
Decentralized Local Failure Detection in Dynamic Distributed Systems

Nigamanth Sridhar
Electrical and Computer Engineering, Cleveland State University

2121 Euclid Ave, Cleveland OH 44115 USA
n.sridhar1@csuohio.edu

Abstract

A failure detector is an important building block when
constructing fault-tolerant distributed systems. In asyn-
chronous distributed systems, failed processes are often in-
distinguishable from slow processes. A failure detector is
an oracle that can intelligently suspect processes to have
failed. Different classes of failure detectors have been pro-
posed to solve different kinds of problems. Almost all of
this work is focussed on global failure detection, and more-
over, in systems that do not contain mobile nodes or include
dynamic topologies. In this paper, we present 3Pm

` — a lo-
cal failure detector that can tolerate mobility and topology
changes. This means that 3Pm

` can distinguish between
a failed process and a process that has moved away from
its original location. We also establish an upper bound on
the duration for which a process wrongly suspects a node
that has moved away from its neighborhood. We support
our theoretical results with experimental findings from an
implementation of this algorithm for sensor networks.

1 Introduction

Failure detectors are important building blocks for con-
structing fault-tolerant distributed systems. Introduced first
by Chandra and Toueg in [5] as a way of overcoming the
“FLP result” [13], failure detectors have evolved over the
years to be used in a variety of different ways to solve
various problems in distributed systems. In order to solve
problems such as consensus, atomic broadcast, etc., each
process needs to determine if every other process in the
entire network is alive. The failure detectors presented
in [1, 3, 16, 17, 25] are all focused on this problem. These
failure detectors solve the problem of global failure detec-
tion. The location of a node p does not impact whether other
processes in the network are interested in p’s health or not.
Regardless of where p is in the network, all other processes
need to accurately determine if p has failed.

Motivating Example. However, there are applications
that require only local failure detection—the health of only
those nodes in the immediate neighborhood are of interest.
Failure locality is a metric that measures the impact of a
fault in a single node on the rest of a distributed system.
Failure locality is measured in the number of hops from the
failed node. For example, if a fault in a node affects nodes
that are n hops from it (its n-neighborhood), the failure lo-
cality of the algorithm is n.

Failure locality has been studied in the context of din-
ing philosophers algorithms. In purely asynchronous dis-
tributed systems, the optimal failure locality that can be
achieved by any dining philosophers algorithm for resource
allocation is two [7]. This optimal locality is not satisfying,
however, because the number of nodes affected by a failed
node is exponential in the max degree of the graph.

In [22], an algorithm using a 3P failure detector is pre-
sented that transforms the underlying dining philosophers
algorithm to failure locality 1. The basic idea is that if a
node detects a failure in its immediate neighborhood, it then
sacrifices its own local progress in the interest of global
progress of the entire network. In this transformation, the
function of the failure detector module is strictly restricted
to the local neighborhood of each process. If a link between
two processes p and q failed, perhaps due to q moving out of
the transmission range of p, the failure detector at p should
no longer keep track of q.

Why is this such a big deal? What is the problem with
p continuing to suspect q? The reason is that if p suspects
q to be failed, it is going to sacrifice local progress. How-
ever, in reality, q is still alive, but is no longer p’s neighbor.
The correct way of dealing with this, is for p to distinguish
between the process q failing, and the link between p and q
failing. Consider Figure 1. In both cases, the nodes inside
the circle are in each other’s neighborhood. In the picture on
the left side, node e has failed, and nodes c, d, and g recog-
nize this failure using the 3P failure detector and sacrifice
their claim to the resource, thereby allowing nodes a and b
to make progress. In the case on the right side of Figure 1,
there is no failure. Node e has simply moved out of range

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

d

g

c

e

a

b
d

g

c

ea

b

Live Node Failed Node Starving Node

Figure 1: Nodes unable to distinguish failure from mobility

of c, d, and g. However, if the failure detector is based on
message passing, the detector may suspect e to have failed.
Accordingly, c, d, and g again go into the starve mode. This
case, however, is unnecessary (and wrong), and is caused
simply by virtue of the fact that the failure detector is not
able to distinguish between a failure and mobility.

Context and Contributions. One solution to this prob-
lem is to simply require global failure detection always.
In that case, regardless of whether e is within the 1-
neighborhood of d or not, d’s failure detector module will
learn that e is still alive, thereby allowing d to make progress
as in the normal failure-free case. However, for networks
with a large number of nodes, and limited resources avail-
able at each node, this is not practical. These constraints are
typical of wireless sensor networks [9, 18]. The goal in any
typical sensor network application is dense instrumentation
of the physical world (resulting in a large number of nodes).
Economies of scale mandate that the amount of memory re-
sources available to each node be minimal. Moreover, a
vast majority of sensor network applications are localized
computations [10], and should not be required to depend on
global knowledge. What we need is a way to store failure
information about local neighbors alone, but still be able to
detect mobility. This is our main contribution. We present
3Pm

` —an eventually perfect local failure detector that can
detect failures locally and distinguish mobility from failure.
We show that 3Pm

` is correct with respect to strong local
completeness and eventual strong local accuracy. We also
analyze the quality of service of 3Pm

` .

Paper organization. The rest of the paper is organized
as follows. Section 2 describes the system model, and in-
troduces the notation we use throughout the paper. In Sec-
tion 3, we present the design of our local failure detector
3Pm

` and prove that it meets the correctness specification
in systems with dynamic topologies. In Section 4, we an-
alyze the quality of service guarantees that 3Pm

` can pro-
vide. In Section 5, we discuss some of the tradeoffs and
performance characteristics of our design in the context of

an implementation for wireless sensor networks. After pre-
senting some related work in Section 6, we conclude with a
summary of our contributions in Section 7.

2 System Model

We consider the system to be comprised of a set Π of
nodes (processes). The processes are organized in a multi-
hop network. We use nbrsp to denote the set of neighbors
of a process p. Further, we use Np to denote the set of
processes that p thinks are its neighbors. The nodes in the
system form a communication graph G = (V,E) where
V = Π, and E is represents the set of communication links
in among nodes in Π. The topology of the graph is dynamic.
We denote the diameter of G as δ.

Each node in the network has its own clock, and there is
no global clock in the system. However, for analysis pur-
poses alone, we use a global clock T . We do not assume
clock synchronization in the system. Processes communi-
cate with each other by sending messages. Messages may
not always be delivered, and may get lost with a probability
of pml. The average message transmission delay is τm.

Nodes in the network may be mobile. They may move
around, and in so doing, may move in and out of the neigh-
borhood of other nodes. The model of mobility we consider
is passive mobility—the node that is moving does not know
that it is moving. Hence, it cannot notify anyone of its mo-
bility. Also, the nodes move slowly. A node fails by stop-
ping to function—the node stops sending messages to its
neighbors. When a node u leaves the neighborhood of an-
other node v, v is not able to distinguish this situation from
a situation where u has failed.

The time that the local failure detector module takes to
detect that one of its neighbors has failed is TD. We use tdp

to denote the time at which a process p is suspected to have
failed. This is a local timestamp. We use now to denote the
current local timestamp at any process. Note that the value
of now at two different processes p and q may be different
at the same global time. tsp is the amount of time that has
elapsed since process p was last suspected. Thus at any
time, tsp = now−tdp. We assume that although there is no
global clock, each process uses the same time unit. Further,
we useWT u,v to denote the amount of time process v waits
between communications from u before suspecting u.

We use CORRECT to refer to the set of all correct pro-
cesses in the system, and CRASHED to refer to the set of all
crashed processes in the system. For a given process p, Sp

refers to the set of processes that the failure detector module
at p currently suspects to have failed. We say that a process
p is in a good state (alive) if Sp is empty, and is in a bad
state (starving) if it suspects at least one of its neighbors to
have failed. In general, a process can make local progress
only if it is in a good state.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

3 The Design of 3Pm
`

3Pm
` must meet the following specification:

Strong Local Completeness: there is a time after which
every process p that crashes is permanently suspected by
every correct neighboring process q. Formally:

∃tGST ∈ T ,∀p ∈ CRASHED, ∀q ∈ CORRECT,

∀t ≥ tGST : p ∈ nbrsq ⇒ p ∈ Sq

Eventual Strong Local Accuracy: there is a time after
which correct processes are not suspected by any correct
process in the neighborhood. Each process corrects its view
of who its neighbors are periodically. Formally:

∃tGST ∈ T ,∀t ≥ tGST ,∀p, q ∈ CORRECT :
p ∈ nbrsq ⇒ p /∈ Sq ∧

∀q ∈ CORRECT : 2¬2(nbrsq 6= Nq)

Suspicion Locality: there is a time after which correct
processes only suspect processes that are in the local neigh-
borhood. Formally:

∃tGST ∈ T ,∀t ≥ tGST ,∀p, q ∈ CORRECT :
q ∈ Sp ⇒ q ∈ Np

Our implementation of 3Pm
` consists of two indepen-

dent layers. The first layer is the local failure detector that
builds a suspect list from among the neighbors of a given
node. We call this the Local Failure Detection Layer (LFD).
The second layer is the one that detects mobility of nodes
across the network. We call this the Mobility Detection
Layer (MD). Together, the two layers satisfy the above spec-
ification in mobile networks. We denote the composition of
the two layers as 3Pm

` = LFD ◦MD.

3.1 Local Failure Detection Layer

At each node p, the failure detector’s LFD layer keeps
track of which processes in nbrsp are suspected to be failed.
Moreover, it also keeps track of when each of these pro-
cesses were most recently suspected. We denote this time
as tdq for suspected process q. Note that this timestamp is a
local timestamp. This layer works like any other failure de-
tector does—at any point, the process can query its failure
detector module for the current list of suspects.

The LFD layer can be implemented using any of sev-
eral known 3P algorithms for failure detection. Depend-
ing upon the needs and constraints of a given application,
the designer may choose from one of several strategies for
building the suspect list from among a node’s neighbors.
This layer is not concerned with mobility of nodes. The
main concern of this layer is to satisfy the correctness spec-
ification as though there were a static topology. Some pop-
ular strategies are listed below:

Heartbeats [1]. Every node sends out an “I am alive”
message to every one of its neighbors. Every node also
maintains a list of its neighbors that have “checked in” by
way of an “I am alive” message. If a node p does not hear
from q for a specified period of time, p assumes that q has
failed, and therefore adds q to its suspect list. Supposing at
a later point in time p does receive q’s heartbeat message, p
realizes its mistake, and removes q from the suspect list.

Adaptive Timeouts [12]. Each node p maintains an
adaptive timeout for each neighboring process q. If p sus-
pects q wrongly after, say, timeWT q,p, and later hears from
q after delayq, then p updates the timeout period for q to be
long enough so that this mistake is not repeated. (The new
WT q,p is now at least WT q,p + delayq.) Each process
thereby keeps extending timeouts until such a time when
the timeouts are long enough to account for all forms of in-
cidental delays.

Pinging [16]. When a process queries its failure detector
module for the current suspect list, the failure detector sends
to each neighboring process an “Are you alive?” ping mes-
sage. If it receives a response in the form of an “I am alive”
message within a specified time, the neighbor is not added
to the suspect list, otherwise it is added. The message com-
plexity of this strategy is twice that of the heartbeat strategy,
except that the number of times the detection cycle has to
occur can be greatly reduced, thereby reducing the overall
message complexity.

Leases [4]. In applications in which nodes sleep for most
of the time (as with sensornets), none of the strategies listed
above make sense. In this context, the roles could be re-
versed. Each process p sends to each neighbor q an “I am
alive” message. In addition, p also sends to q a request for
a lease for some duration ldp. Now, p can go to sleep, and
all it has to do is wake up some time before ldp expires,
and send a request for lease renewal to all of its neighbors.
This is the strategy we use in this paper to implement local
failure detection .

3.1.1 Implementing LFD

The LFD layer can use any implementation FD of a correct
local failure detector. The only requirement that the MD
layer imposes on LFD in addition is that when processes are
added to the suspect list, they also be time-stamped. Sup-
posing the particular implementation that is available does
not time-stamp suspects, this needs to be added to the FD
implementation. This transformation is a monotonic addi-
tion of functionality—it does not modify FD. A simple
version of this transformation is presented in Figure 2.

Lemma 1. The transformation TimeStamp preserves the
correctness of the underlying failure detector FD.

Proof. The transformation action does not update any of
the variables in FD. Further, it does not in any way influ-

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

Transformation TimeStampu

1: Sts
u := ∅

2: upon suspecting v do
3: Sts

u := Sts
u ∪ 〈v, now〉

end

Figure 2: Transformation to time-stamp suspects

ence the decisions that FD makes in order to determine if a
neighbor should be suspected or not. Therefore, TimeStamp
is a correctness-preserving transformation of FD.

Lemma 2. The LFD layer does not influence the way the
underlying failure detector FD behaves.

Proof. The LFD layer is a wrapper that only augments the
suspect list with extra information about suspected neigh-
bors. There is no change to the existing actions that FD
takes. Therefore, the list of suspects that LFD outputs con-
tains exactly those processes that FD outputs.

3.2 Mobility Detection Layer

We now discuss the second layer of our 3Pm
` implemen-

tation. Every process u in Π executes this layer in order to
share its view of failed nodes with the rest of the network,
and to correct its suspect set based on what other nodes in
the network can see.

Figure 3 shows the implementation of one round in the
SuspectSharing component in the MD layer of 3Pm

` .
Every so often, some process u initiates a gossip diffusing
computation [8]. Note that there is only one active gossip in
the network at any given time. At the time of deployment,
some node is designated as the initiator. The initiator for
subsequent rounds is nominated at the end of each round,
as described later in this section. This is shown in lines 2—
7. The message that is sent out is a pair that comprises:

SG — a tuple containing (i) the set of suspects x that the
process u maintains, (ii) the duration (tsx) for which
each process has been suspected, (iii) the id of the pro-
cess that suspects x (u in this case), and (iv) the num-
ber of hops for which this process x has been in SG (0
initially), and

E — a set of exonerated processes (initially empty).

When an idle process u receives the gossip message from
some neighbor v (lines 8—25), u sets v to be its parent, and
transitions into the active state. It then examines the suspect
group that is contained in the message (SG). It compares the
incoming suspect set with its own (Su) to see if there are any
conflicting entries. If SG contains any process x that is in

u

w

v

Su = {v}

v ∈ SG

v /∈ SG
v ∈ E

(a) u suspects v, who is now a neighbor of w

u

w

v

Su = ∅
v /∈ Nu

(b) u no longer suspects v, who has been exonerated
by w

Figure 4: v is exonerated and u is restored to good state

u’s neighborhood, but is not in Su, then u looks at how long
the process has been suspected1. Based on this, the fail-
ure detector module at u decides whether x should remain
in SG or not. If the time elapsed since the last communi-
cation2 u received from x is smaller than tsx and WT x,u,
then u exonerates x. This process x is removed from SG
and placed in E (lines 12—15). This situation can occur
when x has moved from the neighborhood of the suspector
σ into the neighborhood of u, and is shown in Figure 4.

In the figure, the solid line represents direct neighbor-
hood, while the dashed line represents a multi-hop path. So
v and w are neighbors, while there is a path from u to w in
the graph. Figure 4a shows u in a bad state, since it suspects
v. This means that at some point in the past (and after the
last round of gossip finished), u and v were neighbors. Af-
ter v moved away, u being unable to distinguish that from
v’s failure begins to suspect v. When w sees that u suspects
v to be failed, it exonerates v because it knows v to still be
alive. When the message diffuses back to u, it can transition
back to a good state after removing v from Su.

Further, if the suspector process σ is not u’s neighbor,
the distance from the suspector (dσ) is incremented by 1
(line 17). If x is in Su, the entry for x in SG is updated with
u’s information — u is the “most recent suspector”.

Once u has updated its local suspect set based on SG, it
adds the processes in (the newly updated) Su to SG. For
each suspect, the duration for which it has been suspected
along with u’s own identity are also added (lines 18—19).

1Note that the suspect group only carries around the duration for which
a process has been suspected. Therefore it is not required that all nodes in
the network be synchronized, as long as all nodes use the same time unit.

2This can be obtained from the LFD layer.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

Program SuspectSharingu

1: initially stateu = idle ∧ parentu = u ∧ Cu = ∅

2: if initiator then {* initiator starts gossip *}
3: stateu := active
4: SG := {x : x ∈ Su : 〈x, tsx, u, 0〉} {* Prepare suspect group *}
5: E := ∅
6: Cu := Nu − Su

7: send 〈SG, E〉 to all w :: w ∈ Nu {* Send gossip message to all neighbors *}

8: upon (receive 〈SG, E〉 from v) and (stateu = idle) do
9: parentu := v

10: stateu := active
11: for each 〈x, tsx, σ, dσ〉 ∈ SG do
12: if (x ∈ Nu) ∧ (x /∈ Su) then {* Some other process suspects a live neighbor *}
13: if (now − lhfx < tsx) then {* x is alive *}
14: SG := SG − 〈x, tsx, σ, dσ〉 {* Remove x from suspect group *}
15: E := E ∪ {x} {* Exonerate x *}
16: if x ∈ Su then σ := u; dσ := 0
17: else if σ /∈ Nu then dσ := dσ + 1 {* Update distance from suspector *}
18: for each 〈x, tdx〉 ∈ Su do
19: if x /∈ SG ∧ x /∈ E then SG := SG ∪ 〈x, tsx, u, 0〉 {* Add local suspects to suspect group *}
20: if (Nu − {parentu}) 6= ∅ then
21: Cu := {w :: w ∈ Nu ∧ w /∈ Su ∧ w 6= parentu}
22: send 〈SG, E〉 to all w :: w ∈ Cu ∨ w ∈ Su {* Propagate gossip *}
23: else {* Leaf node, so respond to parent immediately *}
24: stateu := complete
25: if ¬initiator then send 〈SG, E〉 to parentu

26: upon (receive 〈SG, E〉 from v) and (stateu = active) do
27: if v ∈ Cu then Cu := Cu − {v}
28: for each x ∈ E do
29: if x ∈ Su then
30: Su := Su − {x} {* Remove exonerated nodes from suspect list*}
31: Nu := Nu − {x} {* x is not a neighbor *}
32: for each 〈x, tsx, σ, dσ〉 ∈ SG do
33: if (x ∈ Nu) ∧ (u 6= σ) ∧ (dσ > 2) then {* x is suspected more than 2 hops away *}
34: Nu := Nu − {x} {* x is not a neighbor *}
35: if x ∈ Su then Su := Su − {x} {* x is not a suspect *}
36: Cu = {x :: x ∈ Cu ∧ x /∈ Su} {* Update set of live neighbors yet to respond *}
37: if Cu = ∅ ∧ ¬initiator then {* Heard back from all live neighbors; respond to parent *}
38: stateu := complete
39: send 〈SG, E〉 to parentu

Figure 3: Algorithm for sharing suspect information in the MD layer executing at every process u

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

w

v

v ∈ SG
v /∈ SG

v ∈ Sw

Figure 5: w adds v, which it suspects, to SG before propa-
gating SG

This situation is shown in Figure 5.
The diffusing computation eventually reaches the edge

of the communication graph. When a node receives the gos-
sip message, but does not have any other neighbors to send
it to, it sends the updated gossip message back to the neigh-
bor from whence it received the message (its parent in the
current round of gossip) as shown in line 25. Once again,
each node updates its suspect set with respect to SG and
E contained in the message. Once a node has heard back
from all of its children (for that round of gossip), it sends
the updated gossip message to its parent. Note that each
node only waits for responses from correct neighbors. The
round of gossip ends when the process that initiated it has
heard from its immediate neighborhood. So at the end of
each round of gossip, each node has an updated view of its
local neighborhood and who is alive, and who isn’t.

The growing phase of the gossip is used to exonerate
processes—a process w lower in the gossip propagation tree
exonerates a process v that is suspected by one of its an-
cestors u. Then, during the shrinking phase, u corrects its
suspect list and its neighbor list to remove v (as shown in
Figure 4). However, even if v has not been exonerated, u
would still need to remove v from its neighbor list. Other-
wise, LFDu will continue to suspect v, and u will remain in
the bad state unable to make local progress even if all of its
other neighbors are alive. Consider Figure 6. u considers v
to be its neighbor, but since the last time v communicated
with u, it has moved away. Suppose that v entered some
other node w’s neighborhood, and then failed. w now sus-
pects u, and if the SG that it receives in the gossip message
does not contain v, it adds it. In the shrinking phase, when
u sees that v is being suspected by a different process (per-
haps for a time that is shorter than WT v,u, which is why
LFDu may not suspect v yet), u realizes that v is no longer
its neighbor. So even though v may have actually crashed, u
can remove v fromNu, thereby preventing LFDu from ever
suspecting v and putting u in a bad state.

When the initiator completes a round of gossip, it nomi-

u

w

v
v ∈ SG

v /∈ SG

v ∈ Sw

dσ ≥ 2 ∧ σ = w
v ∈ Nu

(a) u does not suspect v yet, but w does

u

w

v

v ∈ Sw

v /∈ Nu

(b) u has realized v is not a neighbor anymore, and so
will not suspect v

Figure 6: Process u discovers that although v is crashed, v
is no longer a neighbor, and hence u can stay in good state

nates one of its correct neighbors to initiate the next round.

3.3 Correctness of 3Pm
`

We begin our proof of correctness of 3Pm
` with some

preliminary lemmas.

Lemma 3. The LFD layer satisfies strong local complete-
ness and eventual strong local accuracy.

Proof. The LFD layer is essentially any known 3P failure
detection algorithm. [19] presents correct local failure de-
tection algorithms. The only modification that LFD makes
is to add TimeStamp. According to Lemma 1, TimeStamp
is a correctness-preserving transformation. Therefore, as
long as FD satisfies strong local completeness and even-
tual strong local accuracy, so does LFD.

Lemma 4. The MD layer terminates.

Proof. At its core, the MD layer includes an implementa-
tion of gossip. The only messages that are exchanged in
the MD layer are messages that diffuse the gossip message
through the network. The gossip algorithm itself does not
depend on the actual content of the message being diffused.
We refer the reader to [8, 23] for a proof that the diffus-
ing computation terminates. Given that the mechanism for
diffusing the messages terminates, and since the MD layer
does not (i) generate any new messages of its own, nor does
it (ii) destroy any messages that distribute the gossip, we
can conclude that the MD layer terminates. Moreover, the
termination of gossip is not thwarted by failed or suspected

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

processes. Each node only waits to hear from its correct
neighbors before transitioning to the complete state.

What happens when messages are lost? The proofs
above assume reliable channels. If messages may be lost,
then gossip will not terminate. However, if a particular
round of gossip does not terminate, then the same initia-
tor starts the next round of gossip. This does not affect the
correctness of the failure detector; only the time to correct
mistakes is increased. More details are in Section 4.

The algorithm presented in this paper (Figure 3) has been
simplified to assume that gossip always terminates. In real-
ity, the algorithm needs to account for message losses. If a
node u does not hear from one of its children v, but knows
that v is not a suspect, then u sends a repeat gossip message.
The re-transmissions are purely an artifact of improving the
quality of service, and do not affect the correctness of the
algorithm. In order to further improve QoS, other strate-
gies [14] can be used to make gossip more efficient.

Lemma 5. The composition LFD ◦MD satisfies strong lo-
cal completeness in systems with mobile nodes.

Proof. In order for us to prove this statement, we need to
show that for all processes u:

L5.1. MDu does not remove any crashed neighbors from Su.

L5.2. all crashed processes in Nu are in Su, and

There are only two places in MDu where a process x is
removed from the suspect set Su (Line 30 and line 35). The
first is when the process u finds out that a process x that is
suspected to have failed, has been exonerated by some other
process. This means that x was originally in the neighbor-
hood of u, and then later moved away into the neighborhood
of some other process w. In this case, it is safe to remove x
from the suspect set Su since x should not have been added
to Su in the first place. Further, since u has now learned
that x is no longer its neighbor, x is also removed fromNu.
This guarantees that the same mistake of LFDu adding x
back into Su will not be repeated.

In order to see the other situation, consider a scenario
where a process q communicates that it is alive to u. It
then moves away from u’s neighborhood to a different part
of the network, and introduces itself to some other process
w. Following this, w suspects q based on its local detec-
tion rules. In the meantime, u also suspects q (since it has
not heard from q for longer than WT q,u). Now, if u re-
ceives a message with SG containing the failed process q,
and moreover, if the process σ that suspects q is at least two
hops away from u, then u can conclude that q is no longer
in its neighborhood. Further, it can remove q from Su since
q is no longer a neighbor. Again, no crashed neighbors are
removed from Su by MDu. Thus, L5.1. is satisfied.

If the implementation that is being used for LFDu is one
in which each process has a different set of timeouts for
each of its neighbors3, then it could so happen that a process
x that is in the neighborhood of u is not in Su but is in SG.
What this means is that q has failed, but u has not detected
this failure as yet. Consider the following scenario.

The process q communicates with u at some time t1. Im-
mediately after this, q moves away from u, and enters the
neighborhood of some other process w, and initiates com-
munication with w at time t2. Suppose then that at time
t2 +WT q,w, w adds q to its suspect set Sw. At this point,
if the gossip message with SG comes along, w would add
q to SG. The message will then diffuse and at some later
point t3, arrive at u. Now, if t3 − t1 < WT q,u, u will still
not have added q to its own suspect set Su. However, u may
not have enough information to conclude either that q has
failed, or that q has moved away. This is because if w were
in the 1- or 2-neighborhood of u, then q may still be a valid
neighbor. So MDu in this case, does not do anything about
q. At time t1 +WT q,u, if u has still not heard from q, then
q would be added to Su by LFDu. If q is suspected by a
process more than two hops away (dσ ≥ 2), then q can be
removed from Nu. Thus, L5.2. is also satisfied.

Lemma 6. The composition LFD ◦ MD satisfies eventual
strong local accuracy in mobile systems.

Proof. In order for us to prove this statement, we have to
show the following are true for every process u:

L6.1. MDu does not add correct neighbors to Su, and

L6.2. MDu prevents LFDu from suspecting nodes that are no
longer in Nu.

We observe that since MDu does not include any actions
that add processes to Su, L6.1. is trivially true.

LFDu only adds processes to Su that are in the neighbor-
hood (in Nu) and that are suspected. Suppose that u sus-
pects a process x. Upon receiving the gossip message, say
that u finds x in E—the set of exonerated processes. This
means that although u originally placed x in SG, some other
process w in the system has moved x from SG to E . This
means that x is no longer in nbrsu, and must be removed
from Nu. Once x has been removed fromNu, it will not be
suspected by LFDu. Thus, L6.2. is satisfied.

Lemma 7. The MD layer ensures that (∀p, q ∈ Π :: q ∈
Np ∧ q /∈ nbrsp) is transient.

3An example of such an implementation is one that uses adaptive time-
outs. The amount of time that a process p spends waiting for two different
process q and r may be different. Moreover, the wait times for the same
process q may be different at two other processes x and y.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

Proof. Any node that is known not to be a neighbor of a
process p is removed from the neighbor list at the end of
each gossip round (lines 31 and 34). At the end of each
round of gossip the view that p has of who its neighbors are
is consistent with its real neighbor set (Np = nbrsp).

From Lemma 7, we can conclude the following, since
Np is corrected at the end of every round of gossip to be
consistent with nbrsp.

Corollary 8. The MD layer ensures that (∀p ∈ Π ::
2¬2(nbrsp 6= Np)).

Lemma 9. The MD layer ensures that (∀p, q ∈ Π :: q ∈
Sp ∧ q /∈ Np) is transient.

Proof. Any node that is known not to be a neighbor of a
process p is removed from the suspect list at the end of each
gossip round (lines 30 and 35 in Figure 3). Therefore at the
end of each round of gossip the suspect set is corrected to
include only neighboring nodes that are suspects.

Theorem 10. 3Pm
` is a correct eventually perfect local

failure detector for mobile systems.

Proof. Follows from Lemmas 5, 6, and 9 and Cor. 8.

4 Analyzing the Quality of Service of 3Pm
`

Thus far, we have presented the design of our 3Pm
` lo-

cal failure detector, and established that it meets its spec-
ification of strong local completeness and eventual strong
local accuracy. In this section, we analyze the quality of
service (QoS) of 3Pm

` based on the QoS metrics for failure
detectors presented in [6].

In [6], Chen et al. define the following primary QoS
metrics for failure detectors:

Detection time (TD). This measures the speed of detection
of a failure detector.

Mistake recurrence time (TMR). This measures the time
between two consecutive mistakes.

Mistake duration (TM). This measures the time it takes a
failure detector to correct a mistake.

The detection time of 3Pm
` is a local measure, and is

completely driven by the choice of failure detector imple-
mentation for the LFD layer. Since we have already shown
that 3Pm

` does not influence the decision-making of the
LFD implementation about which neighbors have failed
(Lemma 2), there is no change in detection time either.

Theorem 11. 3Pm
` preserves the detection speed of the

underlying failure detector FD used in the LFD layer, i.e.,
TD(3Pm

`) = TD(FD).

Proof. The LFD and MD layers do not add any actions to
the underlying failure detectorFD that affect howFD adds
neighbors to the suspect set S. Therefore, the composition
LFD◦MD preserves the decision-making of FD. Thus, the
detection speed is preserved.

The accuracy metrics are more interesting in the case of
3Pm

` considering that the main contribution of 3Pm
` is its

ability to correct mistakes caused by mobility. The first ac-
curacy metric—TMR—is also a property of the underlying
failure detector in the LFD layer.

Theorem 12. 3Pm
` preserves the mistake recurrence time

of the underlying failure detectorFD used in the LFD layer,
i.e., TMR(3Pm

`) = TMR(FD).

Proof. This theorem holds for the same reasons that Theo-
rem 11 holds—FD is not modified. Recurrence of mistakes
made at the local level are the concern ofFD, and hence are
not affected by mobility detection. Therefore, the mistake
recurrence time is preserved by the composition.

The mistake duration of the failure detector is affected
by the mobility detection layer. In the absence mobility de-
tection, the mistake duration of a local failure detector FD
is ∞. If p moves out of the neighborhood of q, there is no
way for q to correct that mistake. However, the MD layer
improves this to some finite duration. In the following, ρg

is the gossip recurrence time—the duration of time between
two rounds of gossip in the MD layer. This will be a user-
supplied parameter, and is typically much smaller than av-
erage message rate, i.e., ρg � ρm, where ρm is the average
rate of application messages.

Theorem 13. The average mistake duration of 3Pm
` is

bounded above by ρg+2·δ·τm

1−pg
+ TD(FD).

Proof. Without loss of generality, let us suppose that the
process who wants to correct a mistake is the one that ini-
tiates the gossip computation to share suspect lists in the
system. For this process u to learn that some wrongly sus-
pected process v is alive in a different part of the system,
the entire gossip computation needs to terminate. Suppose
that the probability that a round of gossip terminates is pg .

The process w that can exonerate v could potentially be
at the other end of the graph (δ (diameter of graph) hops
away. In such a case, the message has to traverse the en-
tire graph twice (once during the growing phase and again
when shrinking). Given that τm is the average-case mes-
sage transmission delay at any hop, and the the average-case
termination duration for the gossip algorithm is 2 · δ · τm,
if there were no message loss. In the presence of message
losses, the time taken for the exoneration message to get
back to the initiator once gossip has been initiated is 2·δ·τm

1−pg
.

Further, the process may take up to TD(FD) to detect that
v is failed in its neighborhood.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

The fact that a node p has moved away from the neigh-
borhood of another node q can be detected in a single
round of gossip. In the worst case, p could move away
just when one round of gossip finishes, meaning that q will
have to wait until the next round of gossip terminates be-
fore it can realize its mistake in suspecting p. Therefore,
TM (3Pm

`) ≤ ρg+2·δ·τm

1−pg
+ TD(FD).

The mistake duration can be tuned to whatever level of
service the application needs by varying the value of ρg .
Increasing the rate of executing gossip in the MD layer has
the effect of reducing TM .

The 3Pm
` failure detector is based on message passing.

Therefore, another important measure of QoS is the extra
message complexity introduced by the failure detector.

Theorem 14. The message complexity of the 3Pm
` failure

detector is O(n · e) for each round of gossip, where n is the
number of nodes, and e is the number of edges.

Proof. During each round of gossip, the messages sent
around in the network form a spanning tree rooted at the
initiator node. The gossip message visits every node in the
network. Therefore, the additional message complexity in-
troduced by the 3Pm

` failure detector is O(n · e).

5 Discussion
We now take a brief look at the scalability of 3Pm

` in
real network deployments. First we note that 3Pm

` does
not increase the number of messages substantially beyond
a local failure detector, since the rate of gossip is low, and
there is only one gossip round active at any time.

Every time the MD layer initiates a round of gossip the
message that is diffused contains the list of all the processes
that are suspected to be failed. This could be a substantial
number. Depending on the target network scenario, an im-
plementation may impose bounds on how many failures it
can tolerate (as a percentage of all nodes in the network). A
key point is that if these suspected nodes are really crashed,
then they are never removed from the suspect list.

One approach to solving this problem could be em-
ploy a periodic clean-up protocol that can use some global
knowledge in sweeping through the system to remove these
crashed processes from the suspect lists at each correct
process. The rate at which this operation would be per-
formed (ρc) would be much smaller than the gossip rate,
i.e., ρc � ρg � ρm. Such rare reconfiguration is not un-
common in typical wireless network deployments, where
application may be re-tasked in situ. For example, in a wire-
less sensor network application of the sort described in [21],
the average message rate is on the order of once every sev-
eral minutes. If we wanted to account for mobility of nodes
in such an application, then we could configure ρg to per-
haps be once every several hours, and the clean-up could

execute once every month. A further optimization would
be to piggy-back the clean-up as part of any network-level
re-tasking operation.

As of now, the mobility detection layer assumes that the
communication graph remains connected. The algorithm
does not handle partitionable networks. This is a direction
for our future work. [2] and [11] present some techniques
for dealing with failure detection in partitionable systems.
We expect to try to adapt some of these techniques to 3Pm

` .
We have implemented the 3Pm

` failure detector as a
middleware service for wireless sensor networks. The ser-
vice has been implemented using nesC [15] for Berke-
ley motes running TinyOS [18]. While the full details of
this implementation, and complete experimental analysis
of the implementation are outside the scope of this paper,
we have sufficient proof-of-concept results from our exper-
iments that match our analytical predictions. We refer the
interested reader to [26] for more details.

6 Related Work

Research in the area of failure detectors started with
the work on unreliable failure detectors by Chandra and
Toueg [5]. In this work, the authors describe different
classes of failure detectors and define the correctness speci-
fication of detectors in terms of completeness and accuracy.
Since then, there has been a lot of research in various kinds
of implementations of failure detectors [1,3,16,17,25]. All
of this work has been focussed on global failure detection.

In [19], Hutle and Widder present two time-free self-
stabilizing algorithms for local failure detection. Their
results are presented in the context of sparse networks.
However, the algorithms apply equally well to dense net-
works. The first algorithm they propose requires unbounded
amount of space in each process, and the second algorithm
(the more realistic one) can do with bounded space if there
is a known upper bound on the number of messages in the
system. Their work, however, assumes a static topology,
and does not tolerate mobility of nodes.

The problem of failure detection in partitionable net-
works is relevant to our work on mobile networks. In [11],
Fetzer and Högstedt present a protocol for failure detection
in partitionable systems. They consider systems in which
a gateway node that connects a section of the network to
another section fails. Their work uses the concept of soft-
ware rejuvenation [20]—using a Rejuvenation Server to re-
juvenate a gateway server if it is detected to be failed. An-
other approach to failure detection in partitionable networks
is presented in [2], where Aguilera et al. use the heart-
beat failure detector [1] to solve consensus in partitionable
networks. Again, their work does not consider mobility of
nodes and mistakes caused by mobility.

The work that is closest to our work is the work by Temal
and Conan on disconnection detectors presented in [24].

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

They consider both voluntary and involuntary disconnec-
tion of nodes in a network. The focus of the work is on
achieving global failure detection; the algorithm is a way of
solving consensus in the presence of disconnections.

7 Conclusion
In this paper, we have presented a solution to the problem

of failure detection in the presence of mobility in distributed
systems. Most research on failure detectors so far has been
targeted at global failure detection—each process p keeps
track of the health of every other process q in the system.
However, in some deployment contexts, such as in wireless
sensor networks, global failure detection is too resource-
intensive, and is hence not practical. Although there has
been some research in local failure detection, all of this
work ignores mobility in systems. They all assume static
communication graphs.

In this paper, we have presented the design of an eventu-
ally perfect local failure detector that can tolerate mobility
of nodes, as long as such mobility does not partition the
network. We have shown that our detector is correct; it sat-
isfies strong local completeness and eventual strong local
accuracy. Moreover, the 3Pm

` detector only keeps infor-
mation about its immediate neighborhood, thereby reducing
the amount of memory needed (which is a scarce resource in
sensor nodes). We have conducted a few proof-of-concept
experiments to validate 3Pm

` and are now in the process of
further experimentation to fine-tune the systems aspects.

Acknowledgments. This work has been supported by a
grant from Ohio ICE. The author would like to thank Jason
Hallstrom and Hamza Zia for their help with this paper.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: A
timeout-free failure detector for quiescent reliable commu-
nication. In WDAG ’97, pages 126–140, London, UK, 1997.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Using the heart-
beat failure detector for quiescent reliable communication
and consensus in partitionable networks. Theor. Comput.
Sci., 220(1):3–30, 1999.

[3] C. Almeida and P. Verı́ssimo. Timing failure detection and
real-time group communication in real-time systems. In 8th
Euromicro Wksp. on Real-Time Systems, June 1996.

[4] R. Boichat, P. Dutta, and R. Guerraoui. Asynchronous leas-
ing. In 7th IEEE Intl. Wksp. on Object-Oriented Real-Time
Dependable Systems (WORDS ’02), pages 180–187, 2002.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE ToC, 51(1):13–32, 2002.

[7] M. Choy and A. K. Singh. Efficient fault tolerant algorithms
for resource allocation in distributed systems. In ACM Sym-
posium on Theory of Computing, pages 593–602, 1992.

[8] E. W. Dijkstra and C. S. Scholten. Termination detection
for diffusing computations. Information Processing Letters,
11(1):1–4, August 1980.

[9] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting
the physical world with pervasive networks. IEEE Pervasive
Computing, 1(1):59–69, 2002.

[10] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar.
Next century challenges: Scalable coordination in sensor
networks. In Proc. MOBICOM ’99, pages 263–270, 1999.

[11] C. Fetzer and K. Högstedt. Rejuvenation and failure de-
tection in partitionable systems. In PRDC ’01, page 154,
Washington, DC, USA, 2001. IEEE Comp. Soc.

[12] C. Fetzer, U. Schmid, and M. Susskraut. On the possibility
of consensus in asynchronous systems with finite average
response times. In ICDCS ’05, pages 271–280, 2005.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[14] B. Garbinato, F. Pedone, and R. Schmidt. An adaptive algo-
rithm for efficient message diffusion in unreliable environ-
ments. In DSN ’04, page 507. IEEE CS, 2004.

[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In PLDI ’03, pages 1–11, 2003.

[16] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scal-
able and efficient distributed failure detectors. In PODC ’01,
pages 170–179, New York, NY, USA, 2001.

[17] N. Hayashibara, A. Cherif, and T. Katayama. Failure detec-
tors for large-scale distributed systems. In SRDS’02, 2002.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. In ASPLOS-IX, pages 93–104. ACM Press, 2000.

[19] M. Hutle and J. Widder. Time free self-stabilizing local fail-
ure detection. Research Report 33/2004, TU Wien, Vienna,
Austria, 2004.

[20] N. Kolettis and N. D. Fulton. Software rejuvenation: Analy-
sis, module and applications. In FTCS ’95, page 381, Wash-
ington, DC, USA, 1995. IEEE Computer Society.

[21] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat moni-
toring. In WSNA ’02, pages 88–97, New York, NY, USA,
2002.

[22] S. M. Pike and P. A. Sivilotti. Dining philosophers with
crash locality 1. In ICDCS ’04, pages 22–29. IEEE, 2004.

[23] P. A. G. Sivilotti. Introduction to distributed systems. Lec-
ture Notes. Computer Science and Engineering, The Ohio
State University, 2004.

[24] L. Temal and D. Conan. Failure, connectivity and dis-
connection detectors. In UbiMob ’04: Proc. 1st French-
speaking conf. on Mobility and ubiquity computing, pages
90–97, New York, NY, USA, 2004. ACM Press.

[25] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. In Intl. Conf. on Distributed Sys-
tems Platforms and Open Distributed Processing, 1996.

[26] H. A. Zia, N. Sridhar, and S. Sastry. Abstractions for detect-
ing failures in wireless sensor-actuator networks. Techni-
cal report, Electrical and Computer Engineering, Cleveland
State University, 2006.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

