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Abstract

A noteworthy advance in distributed computing is due to
the recent development of peer-to-peer systems. These sys-
tems are essentially dynamic in the sense that no process
can get a global knowledge on the system structure. They
mainly allow processes to look up for data that can be dy-
namically added/suppressed in a permanently evolving set
of nodes. Although protocols have been developed for such
dynamic systems, to our knowledge, up to date no computa-
tion model for dynamic systems has been proposed. Never-
theless, there is a strong demand for the definition of such
models as soon as one wants to develop provably correct
protocols suited to dynamic systems.

This paper proposes a model for (a class of) dynamic
systems. That dynamic model is defined by (1) a parameter
(an integer denoted α) and (2) two basic communication
abstractions (query-response and persistent reliable broad-
cast). The new parameter α is a threshold value introduced
to capture the liveness part of the system (it is the counter-
part of the minimal number of processes that do not crash
in a static system). To show the relevance of the model,
the paper adapts an eventual leader protocol designed for
the static model, and proves that the resulting protocol is
correct within the proposed dynamic model. In that sense,
the paper has also a methodological flavor, as it shows that
simple modifications to existing protocols can allow them to
work in dynamic systems.
Key-words: Communication abstraction, Dynamic sys-
tem, Persistent reliable broadcast, Query-response pattern,
Eventual stability condition, Peer-to-Peer system.

1 Introduction
Context of the paper P2P systems are evolving rapidly
and are becoming a viable paradigm for distributed system
computing. Originally, P2P systems were developed to fa-
cilitate the sharing of data among a collection of dispersed

peers. However, with the increasing popularity of P2P, sev-
eral proposals have emerged where P2P systems are used
as the basis for more complex applications. For example,
grid computing on a P2P system would not only exploit
available storage, but also potentially harness all available
computing and processing power in the Internet to execute
different computationally intensive applications. Hence, we
can expect P2P systems to evolve into full fledged distribut-
ed systems where data is stored and processing is performed
in a distributed manner. P2P systems can be viewed as dy-
namic distributed systems that allow peers to dynamically
join and leave the system.

The classical asynchronous message-passing distributed
computing model is characterized by the following at-
tributes. The system is made up of n nodes (processes); n
is fixed and known by each process; no two processes have
the same identity; the whole set of identities is known by
each process; the communication network is fully connect-
ed; there is no bound on the time it takes for a process to
execute a step or for a message to travel from its sender to
its destination. A distributed computation in this model is
a partial order on the events generated by the execution of
the processes [15]. When considering classic distributed
systems prone to node failures, another crucial parameter
is introduced in the computational model, namely, the
maximal number of processes that can be faulty (usually,
denoted f ). This means that n and f are two fundamental
parameters of the classic distributed computing model.
From a protocol design point of view, a process can safely
use these parameters in its protocol.

It is worth noticing that (since the very early of the eight-
ies) this static model has been questioned by theoreticians
interested in the computability power of distributed system-
s. Their efforts were focused on the following fundamental
question [3]: “How much does each processor in a network
need to know about its own identity, the identities of other
processors, and the underlying connection network in order
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to be able to carry out useful functions?” This research di-
rection has given rise to notions such as “local knowledge”
vs “global knowledge” [6], anonymous networks, sense of
direction [9], etc.

The advent of P2P systems (such as [25, 26, 28]) con-
sequently questioned the relevance of the static distributed
computing model from a practical point of view. Dynamic
systems allow processes (nodes) to dynamically enter and
leave the system. It follows that no node can know how
many nodes currently constitute the system. The parame-
ters n and f become unknown and meaningless. Roughly
speaking, there is no global safe information on the whole
system structure that can be used by the nodes.

Motivation of the paper The previous discussion shows
that there is a critical need for the definition of distributed
computing models for dynamic systems. This is the main
issue addressed in this paper whose aim is to propose a com-
putational model for a class of dynamic distributed system-
s. The development of such models seems crucial for the
future, as soon as one wants to understand the basics of dy-
namic systems, master their difficulty and be able to design
provably correct software suited to them1.

P2P systems suffer from churn, namely, that peers join
and leave the system at arbitrary times and arbitrarily
fast [7, 18, 27]. Churn makes it possible that no node re-
mains long enough in the system for this node (or other
nodes) to be able to complete useful computation. So, a
dynamic system has to satisfy some form of eventual sta-
bility in order that a computation be able to progress and
terminate. Of course, it is possible that a computation pro-
gresses and even terminates during periods where the sys-
tem is unstable, but no progress guarantee can be associated
with such periods. That is why, a system model has to pro-
vide stability conditions that, when satisfied during a long
enough period, ensure that a computation can progress and
terminate. (Let us remark that this observation is true even
for static systems where the statement “no more than f pro-
cesses are faulty” is a progress condition provided by the
model. If more than f processes do crash, it is possible that
no computation at all be able to progress and terminate.)

To capture the notion of eventual stability in a dynam-
ic system (where there is neither the parameter n, nor the
parameter f ), we consider a new parameter, namely, an in-
teger that we call α. Its value is a requirement on the min-
imal number of processes that have to be simultaneously
alive during a “long enough” period in order for the whole
system be able to progress during that period. These α pro-
cesses are associated with the corresponding period in the
sense they constitute -for that period- a reliable core cluster
able to execute critical tasks or provide basic vital services

1What we call dynamic/static systems is sometimes called open/close
systems in other papers.

to the rest of the system. This phenomenon has been ob-
served in P2P systems, including the experimental work of
Gummadi et al. [11], where they reported that in unstruc-
tured P2P systems, the distribution of average sessions are
heavy tailed, i.e., a small number of peers persist for a long
time.

It is important to notice that, differently from a static
system, “long enough” does not mean “forever”. The core
cluster of α processes can change over periods according
to the processes that enter or leave the system. What is
crucial is the fact that providing some vital tasks require
the continuous cooperation of α processes. When less
than α processes are present, it is possible that the system
progresses, but there is no progress guarantees. Actually, α
plays the role of the value n− f used in static systems, and
that represents a lower bound on the number of processes
that are always alive in such systems2.

When we consider the protocols designed for the static
asynchronous distributed computing model (prone to pro-
cess crashes), we can distinguish at some abstraction level
two types of communication primitives used by the process-
es, namely, a query-response primitive (which can be seen
as a generalization of the basic remote procedure call) and a
broadcast primitive that allows information dissemination.
The first of these primitives is usually expressed by the fol-
lowing sequence of basic statements:

broadcast a query message to all the processes;
wait until (responses from n − f proc. have been rec.)

while information dissemination is expressed by a simple
broadcast invocation:

broadcast a msg carrying a new data to all the proc.

Let us observe that the implementation of both primitives
uses a broadcast. Moreover, the wait statement appearing
in the implementation of the query-response primitive
uses the value n − f thereby guaranteeing eventual
progress (as, due to the model, at least n − f processes
are not faulty and can consequently always send responses).

In a dynamic system where n and f “do not exist”, each
primitive has to be adapted to avoid the dependency on n
and f . More specifically, we propose the following com-
munication primitives suited to a dynamic system.

• Query-response pattern.
In order to ensure that a process that issues a query-
response is not blocked forever, we require it to wait

2A role similar to the α processes is sometimes devoted to the super-
peer nodes in some peer-to-peer applications. A notion close to α has
been introduced in [14] where the model parameter s is used to denote the
smallest number of stable/active processes (a stable process being here a
process that is never suspected unless it fails).
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for only α responses. This is consistent with the defini-
tion of α stated before (see the discussion on eventual
stability). Note that the query does not need to be sent
to all the processes. More explicitly, the value α in the
dynamic model plays the role of the differential value
n − f in the static model. This allows getting rid of n
and f and replace them by the parameter α related to
the eventual stability of the system.

• Information dissemination.
The specification of a reliable broadcast primitive for a
static system is simple: the broadcast message is sent
to the n processes, and each message delivered by a
process is delivered at least by the correct processes
(i.e., the processes that do not crash) [13]. Defining
a reliable broadcast primitive in an asynchronous dy-
namic system requires some care. While the processes
that have left the system when a message is sent can
be considered as “crashed” (and are consequently not
required to deliver the message), this is not the case
for the processes that have not yet entered the system.
So, the definition of a dynamic system model requires
an appropriate reliable broadcast primitive such as the
persistent reliable broadcast introduced in [10]. In-
tuitively, such a primitive allows a process to send a
message to a “sufficiently large subset” of processes of
the dynamic system, “sufficient” meaning that a value
that has been broadcast will not be lost by the system
considered as a single entity.

It is important to see that the “broadcast to all” used in a
static system has to be replaced in a static system by “broad-
cast to a sufficient number of nodes”. The meaning of “suf-
ficient” depends on the particular primitives embedded in
the model. Their implementations (that can take into ac-
count the underlying overlay structure) is out of the scope
of this paper.

Content of the paper The paper presents a model for a
class of dynamic systems defined by the value of α, an asso-
ciated eventual stability condition, a query-response mech-
anism and a persistent reliable broadcast.

To illustrate the utility of our proposed dynamic system-
s model, we use leader election as a pedagogical example.
A leader election protocol is a basic building block used to
solve many synchronization problems that has been exten-
sively studied in static distributed systems. As P2P systems
evolve from data centric applications to more general pro-
cessing applications, the need for such fundamental primi-
tives will increase.

We take a simple leader election protocol for static dis-
tributed systems [23], and demonstrate how to adapt it to
a dynamic system. The aim is here to illustrate the power
and simplicity of our proposal. The modifications are par-
ticularly simple: they consists of replacing n− f by α, and

using the appropriate dynamic model communication prim-
itives. Of course, the proof of the dynamic protocol has
to be adapted to take into account the definition of the dy-
namic model (mainly the properties of the associated com-
munication primitives, and the eventual stability property).
This protocol is exemplary for such an extension since it us-
es both communication abstractions. This means that other
protocols designed for the traditional static model can be
easily “translated” to the proposed dynamic model if these
protocols only use n − f (instead of explicitly using n or
f ), a query-response mechanism and a reliable broadcast
communication primitive.

2 Dynamic System Model

The system is made up of processes communicating by
sending and receiving messages through an underlying net-
work. The first subsection describes the process model, the
second subsection describes the communication primitives
provided to the processes.

To simplify the presentation, we assume the existence of
a discrete global clock. This clock, whose domain denoted
IN is the set of integers (plus +∞), is a fictional device that
is not known by the processes (which means that this time
notion cannot be used by a process inside its protocol).

2.1 Process Model

The system has infinitely many processes but each run
has only finitely many. This means that there is no bound
on the number of processes for all runs: whatever the integer
value n, there are runs with more than n processes. There
is a bound on the number of processes in each run, but a
protocol does not know that bound because it varies from
run to run. This means that no protocol designed for this
model can use an upper bound on the number of processes.
This is the finite arrival model investigated in [1, 19].

Each process has a unique identity. A process knows
its identity but does not necessarily know the identities of
the other processes. In the following we consider that an
identity is a positive integer and pi will denote the process
whose identity is i.

A process enters the system by executing a join() op-
eration that provides it with an identity. The processes are
asynchronous in the sense that there is no bound on the time
needed by a process to execute a computation step. A pro-
cess can leave the system by executing a leave() operation.
It can also crash before having executed a leave operation.
A process that leaves the system or crashes can re-enter the
system with a new identity: it is then considered as a new
process. Due to the “finite arrival” assumption, the number
of re-entries/recoveries is bounded.

In the following, we use the following notation:
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• up(t) denotes the set of processes that are present in
the system at time t, t ∈ IN (i.e., up(t) is the set of pro-
cesses that joined the system before time t and, if any,
the associated crash or leave does not appear before
time t).

Dynamic systems are characterized by the succession of
unstable periods followed by stable periods. As we have
seen in the Introduction, progress can be guaranteed only
during stable periods if they last long enough. More pre-
cisely, let tb and te be the times at which starts and finishes
a period. These time instants are defined by the application
processes. Basically, tb is the beginning of the application
and te its end. Let an interval I be the period [tb, te]. The
stable set associated with such an interval I is then defined
as follows:

• STABLE (I) =
{i | ∃t ∈ [tb, te] : ∀t′ : t ≤ t′ ≤ te : pi ∈ up(t′)}.

For simplicity, we consider a single interval in the fol-
lowing. (Without loss of generality, all the definitions can
be extended to take into account explicitly defined interval-
s.) Hence, the revised definition is as follows:

• STABLE = {i | ∃t : ∀t′ ≥ t : pi ∈ up(t′)}.
STABLE is the set of processes that, after having en-
tered the system, neither crash nor leave.

In order for the dynamic system model to allow progress
despite process arrivals and departures, a progress condition
has to be an integral part of the model. This is the role of
the integer α where each value of α defines a model instance
(as already noticed α captures the differential value n − f
used to prevent processes from blocking forever in the static
model)3. The progress condition we consider for the model
is consequently

|STABLE | ≥ α.

The set STABLE is the counterpart of the set of correct
processes appearing in the definition of the static model. In
the static model, a process is correct in a run if it does not
crash during that run. Otherwise, it is faulty. So, we have
the following correspondence between the traditional static
model and the proposed dynamic model:

n − f corresponds to α,

pi is correct corresponds to i ∈ STABLE .

3The determination of an appropriate -realistic- value of the model pa-
rameter α poses the same problem as the determination of the parameter f
in a classical static system prone to failures (what does happen when more
than f processes crash?). That determination depends on both the upper
layer application and the specific features on the underlying system. (As
far as the value of f in static systems is concerned, the interested reader
can consult [20] where appropriate values for f are determined when one
is interested in the condition-based consensus problem).

2.2 Communication Model

We assume that, as soon as a process pi knows the iden-
tity of a process pj (from which we can conclude that pj

has entered the system), pi can send a message to pj . If pj

neither leaves the system nor crashes, it eventually delivers
the message.

In addition to the traditional point to point communica-
tion primitives, the model is equipped with the two com-
munication abstractions presented in the Introduction. This
section defines them precisely. As already indicated, their
efficient implementation is an important open problem that
is not addressed in this paper.

Query-response abstraction A query-response commu-
nication instance is started by a process pi when it invokes
the primitive issue query(m) (where m is the query pa-
rameter). By definition, the message m has the “query”
type, which allows to determine whether it is issued by a
query invocation or by a prst broadcast() (defined below).
This entails the sending of the query m to the processes of
the system. When a process pj receives a message of the
“query” type, it systematically answers by sending back a
response to the sender of m. When pi has received respons-
es from α processes it stops waiting and continues its local
computation. These first α responses are the winning re-
sponses for that query.

A query-response instance can be seen as a message ex-
change pattern initiated by a process and terminating when
that process has received responses from enough process-
es. More formally, a query-response satisfies the following
properties.

• QR-Validity. If a query message m is delivered by a
process, it has been sent by a process.

• QR-Uniformity. A query message m is delivered at
most once by a process.

• QR-Termination. If a process pi does not crash while
it is issuing a query, that query generates at least α
responses.

A “brute force” implementation of a query-response pat-
tern can be done by the initiator repeatedly flooding the sys-
tem with the query message until it has received α respons-
es. More efficient implementations can be envisaged (such
implementations can benefit from the techniques developed
to implement remote procedure call).

Persistent reliable broadcast The second communica-
tion abstraction provided by the model is the persisten-
t reliable broadcast primitives (that we have introduced in
[10]). It is made up of two communication primitives de-
noted prst broadcast() and prst deliver(). These prim-
itives assume that each message m has a type type(m)
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and a logical date ld(m) (4). When a process executes
prst broadcast(m) (resp., prst deliver()), we say that it
“broadcasts” (resp., “delivers”) m. The persistent reliable
broadcast communication abstraction is defined by the fol-
lowing properties:

• PRB-Validity. If a message m is delivered by a pro-
cess, it has been broadcast by a process.

• PRB-Uniformity. A message m is delivered at most
once by a process.

• PRB-Termination. If (1) the process that broadcasts a
message m with logical date ld does not crash while is-
suing the broadcast, or (2) m is delivered by a process,
then any process pj such as j ∈ STABLE eventually
delivers all the messages m′ (of the same type as m)
such that ld(m′) = ld(m), or a message m′ (of the
same type as m) such that ld(m′) > ld(m).

PRB-validity and PRB-uniformity are safety properties.
The first states that no spurious message is created, while
the second states that no message is duplicated. The last
property addresses the liveness of message deliveries. The
first item states that if a process does not crash during the
broadcast of a message, that message is not lost in the sense
that it is delivered by at least one process. Due to asyn-
chrony and the fact that processes can crash, or dynamical-
ly join/leave the system, it is not possible to require that all
the processes that are active when a message m is broad-
cast will deliver the message. Hence the rationale for the
second item that states that if a message is delivered by a
process, then all the processes that will remain permanently
in the system and neither leave it nor crash (i.e., the pro-
cesses defining the set denoted STABLE ), will deliver this
message or a message of the same type sent later.

Let us observe that in a static system where all the
messages have different types, the type notion disap-
pears and logical dates become useless, the primitives
prst broadcast() and prst deliver() then boil down to the
classical uniform reliable broadcast primitives defined in
[13].

An implementation of the persistent reliable broadcast
abstraction can be done according to the following lines.
When a process receives a message m, the process first
forwards m to all the other processes, and only then de-
livers the message to itself (the way message forwarding
is ensured depends on the underlying overlay network and
the associated routing [25, 18, 26, 28]). Moreover, a new
process that joins the system has first to broadcast (using
the underlying routing) an inquiry message to the process-
es currently present in the system. When a process receives

4A type is a tag that allows associating an appropriate processing with
each message. As defined by Lamport in [15], the logical dates, man-
aged by the application processes according to the problem they solve, are
monotonically increasing (see Section 4.1 for an example).

such a message, it sends back its state and, for each message
type, the logical date of the last message it has delivered.

3 Eventual Leader in a Dynamic System

As announced in the introduction, this section can to be
considered as a “proof by example”: to motivate the pre-
vious dynamic system model, we show how a protocol de-
signed for a static system can be extended to work in a dy-
namic system. This section also has a methodological fla-
vor: it shows that when one has to solve some problems
in a dynamic system, it is not always necessary to design a
new protocol from scratch, a simple adaptation of a proto-
col initially designed for the static model can provide a cor-
responding protocol for the dynamic model. According to
these observations, we consider here a non-trivial distribut-
ed computing problem, namely, the election of an eventual
leader. Leader election, in itself is an fundamental problem,
whose solution is important for solving many synchroniza-
tion problems. We expect that P2P systems will need to
address such problems as their domain of applications in-
creases.

3.1 Problem Definition

A leader oracle is a distributed entity that provides the
processes with a function leader() that returns a process
name each time it is invoked. A unique leader is eventu-
ally elected but there is no knowledge of when the leader
is elected. Several leaders can coexist during an arbitrar-
ily long period of time, and there is no way for the pro-
cesses to learn when this “anarchy” period is over. More-
over, (to be useful) the eventual unique leader p� is such that
� ∈ STABLE . The leader oracle (denoted Ω) satisfies the
following property:

• Eventual Leadership: There is a time t and a process
p� such that � ∈ STABLE , and, after t, every invoca-
tion of leader() by any process returns �.

This definition boils down to the the traditional definition
of eventual leader used in static systems when we replace
the set STABLE by the set of correct processes.

3.2 Eventual Leader in a Static System

Using a leader in a static system Several protocols suit-
ed to static systems are based on an eventual leader oracle.
Among them, Ω-based consensus algorithms are the most
known. Such protocols are described in [12, 16, 22]5 for

5The Paxos protocol [16] is leader-based and considers a more general
model where processes can crash and recover, and links are fair lossy. (Its
first version dates back to 1989, i.e., before the Ω formalism was intro-
duced.)
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systems where a majority of processes are correct (f <
n/2). Such consensus algorithms can then be used as a
subroutine to implement atomic broadcast protocols (e.g.,
[4, 16]). (When we consider the failure detector-based ap-
proach to solve consensus [4, 24], it has also been shown
that an eventual leader facility is the weakest failure detec-
tor that can be used to solve that problem in static systems
where f < n/2 [5].)

Electing a leader in a static system Unfortunately there
is no protocol to elect an eventual leader in a static asyn-
chronous system made up of n processes among which up
to t can crash. Intuitively, this comes from the impossibility
to solve the consensus problem in such systems [8]6.

The impossibility to elect an eventual leader in a fully
asynchronous system has motivated researchers to find ad-
ditional assumptions that, when satisfied by the underlying
asynchronous static system, allow implementing an eventu-
al leader. Two such approaches have been investigated.

• One approach consists of enriching the system model
with eventual synchrony assumptions on process speed
and message delays [2, 17]. Basically, the protocols
based on such an assumption ensure that, if eventually
the system behaves synchronously, an eventual leader
can be elected.

• Another approach consists of enriching the system
with an assumption on the message exchange pat-
tern [21]. Basically, it is possible to design a query-
response based protocol such that, if the messages gen-
erated by the query-response invocations eventually
satisfy some pattern, then an eventual leader can be
elected. This is the approach we consider here.

3.3 Eventual Leader in a Dynamic System

The additional assumption for a static system Let us
consider a process pi that issues a sequence of queries (pi

starts a new query only when the previous one is terminat-
ed, i.e., it has received the n − f responses that complete
the previous query). Let us call winning a response that
arrives among the n − f responses pi is waiting for. Let
winningi(t) be the identities of the processes from which
pi has received a winning response to its last query termi-
nated before or at t.

The additional assumption (that we call MPstatic) in-
vestigated in [23] to design an eventual leader protocol in a
static system is the following:

6This is because an eventual leader oracle is the weakest failure detector
that allows designing consensus protocols. A direct proof (i.e., a proof
that is not based on the consensus impossibility) for the impossibility of
implementing a leader can be found in [23].

There are a time t, a correct process p� and a set
Q (t, p� and Q are not known in advance) such
that, ∀t′ ≥ t, we have7

1. |Q| = f + 1, and

2. � ∈ (⋂
j∈Q∩up(t′) winningj(t′)

)
.

The intuition that underlies this property is the following.
Even if the system never behaves synchronously during a
long enough period, it is possible that its behavior has some
“regularity” that can be exploited to determine an eventual
leader. This regularity can be seen as some “logical syn-
chrony” (as opposed to “physical” synchrony). More pre-
cisely, MPstatic states that, eventually, there is a cluster Q
of (f + 1) processes (item 1) such that each of them (until
it possibly crashes) receive winning responses from p� to
all its queries (item 2). This can be interpreted as follows:
among the n processes, there is a process that has (f + 1)
“favorite neighbors” with which it communicates faster than
with the other processes.

The underlying idea exploited in the eventual leader pro-
tocol introduced in [23] for static systems is the following.

• First, the set Q of f + 1 processes always includes at
least one correct process. We can then conclude that if,
each time it issues a query, a process waits for respons-
es from n − f processes, it always receives a message
from at least one process of Q.

• Due to the additional assumption MPstatic, there is a
time after which the non-crashed processes of Q never
“suspect” the process p� (because they always receive
a winning response from it). So, if processes use a
gossiping mechanism to exchange the identities of the
processes they do not suspect, after some time no pro-
cess will suspect p�.

• Finally, each process elects as a leader the process with
the smallest identity among the processes it does not
suspect.

Translating the additional assumption to a dynamic sys-
tem As indicated, the protocol for the static model is
based on the fact that any set of f + 1 processes always
includes at least one correct process, and any set of n − f
processes always intersect any set of f + 1 processes. So,
f + 1 and n − f are critical values for the static protocol.

Let us consider a process pi that issues a sequence of
queries (pi starts a new query only when it has received α
responses to the previous one). As before, we say that a
response is winning if it arrives among the α responses pi

7In the static model, up(t′) denotes the set of processes that have not
crashed at time t′. The static model (without process recovery) is char-
acterized by the following monotonicity property t1 < t2 ⇒ up(t2) ⊆
up(t1). This property is is no longer satisfied in a dynamic system.
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is waiting for. winningi(t) has exactly the same meaning:
it is the set of the identities of processes from which pi has
received a winning response to its last query terminated at
or before t. The static additional assumption MPstatic can
be translated as follows for a dynamic system. This new
formulation is denoted MPdyn.

There are a time t, a process p� such that � ∈
STABLE , and a set Q of processes (t, p� and Q
are not known in advance) such that, ∀t′ ≥ t, we
have

1. Q ⊆ up(t′), and

2. � ∈ ( ∩j∈Q winningj(t′)
)
, and

3. ∀x ∈ up(t′) : Q ∩ winningx(t′) 	= ∅.

The items 1 and 2 correspond to the items of the static mod-
el: they state that there is a set Q of processes that (after
some time) never “suspect” the same process p� (because
they always receive winning responses from it). The last
item states that, after t′, it is possible for each process to get
information from at least one process in Q. It correspond
to the implicit item of the static model saying that any set
of f + 1 processes intersect any set of n − f processes.
These three items constitute a translation of MPstatic that
works in a dynamic system. The next section shows how an
MPstatic-based protocol can be modified to get an MPdyn-
based protocol.

4 A Leader Protocol for a Dynamic System

Two MPstatic-based eventual leader protocols are de-
scribed in [23]. The first uses an array with one entry per
process. Clearly, due to this array structure, this protocol is
not suited to the dynamic model. So, we consider the sec-
ond of these protocols whose basic data structure is a set
of process identities. In the following � denotes the whole
universe of possible processes (e.g., 128-bit identifier space
for peers in Chord [26]). Moreover, � ∩ A = A (where A
is any set of processes).

4.1 Description of the Protocol

The protocol is described in Figure 1. With respect to
the static protocol [23] that it extends, the lines that are new
or modified are prefixed by a “�” in Figure 1. This protocol
is made up of 4 tasks. The aim is for each process pi to
maintain a set of process identities, denoted trusti, such
that eventually all these sets have the same value, thereby
allowing each process pi to elect the same process from its
set trusti. This is role of the task T 4.

The task T 1 is the core task in which each process initi-
ates sequential queries and waits for the corresponding re-
sponses. The task T 2 implements the response mechanism

associated with the queries: when pi receives a query, it
sends back a response carrying a value (line 7). The task
T 3 describes the processing of a message sent by a persis-
tent broadcast invocation.

In addition to the set trusti, a process pi manages two
additional local data structures, namely, a set rec fromi

and an integer log datei. rec fromi contains the identities
of the α processes that sent winning responses to the last
query issued by pi (line 5). log datei is a logical date
defining the “age” of set trusti (line 8). The time during
which log datei keeps the same value is called an “epoch”.

More explicitly, each process pi repeatedly issues a
query and waits for α responses8. This allows it to com-
pute the last value of the set rec fromi. The response
from pj carries the last value of rec fromj . Hence, from
the rec fromj sets it has received, pi determines the set
of processes it currently trusts (line 4). To inform the
other processes of its new trusti set, the process pi us-
es gossiping: it invokes the persistent reliable broadcast to
disseminate the new pair defining its current state, name-
ly, (trusti, log datei) (line 6). The type of a message
TRUST(trust, log date) is TRUST and its logical date is the
value of log date.

When pi receives a message TRUST(trustj , log datej)
sent by pj with the persistent reliable broadcast primi-
tive, it updates trusti according to the respective value of
log datej and log datei. If they are equal, pi considers
their intersection as the new value of the set of processes
it trusts (line 8). If its current knowledge is too old (i.e.,
log datei < log datej), it adopts the values received (line
9). Otherwise, it discards the message received. If, after
these updates, its set trusti is empty, pi starts a new “e-
poch” by increasing log datei and resetting trusti to its
initial value (line 10). The age of this new epoch is the
new value of log datei. Note that during an “epoch”, a set
trusti can only remain constant or decrease.

The proof will show that there is an epoch with a finite
age after which the protocol “stabilizes”, i.e., the log datei

values no longer increase and the sets trusti of the process-
es currently in the system are (and remain) non-empty and
equal. They actually converge to a subset of the STABLE
set. The process in these trusti sets with the smallest iden-
tity is then elected as the unique leader.

4.2 Proof of the Protocol

The proof has the same structure as the proof of the static
protocol. It differs from it in the way it takes into account
the new assumption associated with a dynamic system. It

8The duration between two consecutive executions of the “repeat” s-
tatement is arbitrary. Its activation has to seen seen as being event-based
and not timeout-based.
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� init: rec fromi ← �; log datei ← 0; trusti ← �;

task T1:
repeat

� (1) issue query QUERY(i);
� (2) wait until

�
corresponding RESPONSE(rec from) received from α processes

�
;

(3) let REC FROM i = ∪ of all the rec fromk received at line 2;
(4) trusti ← trusti ∩ REC FROM i;
(5) rec fromi ← the set of processes from which pi received a RESPONSE at line 2;

� (6) if (trusti modified at line 4) then prst broadcast TRUST(trusti, log datei) endif
end repeat

� task T2: when QUERY(j) is delivered:
� (7) send RESPONSE(rec fromi) to pj

task T3: when TRUST(trustj, log datej) is delivered:
(8) if log datej = log datei then trusti ← trusti ∩ trustj end if;
(9) if log datej > log datei then trusti ← trustj ; log datei ← log datej end if;
(10) if trusti = ∅ then trusti ← �; log datei ← log datei + 1 end if

task T4: when leader() is invoked by the upper layer:
� (11) if trusti = ∅ ∨ trusti = � then return (i)

(12) else return (min(trusti))
(13) end if

Figure 1. An eventual leader protocol for a dynamic system (code for process pi)

addresses the “worst case” scenario where a leader can only
be elected when the eventual progress assumption (defined
by the set STABLE ) becomes satisfied. From a practical
point of view, it is important to notice that the protocol has
runs where an eventual leader is elected before that assump-
tion becomes satisfied.

Preliminaries We use the following notation in the proof:
xi(t) denotes the value of the local variable x of pi a time t.

The model assumes that there eventually exists a set
STABLE of processes that, after having entered the sys-
tem, neither crash nor leave. In the following, we say that
a process pi is stable if i ∈ STABLE . Let us remark that
the set STABLE is not empty (the progress condition states
that |STABLE | ≥ α > 0). Moreover, due to the finite ar-
rival assumption, there exists a time, say τ0, such that, after
τ0, no more processes join the system. Consequently, there
is a time τ ≥ τ0 such that (1) every process that belongs to
the STABLE set has entered the system before τ and, (2)
every process that does not belong to the STABLE set has
left or crashed before τ . For our purpose, namely, to prove
that there is a time after which a stable process is elected as
a common leader, we consider the time instants t such that
t ≥ τ .

Let us notice that, as a query invocation generates at
least α RESPONSE messages (QR-Termination property)
and due to the existence of the STABLE set (which size is
at least α), no process can be blocked forever in the wait
statement at line 2.

Lemma 1 There is a time t and a stable process p� (i.e.,
� ∈ STABLE ) such that every REC FROM set computed

(at line 3) after t is such that � ∈ REC FROM .

Proof Given an execution that satisfies the MPdyn assump-
tion, there is a time t0 after which there is a a stable set Q
and a stable process p� such that t ≥ t0 ∧ i ∈ Q ⇒ � ∈
rec fromi(t). Moreover, due to the intersecting property of
the MPdyn assumption, a process pj that starts a query (at
line 1) after t0 obtains (if pj does not crash while the query
is on progress) a winning response from at least one process
pi such that i ∈ Q (i.e., rec fromj ∩ Q 	= ∅). More, the
rec from set carried by the RESPONSE message from pi is
such that � ∈ rec from (this is because the query considered
starts after t0). It follows from the way REC FROM is
computed (line 3) that � ∈ REC FROM j . This discussion
implies that for every stable process pj , there exists a time
tj after which � continuously belongs to REC FROM j (tj
is the time at which pj computes its REC FROM set and,
that immediately follows the first query invocation issued
by pj started after t0)

Let t1 = max(t0, τ), where τ is the time defined in the
preliminary (i.e., ∀t ≥ τ : up(t) = STABLE ). More,
let t2 ≥ t1 be the first time after which every process in
up(t1) has started and terminated a query. More precisely,
t2 = max{tj : j ∈ up(t1)}. As, after tj , � continuously
belongs to REC FROM j , taking t = t2 proves the lemma.

�Lemma 1

Lemma 2 ∃M, ∃t such that, ∀i, ∀t′ ≥ t : i ∈ up(t′) ⇒
log datei(t

′) = M .

Proof Let us define τ ′(≥ τ) as a time after which no mes-
sage that has been broadcast (at line 6) before τ (the time
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defined in the preliminaries) is delivered by any stable pro-
cess. Such a time exists due to the PRB-Termination prop-
erty. Moreover, let t0 = max(τ ′, t) where t is the time
defined in Lemma 1. Notice that ∃� ∈ STABLE such that
any REC FROM set computed after t0 contains �.

Let m log date be the maximum logical date among
the stable processes at time t0. Moreover, let say “the
set trusted is associated with the logical date ld” when
there is a stable process pi and a time t ≥ t0 such that
log datei(t) = ld and trust i(t) = trusted . Let us remark
that several sets can be associated with the same logical date
ld .
Claim C. Let us assume that ∅ is associated with
m log date. There is then (1) a process pj that exe-
cutes the reset statement at line 10, after which we have
(trustj , log datej) = (�,m log date + 1). Moreover, (2)
log datej(t) = m log date + 1 ⇒ � ∈ trustj(�).
Proof of the claim. Let us first observe that (Observation
O1) a set trust i can only decrease while log datei remains
equal to m log date , (Observation O2) there is no gap in
logical dates (which means that if a logical date variable is
equal to m, then there are logical date variables that had
previously the values 0, 1, . . . , m − 1), and (Observation
O3) the update by a process pj of its log datej variable to
the value m log date + 1 (at line 9 or 10) is always due to
the fact that some stable process pk (which is possibly pj it-
self) executed log datek ← log datek +1 at line 10 (where
m log date is the value of log datek before the update; no-
tice that pk also sets trustk to �).

Let pi be a process that associates ∅ with m log date .
If the pair (trust i, log datei) remains equal to
(∅,m log date) until pi receives a TRUST message,
it executes line 10 and resets (trust i, log datei) to
(�,m log date + 1). The only other possibility for
that pair to be modified is at line 9, but in that case pi

received a logical date > m log date , and it follows from
the observations O2 and O3 that some process pj has
executed line 10 updating the pair (trustj , log datej) to
(�,m log date +1). This proves the first part of the claim.

The proof of the second part of the claim is by contradic-
tion. Let us assume that a process pi is such that � /∈ trust i

and log datei = m log date + 1 at time ti. Let us observe
that (A) the logical date m log date + 1 is introduced in
the system at time t ≥ t0 and, (B) after t0, pi is always
such that � ∈ REC FROM i (Lemma 1). Consequently, pi

cannot remove � from its trust i set at line 4. This mean-
s that pi computes a trust i that does not contain � while
executing task T 3. As a process that executes the reset s-
tatement at line 10 sets its trusti to � (which contains �),
the only possibility for pi to be such that � /∈ trust i is to
receive a message TRUST (trusted ,m log date + 1) such
that � /∈ trusted from a process pi1. As we can apply exact-
ly the same reasoning to pi1, we conclude that it exists an

infinite chain of distinct processes pi0(= pi), pi1, pi2, . . .
that has broadcast a pair (trusted ,m log date + 1) such
that � /∈ trusted between times t0 and ti. As, due to the fi-
nite arrival model, only finitely many processes take finitely
many steps during any finite time interval, this is clearly im-
possible. End of the proof of the Claim C.

We show that M = m log date or M = m log date +
1. We consider two cases:

• Case 1. ∅ is never associated with m log date .
In that case, no stable process will ever execute the re-
set statement at line 10. It follows that no process pi

will increase its log datei variable. Due to the defini-
tion of m log date, there is a stable process pj such that
log datej(t0) = m log date . As a stable process does not
block while issuing a query, pj broadcast a TRUST mes-
sage that carries m log date . As no logical date ld >
m log date is ever generated, it follows from the PRB-
Termination property that every stable process receives a
message TRUST( ,m log date). Consequently, due to the
way a process updates it log date variable (lines 8 or 9),
it exists a time after which all processes pi are such that
log datei = m log date = M .

• Case 2. ∅ is associated with m log date . Due to the
second part of the Claim C, no process px can be such that
(trustx, log datex) = (∅,m log date + 1). Consequent-
ly no logical date > m log date + 1 can ever be gener-
ated (1). Moreover, due to the first part of the Claim C,
there is a stable process pj that executes the reset statemen-
t (at line 10), after which we have (trustj , log datej) =
(�,m log date + 1). If pj starts a query invocation with
its trust i = � then, trust i is modified at line 4 and
consequently pj broadcasts a TRUST message that carries
the logical date m log date + 1. If trustj is modified
before pj starts a query then, pj has received a TRUST

(trusted , ld) such that ld ≥ m log date + 1. As no log-
ical date > m log date + 1 can be generated, we have
ld = m log date+1 which means that a process has broad-
cast a TRUST message that carries m log date + 1. It fol-
lows then from (1) and the PRB-Termination property that
such a message is eventually delivered by all the stable pro-
cesses. Consequently, there is a time after which every pro-
cess pi is such that log datei = m log date + 1 = M .

�Lemma 2

Theorem 1 The protocol described in Figure 1 implements
a leader facility in a dynamic system.

Proof Given a run, let: PL = {x | ∃i ∈ STABLE :
after some time x remains continuously in trusti}.

We first show that MPdyn ⇒ PL 	= ∅. This is a conse-
quence of Lemma 2 (which relies on the MPdyn assump-
tion). More precisely, there is a time t after which every
process in the system has the same logical date M and this
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logical date does not increase, from which we conclude that
no set trust i becomes empty after t. Moreover, due to the
PRB-Termination property and as the sequence numbers
do not increase, any trusted set that is broadcast after t is
delivered by every stable process. This ensures that there is
a time t′ ≥ t after which all these sets are equal and do not
change their value (as they are then updated only by inter-
section). Finally, due to the very definition of PL, the trust i

sets are then equal to PL. It follows that PL is not empty.
We now show that PL ⊆ STABLE . This a direct con-

sequence of the query mechanism used to update trust sets.
Let px be a process such that x /∈ STABLE . Since px

crashes or leaves the system, there is a time after which
x does not appear any longer in any rec from set. Con-
sequently, there is a time after which every REC FROM
does not contain x. Therefore, there is a time after which the
REC FROM i sets contain only stable processes. More-
over, as the trusti sets are never reset to �, it follows that,
after that time, these trusti sets can contain only stable pro-
cesses.

Finally, the eventual leadership property follows from
the following observations: PL 	= ∅, PL ⊆ STABLE ,
and to the fact that, due to the gossiping mechanism (line
6 and task T 3), there is a time t after which we have
∀i : i ∈ STABLE ⇒ trusti = PL. �Theorem 1
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