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The DREAM component-based framework lets developers build, statically or dynamically, a variety of 
message-oriented middleware. Experiments show favorable results using it, compared with 
nonconfigurable, functionally equivalent middleware. 

Asynchronous communication is one way we achieve scalability in applications made of loosely coupled autonomous components that 
communicate across large-scale networks.1 Several message-oriented middleware systems have been developed in the past 10 years.2,3 
Research has focused primarily on supporting nonfunctional properties such as message ordering, reliability, security, and scalability; 
configurability has received less emphasis. From the functional point of view, MOMs implement a fixed API that provides a fixed 
subset of asynchronous communication models (publish-subscribe, event-reaction, message queues, and so on). 

From the nonfunctional point of view, MOMs often provide the same nonfunctional properties for all message exchanges. This reduces 
their performance and makes them difficult or impossible to use with devices having limited computational resources. Because these 
nonfunctional properties haven't been developed as independent (removable) modules, removing them often requires the code to be 
totally reengineered. 

Modular, composable architectures can overcome these limitations. Work on configurable systems has led, in particular, to the 
development of component-based and reflective middleware.4 The idea is to build middleware as an assembly of interacting 
components, which we can statically or dynamically configure to meet different design requirements or environment constraints. 
Although in principle this approach applies to different forms of middleware, existing component-based middleware has mostly been 
used to implement synchronous communication paradigms and, with a few exceptions,5,6 have not dealt systematically with resource 
configurability. Modular architectures have also been proposed to build routers7 and communication subsystems.8 Their main 
limitation is their restricted component model, which supports static configuration but not hierarchical composition or control 
capability. These limitations make it hard to administer and configure systems during execution. (See the sidebar "Related Work in 
Communication Middleware" for information about related work.) 

DREAM (dynamic reflective asynchronous middleware) is a software framework for building asynchronous middleware from 
components, which you can assemble statically or dynamically (at deployment time or at runtime). DREAM 's component library and 
set of tools let you build, configure, and deploy middleware that implements various asynchronous communication paradigms, 
including message-passing, event-reaction, and publish-subscribe. We'll show how to use our framework to dynamically control 
resource consumption and concurrency. The performance of dynamically configurable MOMs built with the DREAM framework 
compares favorably to monolithic, functionally equivalent middleware. 

DREAM component architecture 

The component model in DREAM is an extension of Fractal, a Java-based component model. It builds on Fractal's generic component 
framework,9 which supports hierarchical and dynamic composition. Hierarchical composition supports system construction by 
assembling structured (hierarchical) sets of components. Dynamic composition provides the basis for dynamic reconfiguration, a useful 
feature for long-running systems. DREAM achieves dynamic composition through reflection mechanisms that enable system execution 
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to be monitored and controlled at the level of individual components. 

We distinguish two kinds of components: primitive components and composite components (which let you deal with a group of 
components as a whole). An original feature of the model is that you can include a given component in several other components. Such 
shared components are useful for modeling access to low-level system resources. 

DREAM components communicate through either server interfaces, which correspond to access points accepting incoming method 
calls, or client interfaces, which correspond to access points supporting outgoing method calls. Particular input and output interfaces 
allow components to exchange messages, which are always sent from outputs to inputs. In the push connection mode, an output 
initiates a message exchange; in the pull connection mode, an input initiates an exchange. 

Each component has two parts: a controller, which comprises interceptors as well as controllers, and content, which can be either a 
standard Java class in the case of a primitive component, or subcomponents in the case of a composite component. The controller can 
provide different levels of structural and behavioral reflection. For example, a component can provide 

l         a BindingController interface to allow binding and unbinding its client interfaces to server interfaces; 

l         a ContentController interface to list, add, and remove subcomponents in its contents; or 

l         a LifecycleController interface to enable control over its main behavioral phases in support of dynamic reconfiguration for 
example, to start and stop a component's execution. 

Figure 1 illustrates the various constructs in a typical DREAM component. The thick gray boxes denote the component's controller, and 
the boxes' interiors correspond to the component's content. The two shaded boxes represent a shared component. Arrows correspond to 
bindings, and the T-like structures protruding from the boxes are interfaces. Blue triangles represent input and output interfaces. 
Interfaces appearing on the top of a component represent controller interfaces such as a binding controller or a content controller. 

Figure 1. Architecture of a DREAM component. 

The DREAM library 

The DREAM library contains abstractions and components for resource management as well as functional components that is, the 
components that implement the functions and behaviors that are embedded in asynchronous middleware. 

Abstractions and components for resource management

The DREAM library defines abstractions and provides components for managing resources that is, messages and activities. These 
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components allow fine-grained control over consumed resources, a required feature for building scalable MOMs. 

Message management. DREAM messages are Java objects that encapsulate named chunks. Each chunk implements an interface that 
defines its type. For example, messages that need to be causally ordered have a chunk implementing the Causal interface. This interface 
defines methods to get and set a matrix clock. A message can also encapsulate other messages and is identified by an interface called 
Message, which lets you access, add, or remove chunks and encapsulated messages.

Shared components, called message managers, enable DREAM components to create, duplicate, or delete messages, thus managing the 
memory resources in a MOM. By implementing pools of messages, the memory managers avoid unnecessary object creation and allow 
resource management policies to be implemented. For that purpose, all the methods defined in the MessageManager interface have a 
parameter (called consumer) that specifies the component calling the method. Message managers can use this parameter, for instance, 
to control the number of messages created for the different components. 

Activity management. A DREAM component can either be passive or active. Active components define tasks to be executed, such as 
calls to other component interfaces; passive components don't. (Active components must implement the TaskController interface, 
which allows third parties to access the component's tasks.) For a task to be executed, it must be registered to one of the dedicated 
shared components, called activity managers, that encapsulate tasks and schedulers.

Schedulers are components that map higher-level tasks (to which its Execute client interface is bound) onto lower-level tasks (that are 
bound to its Schedule server interface). The number of scheduler levels is not limited. The DREAM framework currently provides 
various schedulers, including round-robin, FIFO (first-in, first-out), and periodic. 

Tasks are components with an Execute server interface (defining an execute method) and a Schedule client interface. We distinguish 
three kinds of tasks: 

l         Highest-level tasks are registered by the MOM's components and contain functional code. 
l         Lowest-level tasks wrap Java threads.
l         Interscheduling (IS) tasks are created by schedulers, to be scheduled by lower-level schedulers.

Figure 2 depicts an example of activity management. Components A and B have registered three tasks that are scheduled by two 
hierarchically organized schedulers. This produces the following result: the periodic scheduler periodically executes the IS and B tasks. 
Executing the IS Task triggers the sequential execution of tasks A1 and A2 (using the FIFO Scheduler). Note that the Periodic 
Scheduler is executed by two lower-level tasks that wrap threads. 

Figure 2. Activity management.
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Functional components

The DREAM library's core components encapsulate functions and behaviors that are commonly found in asynchronous middleware. 
The library also contains specific components developed for particular middleware for instance, components implementing event-
reaction processing. (For space limitations, we do not present these components here.) 

Message queues are used to store messages. Queues differ by the way messages are sorted (FIFO, LIFO, causal order, and so on) and 
by their behavior when capacity is exceeded (such as blocking versus removing messages) or when the queue is empty. 

Transformers have one input and one output. They transform every message received on the input and deliver it to the output interface. 
One rule governs this transformation: a transformer must preserve the message's identity that is, it can't change the Message interface 
that uniquely identifies the message. As a consequence, transformers can't deliver newly created messages. On the other hand, 
transformers can change the message's content: it may encapsulate new chunks and new submessages. 

Pumps have one pull input and one push output. Their role is to pull messages from the input and then push them to the output. 

Routers have one input and several outputs (also called "routes"); they forward messages received on their input to one or several 
routes. The routing process might involve message transformations (for example, to remove or manipulate routing information). 

Duplicators have one input and several outputs. They duplicate messages received on their input to all their outputs. 

Aggregators have one or several inputs to receive the messages to be aggregated, and one output to which to deliver the aggregated 
message. 

Deaggregators reverse aggregators' behavior that is, they take an aggregated message and generate appropriate individual messages 
from it. 

Channels allow message exchanges between different address spaces. Channels are distributed composite components that encapsulate 
at least two components: a Channel Out, which sends messages to another address space, and a Channel In, which receives messages 
sent by the Channel Out. 

DREAM tools 

The DREAM framework currently provides two tools:

l         A deployment tool uses a description of the component configuration, expressed in an Architecture Description Language, to 
proceed to its distributed deployment and configuration. This tool resembles other ADL-based deployment tools.10 

l         A type-checking tool defines a type system for DREAM messages that lets you check that a component configuration is 
correct that is, that each component of the configuration will receive messages containing chunks with appropriate types. 

Why a type-checking tool?

DREAM components can

l         exchange messages, 
l         modify messages (for example, adding or removing a chunk), and 
l         behave differently according to the messages' content (for example, routing a message). 

In the current implementation of the DREAM framework, every message has as its type the Message Java interface, independent of its 
contents. As a consequence, certain assemblages of DREAM components type-check and compile correctly but lead to one of three 
runtime failures. A chunk either 

l         is absent when it should be present (for example, for a read, remove, or update), 
l         is present when it should be absent (for example, for an add), or 
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l         doesn't have the expected type (for example, for a read). 

Figure 3a gives an example of an incorrect configuration: component ReadTS expects messages with a TS chunk, whereas component 
AddTS expects messages without the TS chunk. Because both ReadTS and AddTS receive exactly the same messages (duplicated by 
the Duplicator component), one of them will fail. The typing annotations are clearly insufficient. 

Figure 3. An example configuration (a) using the default type system and (b) using the newly defined type system.

Checking DREAM configurations

A polymorphic type system enables us to specify DREAM components' more common behaviors. It guarantees that, if components 
conform individually to their type, the composed system will not fail with any of the runtime errors we identified earlier. 

The type system is an adaptation of existing work on type systems for extensible records. A record is a finite set of associations 
between names and values, also called fields. Elsewhere,11,12 Didier Rémy describes an ML language extension that supports all the 
common operations on records in particular, adding or removing fields and concatenating records. He then defines a static type 
system that guarantees that the resulting programs will not produce runtime errors, such as accessing a missing field. DREAM 
messages can be considered records, in which each chunk corresponds to a field of the record, and DREAM components can be 
considered polymorphic functions. Polymorphism is necessary because you can then use the same component in different contexts with 
different types. 

Message types. We type messages as extensible records. Informally, a message type consists of a list of pairwise distinct names 
together with the type of the corresponding chunk, or a special tag if the message doesn't contain a given name. It also specifies the 
content of the (infinitely many) remaining names. Here are four examples of message types: 

IEEE Distributed Systems Online  September 2005 
5



A message m of type 1 contains exactly two chunks named a and b and linked to chunks of type CausalChunk and IPChunk, respectively. (We'll 

discuss the pre constructor later.) M doesn't contain any other name, as specified by the abs tag. You can construct richer types using type variables. In type 

2, X represents an arbitrary type. Informally, a message of type 2 must contain a name a, but 2 doesn't specify the associated chunk's type. 

Similarly, in 3, Y is a field variable. It can be either abs, or pre(X) where X is a type variable. Hence, the pre constructor lets us impose a given field, 

even if its type is unspecified. Finally, in 4, Z is a row variable that represents either abs or any list of associations. 

Component types. Besides traditional interfaces, DREAM components have input and output interfaces that let them exchange messages. Each input or 
output is characterized by its name and the type of messages it can carry. A component's type is a polymorphic function type relating outputs to inputs. Here 
are some example components and component types: 

The Duplicator component has a polymorphic type. Its input and outputs can be used with any type X. It duplicates the messages it receives on its input to all 
its outputs. The Adda component adds a new IPChunk with name a to the messages it receives on its input i. Note that these messages do not contain a chunk 

with name a. The Removea component removes the chunk named a if it's present. 

Example

Figure 3b depicts the same configuration as in figure 3a, using the type system we just defined. The configuration will be well typed if and only if we can 
solve these equations: 

{X} = {tsChunk : pre(TS) ; Y} 
{X} = {tsChunk : abs;Z} 

These equations don't have any solution, so the system is not well typed.

Evaluation

We experimented with and evaluated the DREAM framework by implementing the JORAM (Java open reliable asynchronous messaging) MOM.13 JORAM 
is a JMS-compliant (Java Message Service) open source middleware. It comprises two parts: the ScalAgent MOM14 and a software layer on top to support the 
JMS API.13 The ScalAgent MOM provides a distributed programming model based on autonomous software entities called agents that behave according to 
an "event  reaction" model. The ScalAgent MOM comprises a set of agent servers (see figure 4), each of which contains three entities: 

l         The Engine component creates and executes agents and ensures their persistency and atomic reaction. 

l         The Conduit component routes messages from the Engine to the Networks. 

l         The Network components ensure reliable message delivery and causal order between servers. 
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Figure 4. Two interconnected ScalAgent MOMs.

Implementing JORAM using DREAM

We implemented the ScalAgent MOM using DREAM (see figure 5). We preserved its main structures (Networks, Engine, and Conduit) to facilitate our 
functional comparison between the ScalAgent MOM and its DREAM reimplementation. The Engine has two main components: the Atomicity Protocol 
composite, which ensures the atomic execution of agents, and the Repository composite, which is in charge of creating and executing agents. 

Figure 5. Architecture of an agent server.

Figure 5 shows two typical Networks. Both are composite components encapsulating a Channel In, a Channel Out, and a Destination Resolver component. 
Destination Resolver is a transformer component that adds the information required by the Channel Out component (IP address and port number). The 
Network 1 composite contains two more components: the Causal Sorter causally orders messages, and the message queue decouples the workflows of the 
Engine and the Network. We implemented the Conduit component using a router. 
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Configurability assessment

A first benefit of the DREAM implementation comes from the ability to easily change nonfunctional properties. For instance, removing causal ordering or 
removing the atomic protocol ensuring transactional execution of agents is straightforward. Both modifications only require a modification of the ADL 
description, or they can be applied at runtime. On the other hand, removing these properties from the ScalAgent MOM requires modifying and recompiling its 
source code. 

Another benefit is that changing the number of active components encapsulated in the agent server is easy. The architecture presented in figure 6 involves 
three active components for an agent server with one Network. We can obtain a monothreaded architecture by removing the message queues encapsulated 
within the Engine and the Network. The only remaining active component is the Channel In component that listens on a socket. 

Finally, DREAM enables us to build MOMs for embedded devices. We developed an agent server for mobile equipment with limited resources. This kind of 
equipment presents two characteristics: it might be temporarily disconnected from the Network, and it has limited storage capacity. Figure 6 shows how an 
agent server can be redesigned to take into account these characteristics. 

Figure 6. An agent server for mobile devices.

The agent server (on the left side of the figure) contains one composite. This composite is an Engine whose message queue has been replaced by a Channel In 
component and which encapsulates a Channel Out component to send messages. Messages intended for the mobile device are stored on another device (on the 
right). This device hosts a component that acts as a proxy for the mobile device's Engine. It's plugged to a Conduit router (like a traditional Engine). It has two 
functions: 

l         It receives messages intended for the mobile device and stores them in the queue. The mobile device can then pull these messages. 

l         It forwards messages that the mobile device sends. 

This architecture preserves the MOM functionality while saving memory (the mobile-device part is monothreaded, messages are pulled instead of pushed, and 
it doesn't have the Causal Sorter and Destination Resolver components). Moreover, it lets the mobile device disconnect, because messages are remotely 
stored. 

Performance comparisons

We compared the efficiency of the same application running on the ScalAgent MOM and on its DREAM implementation. The application involves four agent 
servers, each hosting one agent. Agents in the application are organized in a virtual ring. One agent initiates rounds, each consisting of forwarding a message 
originated by the initiator around the ring. We did two series of tests: messages without payload and messages embedding a 1-Kbyte payload. The 
experiments ran on four 1.8-GHz, 1-Gbyte Bi-Xeon PCs connected by a Gigabit Ethernet adapter, running Linux kernel 2.4.20. 

Table 1 shows the average number of rounds per second and the memory footprint. We compared two implementations using DREAM with the ScalAgent 
implementation. 
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Table 1. Performance of the DREAM and ScalAgent implementations.

The first implementation using DREAM isn't dynamically reconfigurable. As you can see, the number of rounds per second is slightly better (approximately 
1.2 to 2 percent) than in the ScalAgent implementation. The small improvement comes from the message serialization, which is more efficient in DREAM . 
Concerning the memory footprint, the DREAM implementation requires 9 percent more memory, which can be explained by the runtime structure Fractal 
needs (approximately 70 Kbytes) and the fact that each component has several controller objects. This memory overhead isn't significant for a standard PC. 
The second implementation is dynamically reconfigurable; in particular, each composite component supports a lifecycle controller and a content controller. 
This implementation is slower than the ScalAgent one (approximately 2 to 2.2 percent) and only requires 7 Kbytes more than the nonreconfigurable DREAM 
implementation. Moreover, note that DREAM performances are proportionally better with 1-Kbyte messages than with empty ones. This happens because 
fewer messages are handled (more time is spent in message transmissions), thus limiting the impact of interceptors. 

Table 2 reports on experiments we did to assess the impact of the concurrency level on the ScalAgent MOM's performance. We compared three architectures 
built using DREAM that differ by the number of active components they involve. In the two-thread architecture, we removed the message queue encapsulated 
in the Network; in the monothreaded architecture, we removed both active message queues (Engine and Network). We found that reducing the number of 
active components improves the number of rounds (3 to 5 percent for the two-thread architecture, 7 to 12 percent for the monothreaded architecture). We 
explain this by the fact that agents are organized in a virtual ring, so each agent server processes only one message at a time. As a consequence, only one 
thread is necessary. 

Table 2. Impact of the concurrency level.
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Conclusion

Our implementations gained in flexibility and configurability without significant loss of performance. The high configurability of DREAM can yield 
significant performance improvements by adapting a middleware architecture to its environment and application load. In our future work, we plan to refine 
the DREAM component library and to further substantiate our claim that DREAM architectures can successfully span the publish-subscribe design space. 
We'll do this by implementing different forms of publish-subscribe systems and experimenting with different scalability trade-offs. We also plan to apply the 
DREAM framework to the construction of highly dynamic notification systems for large-scale distributed system monitoring and supervision. DREAM is 
freely available under a LesserGeneralPublicLicense at http://dream.objectweb.org. 
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Related Work in Communication Middleware

Several research areas relate to DREAM .

Reflective adaptable middleware

The past 10 years have seen a lot of activity related to building reflective middleware, as exemplified by the OpenORB,1 DynamicTAO,2 QuO,3 and Hadas4 
projects. DREAM (dynamic reflective asynchronous middleware differs in several main characteristics: 

l         DREAM is using and extending the Fractal component model, an original component model for Java. Unlike component models used in other 
reflective middleware, Fractal doesn't impose predifined reflective capabilities. On the contrary, it lets middleware developers design arbitrary 
metaobject protocols. 

l         DREAM and its component library target the construction of asynchronous middleware services. To our knowledge, other reflective middleware 
focuses on synchronous interactions. 

l         DREAM provides a set of tools that enable the configuration and deployment of asynchronous middleware built using the component library. In 
particular, DREAM provides a type-checking tool that defines a rich type system, enabling developers to detect incorrect architectures. 

l         DREAM provides resource management functions, in particular for activities. The only middleware we know of that has integrated such 
functionalities is OpenORB. Its activity model is similar to but less flexible than ours. QuO provides interesting means to enforce quality of service in 
an ORB. QuO's main contribution is the definition of languages that let QoS requirements be expressed. It enforces QoS mainly through interceptors, 
which developers could implement with Fractal interceptors. 

Communication subsystems

Researchers have also worked on component-based communication subsystems. Several frameworks have been designed: Click,5 Coyote/Cactus,6 
OSKit/Knit,7,8 and APPIA.9 The proposed component models are limited. They don't allow the dynamic manipulation of composite components, nor fully 
dynamic reconfiguration, available in Fractal. They provide mainly for static configuration. In contrast to DREAM , for instance, you can change the 
concurrency structure of a Click or Coyote protocol at runtime only if you've explicitly programmed it in the protocol implementation. 

Asynchronous middleware

Several MOMs have been developed in the past 10 years: Astrolabe,10 Gryphon,11 MSMQ,12 Siena,13 and SonicMQ.14 Research has primarily focused on 
supporting various nonfunctional properties, as exemplified by the work of Philippe Laumay and colleagues.15 MOM configurability has been less 
emphasized. The only work relating to constructing configurable MOMs we know of is the work discussing the reflective features of Gryphon, a content-
based asynchronous middleware.11 However, to our knowledge, these haven't been implemented and come short of providing the level of reconfigurability 
that DREAM provides. 
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