Design issues in building a scalable network
simulation/emulation middleware

Zrinka Puljiz Miljenko Mikuc
University of Zagreb
Faculty of Electrical Engineering and Computing
Department of telecommunications
Email: zrinka.puljiz@fer.hr miljenko.mikuc @fer.hr

Abstract— Constant inventions in the field of distributed sys-
tems raise up the demands on network simulators. Resources
needed for simulation of thousands to millions of nodes can
be provided only by making simulators distributed. In the
design process of distributed systems scalability and transparency
present the key requirements. Some of the existing models for
distributed systems can be used to model both of this needs, for
example peer-to-peer architecture can model scalability, while
middleware can model the transparency. By identifying key
management issues in distributed simulation and by borrowing
these concepts from distributed systems, we describe a new
simulation layer that can be used by a variety of simulators.

I. INTRODUCTION

Current trends in distributed applications lead to an increas-
ingly scalable system with more complex structure. This brings
up the problem of valid simulation. Peer-to-peer systems like
[1] to be validly simulated require much more resources than a
standard client-server application. As the resources available
on only one machine are not enough, we seek the solution
in distributed simulation. However, the chosen distributed
simulator may not scale enough, or the researcher may not
have enough machines that he could dedicate to running the
simulation.

The available resources for network simulation increase
proportionally with the number of machines in the best case
scenario [2]. As resources owned by just one researcher
may not be enough, joining the private machines of more
researchers can increase the resources available in a more
efficient manner. This was recognized by some of the existing
large-scale simulators like Planetlab [3] and Emulab [4] where
the users of the distributed system contribute to the whole
system by dedicating machines and later on they can use the
available resources for their experiment.

Further on, the scalability of the distributed system, as well
as distributed network simulator, depends on the system archi-
tecture. Centralized solutions have a bottleneck. Decentralized
solutions on the other hand are more loosely coupled, having
more management issues, but at the same time they are easily
extendable and much more scalable and in long run they tend
to be self-organizing.

All network simulators face some common problems when
they are distributed. These common problems include resource
management, users management, experiment management and

traffic management. The lessons learned from the distributed
system evolution [5] can be applied to this specific case.
Some of the existing scalable architectures such as peer-to-
peer architecture can be used in the design of future network
simulators. In addition, network simulators can benefit from
a middleware layer that simplifies the view of the distributed
system. The middleware layer can be used to simplify the
development of distributed version of only one emulator, but
it is fully used when more emulators can reside on top of it.

This paper is mainly focused on two areas. We discuss
the problem of scalability of network simulators and as a
solution we propose a decentralized distributed system. We
also identify the common management issues in distributed
network simulation and propose a solution in the form of
middleware that would alow a rapid development of new
network simulators.

This paper is organized as follows: In Section II we describe
network simulators and classify them. Following, in Section
IIT we compare and contrast centralized distributed systems
to decentralized ones. Next, we describe middleware as an
additional layer of abstraction in Section IV. Our idea of mid-
dleware solution to the common distributed network simulator
tasks is presented in Section V. Finally, there is a conclusion
in Section VI

II. NETWORK SIMULATION

Network simulation is a broad term and has more than
one definition. We use the term of network simulation as a
system that is capable of representing real world communica-
tion networks in terms of connectivity (topology) as well as
communication (networking protocols and/or traffic).

Topology is a network model that consists of nodes and
the description of how the nodes are connected. Depending
on the type of the network simulator there can be only one
type of nodes or several types of nodes, specialized for cer-
tain purposes. The connectivity between nodes is commonly
described with links that connect one pair of nodes, which
also have some specific properties.

Most network simulators offer specific network protocols as
well as complete protocol suits to support the traffic generation
and capturing. For instance, TCP/IP protocol suite can be
found in most of the existing network simulators since it is
the most widespread protocol suit in use today.



Clinet

Simulation
machine

Simulation
machine

Clinet

Central element

Clinet

Simulation
machine

Fig. 1. Centralized distributed network simulator

Further on, we distinguish between two kinds of network
simulators, off-line simulators, or just simulators, and emula-
tors. The key difference is in the notion of the time. Emulators
use real time for processing while simulators use logical time.

Simulators use time stamps to provide correct sequence of
events disregarding the actual time that needs to pass between
two different events, while emulators use absolute or wall-
clock time for executing the events in correct order and they
do the processing in real-time. The simulation executed in off-
line simulators can be either faster or slower than in real-time
systems. In this category we can find network simulators such
as ns-2 [6], PADS [7] and GloMoSim [8].

Emulators process events in real time and are also called
real-time simulators. They are designed to highly resemble real
systems, so they need more resources than off-line simulators.
Usually they provide connectivity with real systems and can
use unchanged applications in the simulation. In this category
we can find emulators such as EMPOWER [9], Emulab [4],
ModelNet [10] and Planetlab [3].

When comparing network simulators with so called
testbeds, i.e. real networks used solely for experimentation in
closed conditions, the benefits form the simulation are prevail-
ing. These benefits are time and cost effective because they
include easier experiment manipulation and data acquisition
as well as less space and less equipment required.

As the network architecture evolves during the time, re-
quirements are made of the network simulators to be more
and more scalable, so even large networks can be simulated
[2]. Furthermore, there is emergent focus on various kinds
of distributed system models such as peer-to-peer systems or
publish-subscribe models that are more complex and resource
consuming.

III. CENTRALIZED VS. DECENTRALIZED

When developing a new distributed system of any kind,
the first question we ask ourselves is how will we manage
the system. There are two main solutions - systems can be
centralized or decentralized. We analyze the existing network
simulators, and based on the architecture used, we place them
into a centralized or decentralized category. But we must be
aware that some of the systems like ModelNet [10] or PADS

e

e

4 \ P
\\

Servers

Fig. 2. Peer-to-peer servers architecture in decentralized network simulator

[7] require a manual setup of the distribution model and do
not fall in any of the following categories.

A. Centralized architecture in network simulators

Centralized architecture has a central element that presents
the bottleneck of the system. However, centralized architec-
tures are more widely used since they offer easier management
and more controllable systems. The synchronization between
elements is straight-forward, since there is one arbiter that has
the view of the whole system and he makes all the decisions
about the system. Centralized architecture is presented in
figure 1.

Netbed [11] is an integrated environment for simulation and
emulation. Real network elements are intermingled with the
simulated ones, each in charge of a different network portion.
In the core of Netbed is a cluster system allowing time-shared
and space-shared experimentations. Netbed architecture [11]
contains a central element called masterhost that takes care of
the web interface as well as database and SNMP management.
Netbed evolved into Emulab [4], still relying on the centralized
architecture.

NTCUns simulator [12] is capable of simulating wired and
wireless networks. It has an open architecture and is easily
extendable. The architecture of NTCUns has a dispatcher as
a centralized element. This dispatcher is the critical element
of the system, and must remain alive all time to manage the
running simulations. All the communication between users and
simulation machines goes through the dispatcher.

B. Decentralized architectures in network simulation

Most of today’s attention in the design on distributed
systems is focused in the field of decentralized architectures.
The scalability problem with centralized architectures puts the
limit on the size of the system that can still function with
benefits. In centralized architectures the central element always
presents the bottleneck of the system. Decentralized systems
try to work a way around this limit and have a scalability that
largely extends the scalability of centralized architectures.

In [5] we find the description of a decentralized network
emulator based on IMUNES [13]. This system provides an
integrated environment for TCP/IP networks. The described



Applications, services

C ]

|

Operating system Operating system

Hardware Hardware
Platform A Platform B
Fig. 3. Middleware

system, although it has no central element, is still not scalable
enough because the architecture requires all the simulation
machines to keep the information about all the experiments.

Multiple server architecture is known in the literature [14]
as the hybrid model between client-server systems and peer-
to-peer systems. One of the possible realizations of this
architecture is when servers are connected in peer-to-peer
manner. Peer-to-peer architecture of servers presented in Fig-
ure 2 shows one of the possible decentralized architectures.
There is no central element, all of the servers are equal
among themselves and there are ways of adding new peers or
removing the existent ones without the need for a global lock
of the system. The systems like chord [1] or pastry [15] present
some of the implementations of peer-to-peer architectures. In
those systems algorithms were developed for adding new and
locating the existing information.

Decentralized systems offer a lot of benefits mainly in the
area of building scalable and cost effective systems. However,
they are also much more complicated to manage and in
practice they are harder to design. Once a good decentralized
system is designed, we want to reuse it as often as we can.

IV. MIDDLEWARE

Middleware is a software layer used in distributed systems
that masks the underlying differences between system parts
making them transparent to the upper layer programmers.
The abstraction level implemented in middleware allows the
programmer to interact with the distributed system using tools
like remote procedure call or remote event notification. These
tools simplify management of the distributed system providing
a uniform view of a heterogeneous system. The position of
middleware in the context of layers is presented in figure 3.

Remote procedure call (RPC) is one of the oldest distributed
system concepts. RPC function is to provide a transparency
for the system by masking the fact that procedures called
are implemented remotely. On the side of the client (calls
the remote procedure) there must be a part implemented to
recognize that the procedure is implemented remotely and on
the part of the server there must be a way to get the arguments
right from the client. By implementing support for RPC, we
can use different programming languages on the client and the

server, as long as the conversion takes place when passing the
arguments as well as results.

Emergence of event-driven programming caused the devel-
opment of new distributed event-notification systems. One of
those is the publish-subscribe system. The publish-subscribe
system provides the transparency by masking the fact that
the event that is triggering an action has happened remotely.
There is a side that publishes new information and all of
the machines subscribe to get certain type of information.
The publish-subscribe structure also allows constant inflow of
the information into the system, and the propagating of new
information to the interested sides.

A specific type of middleware created to transparently
provide access to shared resources on a very large scale is
called grid. A grid is a collection of loosely coupled machines
that cooperate together without fully trusting each other.

V. DISTRIBUTED NETWORK SIMULATION MIDDLEWARE

Based on the experience gathered in the development of
a distributed network simulator [5], we were able to identify
key management problems in distributed simulation/emulation.
We could deal with these problems one by one, providing an
innovative solution to each one one of them, or having a sys-
tem that does this annoying task for us. Having a middleware
level of abstraction that would take care of all the questions
concerning similar management problems, would speed up the
process of distributing a network simulator. This middleware
could also provide a common platform through which different
network simulators could be able to communicate.

The management problems that we can identify through
many different network simulators are:

e Resource management

o User management

o Experiment management
o Traffic management

Resource management provides for scalable and transparent
usage of resources. Scalability means that new machines are
easily added to the system and that addition of new machines
will result in more resources available. Transparent usage of
resources means that all of the resources of the machines in
the system will be available in a uniform way. For meeting
the scalability machines form a decentralized architecture. The
architecture used takes care of addition of new machines that
present new resources to the distributed system, as well as
removal of machines from the system and failure management
if one of the machines fails. To achieve the transparency we
propose a naming scheme used for addressing the resources,
i.e. machines, that is independent of their physical location.
These issues are addressed in similar fashion in peer-to-peer
systems, so we propose usage of peer-to-peer systems for
resource management.

User management takes care of all the users that are avail-
able. This includes the tasks of authorization, authentication
and propagation of rights of existing users. The authentication
mechanism can be by login and password or better still with
a key authentication. Propagation of rights starts as an event



triggered by the user that notifies the system that there is a
user that needs more resources. If there is a machine willing to
accept this user, the user rights are propagated to that machine
and user gains access to more resources. Furthermore, the user
management also takes care of new users, using the same
kind of events to gather the resources for new user. The user
information is kept in more than one location, more precisely
it is kept on each machine the user has access to. After a user
account is closed, another notification process takes place to
remove all the user information and processes from the system.
This event driven behavior resembles the publish-subscribe
systems, and by using this existing model we can provide this
functionality more easily.

Experiment management presents another important issue,
since we have to track the experiments and to keep the in-
formation about them available through a simple, but efficient
mechanism. Experiments need to have a unique identifier so
that the information can be kept without interference between
different experiments. Each experiment can belong to only
one user. Creation of a new experiment is another event, and
upon the creation of a new experiment all of the machines
that provide access to the owner of the experiment should be
notified. This information about new experiment is kept on all
the machines that are available to the user that created this
experiment. New experiment name is bound to the machine
that he is communicating with instead of user that is creating
the experiment; this is done in order to circumvent the racing
conditions in case of a simultaneous creation of more than one
experiment. Here again we can see that the publish-subscribe
model can be used for experiment management as well.

In traffic management it is important to separate each traffic
flow, one from another. This is required since there might
be more than one experiment using the same addresses. We
are modeling the system to prevent that kind of situations.
For traffic management we must use some traffic separators.
Usage of tunneling (either TCP or UDP) introduces additional
delay in the system but at the same time it separates the
simulated/emulated traffic from the real Internet traffic as well
as separating one traffic flow from another. The format of the
traffic is simulator specific. Using tunnels removes the need for
global synchronization, and there are also no racing conditions
to be met.

By identifying all of these management issues and putting
them together in forming a unique middleware, we are creating
a platform on which any kind of network simulator can be
easily distributed and benefit from the services described here.
The architecture of the proposed system is presented in Figure
4.

VI. CONCLUSION

In this paper we describe the functions of resource, user,
experiment and traffic management in distributed network sim-
ulation. We compare and contrast centralized architecture to
the decentralized architecture of distributed systems. Based on
the better scalability performance of decentralized architecture
we describe the idea of creating a middleware system that

Network simulators

M

Traffic
Imanagement

User management

Experiment
management

Peer-to-peer Publish-subscribe Tunneling
Simulation middleware
Simulation Simulation Simulation Simulation Simulation
Machine Machine Machine Machine Machine

Fig. 4. Architecture of middleware for network simulation

would implement the common functionalities of network simu-
lators and create a support for rapid development of distributed
network simulators. The proposed middleware realization is
based on peer-to-peer architecture and a distributed event
notification functionality, or the publish-subscribe model.

To conclude, we present a way of creating new distributed
network simulators in a time-effective as well as cost-effective
manner.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the ACM SIGCOMM 01 Conference, San Diego,
California, August 2001.

[2] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F.
Riley, “Large-scale network simulation: How big? how fast?” mascots,
vol. 00, p. 116, 2003.

[3] M. Beck, T. Moore, and J. S. Plank, “An end-to-end approach to globally
scalable programmable networking,” in FDNA '03: Proceedings of the
ACM SIGCOMM workshop on Future directions in network architecture.
New York, NY, USA: ACM Press, 2003, pp. 328-339.

[4] S. Guruprasad, R. Ricci, and J. Lepreau, “Integrated network experimen-
tation using simulation and emulation,” in TRIDENTCOM ’05: Proceed-
ings of the First International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and COMmunities
(TRIDENTCOM’05). Washington, DC, USA: IEEE Computer Society,
2005, pp. 204-212.

[5] Z. Puljiz and M. Mikuc, “Distributed network emulator based on
imunes,” SoftCOM 2006, 2006.

[6] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances
in network simulation,” Computer, vol. 33, no. 5, pp. 59-67, 2000.

[7]1 S. Lee, J. Leaney, T. O’Neill, and M. Hunter, “Performance benchmark
of a parallel and distributed network simulator,” in PADS ’05: Proceed-
ings of the 19th Workshop on Principles of Advanced and Distributed
Simulation. Washington, DC, USA: IEEE Computer Society, 2005, pp.
101-108.

[8] L. Bajaj, M. Takai, R. Ahuja, R. Bagrodia, and M. Gerla, “Glomosim:
A scalable network simulation environment,” 1999.

[9] L. Ni and P. Zheng, “Empower: A network emulator for wireline and
wireless networks,” 2003.

[10] K. Yocum, K. Walsh, A. Vahdat, P. Mahadevan, D. Kostic, J. Chase, and
D. Becker, “Scalability and accuracy in a large-scale network emulator,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 28-28, 2002.

[11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 255-270, 2002.



