language. Recommendation http://www.w3.org/TR/1998/REC-xml-
19980210, World Wide Web Consortium, 1998.

[8] Stallings, W. Data & Computer Communications, Prentice-Hall,
Englewood Cliffs, NJ, USA, 6th edition, 2001.

[9] Ribeiro, A. R. L., Freitas, L. C., Silva, F. C. S., Francês, C. R. and
Costa, J. C. W. “SensorBus: A Middleware Model for Wireless
Sensor Networks”, in Proceedings of the 3rd IFIP/ACM Latin America
Networking Conference, ACM Press, October 2005.

[10] Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Hors, A.
L., Nicol, G., Robie, J., Sutor, R., Wilson, C., and Wood, L.
Document Object Model (DOM) Level 1 Specification. W3C
Recommendation http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001, World Wide Web Consortium, 1998.

[11] Clark, J. and DeRose, S. XML Path Language (XPath). Technical
Report http://www.w3.org/TR/xpath, World Wide Web Consortium,
1999.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

El
ap

se
d

tim
e

(m
s)

N u m b e r o f s e n s o r m o te s

Energy Consumption (mJ)

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7
Sensor node

En
er

gy
 C

on
su

m
pt

io
n

LEPSM

MintRoute

211

[12] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.
“The nesC Language: A Holistic Approach to Networked Embedded
Systems” in Proc. Programming Language Design and
Implementation, Jun. 2003

[13] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. E., Pister, K. S.
J. “System Architecture directions for networked sensor”, in Proc 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[14] Atmel inc., http://www.atmel.com/products/avr/
[15] Chipcon inc., http://www.chipcon.com/
[16] Polastre, J. and Culler, D. “B-mac: An adaptive csma layer for low-

power operation”, UC Berkeley, Tech. Rep cs294-f03/bmac,
December 2003.

[17] Hohlt, B. A. “The Design and Evaluation of Network Power
Scheduling for Sensor Networks”. A dissertation submitted in partial
satisfaction of the requirements for the degree of Doctor of
Philosophy in Computer Science. University of California, Berkeley.
Spring., 2005

[18] Woo, A., T. Tong, and Culler D. “Taming the Underlying Challenges
of Reliable Multihop Routing in Sensor Networks”, Proc. ACM
SENSYS, Los Angeles, CA. November, 2003.

212

