
Abstract

A distributed system is a collection of computers that

are connected via a communication network. Distributed

systems have become commonplace due to the wide

availability of low-cost, high performance computers and

network devices. However, the management infrastructure

often does not scale well when distributed systems get

very large. The considerations in building a distributed

system are the choice of the network topology and the

method used to construct the distributed system so as to

optimize the scalability and reliability of the system,

lower the cost of linking nodes together and minimize the

message delay in transmission, and simplify system

resource management.

We have developed a new distributed management system

that is able to handle the dynamic increase of system size,

detect and recover the unexpected failure of system

services, and manage system resources. The topologies

used in the system are the tree-structured network and the

ring-structured network.

1. Introduction

A distributed system is a collection of computers that

are connected via a communication network. Usually, in

large-scale distributed systems, it is much more difficult

to provide software that is fault-tolerant, reliable,

manageable and easy to use than in small-scale distributed

systems. In order to solve the problem of the lack of

software for the effective management and utilization of

computational resources, the U.S. Department of Energy

has established Scalable Systems Software Center [15].

The goals of the center are to develop an integrated suite

of machine independent, scalable systems software

components need for the Scientific Discovery through

Advanced Computing (SciDAC) [16] initiative and to

provide open source solutions that work for both small

and large-scale systems. Our work is part of the SciDAC

project.

We have designed and developed a distributed

management system. In this system, there are one master

node and hundreds or thousands of slave nodes. The master

node is the manager of the system. It is responsible for

computing optimal methods to construct and recover the

system. Each slave node is responsible for reporting its

working status and resource usage, detecting and reporting

its neighboring node’s failure, and dynamically adjusting

its position according the instruction from the master

node. We have tested the construction and recovery

performance, and the communication performance in the

tree-structured networks and the ring-structured network.

The rest of this paper is organized as follows: The

research background is presented in section 2. Section 3

describes the system components, including the different

node types and different connection types used in the

system. We discuss the system design and implementation

in section 4. In section 5, we present the test environment

and results. Finally, we conclude with a summary and

describe our future work in section 6.

2. Research background

2.1. Distributed systems

A distributed system is a system consisting of

computers that do not share a common memory or a

synchronized clock. The computers in a distributed system

are connected via a communications network. The

computers can access remote resources as well as local

resources in the distributed system. A computer accesses

remote resources via the communication network.

Generally, it is more expensive to access the remote

resources than to access the local resources because of the

communication delays and the CPU overhead to process

communication protocols [1]. Figure 1 shows the

Min Huang Brett Bode

min@scl.ameslab.gov brett@scl.ameslab.gov

Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames IA 50011

A Performance Comparison of Tree and Ring Topologies in Distributed
Systems

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

architecture of the distributed system.

Figure 1. Architecture of the distributed

system

The motivation behind the development of distributed

systems is the availability of the low-cost, high

performance computers and network devices. When a few

powerful computers are connected and communicate with

each other, the total computing power available can be

enormous. Such a system can have a higher

performance/price ration than a single supercomputer.

2.2. Communication networks in the distributed
system

We can use fully connected networks or partially

connected networks to construct a distributed system.

In a fully connected network, there are direct links

between all pairs of computers. The problem with such a

system is that adding new nodes to the system results in

the increase of each node’s degree, which results in

opening more file descriptors and more complexity for

each node to implement the connections. Thus the

scalability of such systems is limited by each node’s

capacity to open file descriptors and the ability to handle

the new connections.

In a partially connected network, direct links exist

between some, but not all, pairs of computers. Some of

the examples of partially connected networks are star-

structured networks, multi-access bus networks, ring-

structured networks, and tree-structured networks.

Some of the traditional distributed systems use a star

with temporary connections as their network topology.

The problems with such a system are that the central node

becomes the bottleneck and the establishment and

termination of the connections are a significant overhead

of the system.

In a multi-access bus network, all the nodes in the

system are connected to a single shared bus link. The bus

link becomes the system bottleneck.

The topologies used in our system are the tree-

structured network and the ring-structured network. We

tested the construction and recovery performance, and

communication performance in the system.

2.3. Definitions

Construction event: The construction event happens

when a new node wants to join the system. The new node

sends registration request to the master node and the

master node computes the position for the new node.

Recovery event: The recovery event happens when a

slave node fails. The neighboring nodes of the failed node

report the failure to the master node. The master node

computes a method to recovery the system structure.

2.4. Research motivation

Our research focuses on the design and implementation

of a distributed system that can handle the dynamic

increase of the system size and can detect and recover a

system failure automatically, simplify the management of

the system, and lower the communication delay and

system overhead. Our research aims to find an optimal

method to construct and recovery the tree-structured and

the ring-structured network and to minimize the data

transmission latency and network traffic.

3. System structure and components

3.1. The System Structure

As stated before, our work exams the construction and

recovery performance, and the communication performance

in the tree-structured network and the ring-structured

network.

Terminologies
Complete n-ary tree: A complete n-ary tree is a tree in

which all the nodes have at most n child nodes and all the

levels are full except for the bottom level and the bottom

level is filled from left to right [4]. We call the node with

the maximum ID in the tree the last node. Figure 2 shows

an example of a complete ternary (n=3) tree.

Ring: In a ring, all nodes are connected to one another

in the shape of a closed loop, so each node is connected

directly to two other nodes, one on either side of it [17].

In both the tree-structured network and the ring-

structured network, there are 2 types of nodes in the

CPU Cache

Memory

NIC PCI

Communication

Network

CPU Cache

Memory

NIC PCI

CPU Cache

Memory

NIC PCI

CPU Cache

Memory

NIC PCI

CPU Cache

Memory

NIC PCI

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

1

2
3

6 7 85 9 10 11 12 13

14 15 16 17 18

4

the last node

system, one master node and many slave nodes. In the

tree-structured network, the master node of the system is

the root of the tree. In the ring-structured network, the

master node of the system is the head of the ring.

Figure 2: An example of a complete ternary

tree

3.2. Node Responsibilities in the System

To provide reliable services to the end users, both the

master node and slave nodes are responsible for resource

management and system structure maintenance.

To monitor and manage the system status and the

system resources, the master node gathers the working

status and resource usage information of all slave nodes

and sends instructional messages to slave nodes

periodically. Each slave node is responsible for generating

messages to report its working status and resource usage.

These messages are called the resource management

messages. Each slave node is also responsible for

forwarding the messages from its parent node to its child

nodes and merging the resource management messages

from its child nodes and forwarding the merged message to

its parent node.

To maintain the system structure, the master node has

data storage to store the system structure and it is

responsible for keeping the data storage up-to-date. It is

also responsible for computing optimal methods to

construct and recover the distributed system and give slave

nodes instructions to maintain the given system structure.

Each slave node is responsible for its registration to be

added to the system, detecting and reporting it’s

neighboring node’s failure to the master node, and

dynamically adjusting its position in the system according

to the instructions from the master node.

3.3. Connections in the System

To manage the system resources and maintain the

system structure, there are two types of messages

transmitted along the network links, the resource

management messages and the system structure
maintenance messages. Since both of these messages

require reliable delivery services, TCP is used as the

transport protocol [5]. To transmit these two kinds of

messages, there are two types of connections in the

system: permanent connect ions and temporary
connections.

The permanent connections are used to transmit the

resource management messages. All nodes in the system

are connected to their neighboring nodes by permanent

connections. The reason we use the permanent

connections to transmit the resource management

messages is the overhead of TCP three-way handshake and

four-way termination. The resource management messages

are periodically exchanged between the neighboring nodes.

Once a connection is established between the neighboring

nodes, it is persistent. There is no need to establish a new

connection for each resource management message. Using

permanent connections to transmit the resource

management messages decreases the overhead of the

establishing and the closing of the network connection.

The temporary connections are used to maintain the

system structure. For both the construction and recovery

event, there is a group of system structure maintenance

messages transmitted between the master node and a slave

node. A temporary connection is for transmitting a given

group of messages. After the transmission of the given

group of messages, it is not necessary for the temporary

connection to exist. Using temporary connections to

transfer the system structure maintenance messages can

release the load burden of the master node.

4. System design and implementation

4.1. System Design

Figure 3. Software modules

As discussed in section 3, the system consists of a

master node and up to hundreds of slave nodes. Nodes in

the system have to communicate with others to

accomplish the system goals. The messages transmitted in

start master node

XML document process module

start a slave node

network communication module

parse XML document methodsbuild XML document methodsserver methods client methods

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

the system are in XML format. Network communication

and XML document processing modules are needed for the

master node and slave nodes to accomplish their goals.

The network communication module and XML document

processing module were abstracted out and shared by both

the master node and slave nodes. Figure 3 shows the

software modules and their relationships in this system.

4.2. System Implementation

4.2.1. The XML Document Processing Module

XML stands for eXtensible Markup Language. XML

documents are used in this system as the data storage in

the tree-structured network and message formats

transmitted in the system. The reason why we use XML

documents in our work is that the markup tags in XML

are used to describe and store data, and allow the

application to store structured data in XML documents and

extract data from XML documents [9].

The XML document processing module provides all the

methods needed by the master node and slave nodes to

process the XML messages. The Xerces-C++ parser is

used in our system as the XML parser [14]. There are 2

C++ classes in the XML document processing module,

the BuildMsg class and the ParseMsg class. The BuildMsg
class provides methods to create and modify XML

documents. The ParseMsg class provides methods to

extract information from XML documents.

4.2.2. The Construction and Recovery of the

Tree-Structured Network

In the tree-structured network, the network is

constructed as a complete n-ary tree. Each node in the

system has a position ID that is determined by the browse

order by breadth first search while the root of the tree has

position ID 1.

Construction: When the system starts, there is only the

master node that is the root of the tree. New nodes are

added to the system dynamically in the order of their

registration requests. The master node is the manager of

the system. When it starts, the master node initializes the

system structure database, and opens a port to listen for

requests from slave nodes.

The following illustrates the steps involved in

constructing the tree-structured network.

The new node sends a registration request to the master
node. In the registration request, the new node sends its
network-based information.

The master node queries the structure database, and
computes the parent node for the new node.

The master node sends a response message that contains
the parent information to the requesting node.

The new node tries to connect to the parent node specified
in the response from the master node.

Figure 4. The process of adding a new node to

the system
If the new node successfully connects to its parent node, i t

sends an acknowledgement message to the master node.
After receiving the acknowledgement message from the

new node, the master node adds the new node to the system
structure database.

If the new node cannot connect to the assigned parent
node, the master node will not add the new node to the system
database. The new node will send another registration request
to the master node.

Recovery: When a node in the tree-structured network

system fails, all its neighbors will report the failure to the

master node. To minimize the number of nodes involved

in the recovery event , when the master node receives the

first report message of the event, it chooses the node with

the maximum ID that is alive to replace the position of

the failure node (see section3). After the parent node

reports the failure, it will close the connection to the

master node while after a child node reported the failure, it

will expect the new parent information from the master

node. The process of recovering a tree-structured network

can be illustrated as figure 5.

Figure 5. The process to recover the system

The reason why all the neighbors instead of only a

single neighbor will report this failure can be illustrated as

1

first node with less
than n children

1. new node register

new node

structure database

master node
2.master node queries the structure database,

computes the parent node for the new node3.master node sends parent

information to new node

5.new node sends

ACK to the master

6.master node updates

the structure database

permanent connections temporary connections database query slave nodes

1

structure database

master node

permanent connections temporary connections database query slave nodes

dead node

parent node

report the failure

child nodes report the

failure, master node

response the new parent

master node sends the

instruction to replace the

position of the dead node

master node query the

and update the database

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

follows:

node A

node C node D

node B

Figure 6. A segment of a tree when node B

fai ls
The neighbors of the failed node do not know each other.

There is no connection between any pair of the failed node’s
neighbors, when a node reports this failure, it cannot notify
other nodes. In figure 6, there are no connections between
node A and node C, node A and node D, and node C and node
D. When node A reports the failure of node B, it cannot notify
node C and node D.

It is possible that two adjacent nodes fail simultaneously,
so one node cannot rely on others to report the failure. In
figure 6, if node A and node B fail at the same time, and node
C and node D rely on node A to report the failure node B, node
B’s failure will not be reported to the master node.

All the child nodes of the failed node need to get
instructions from the master. It is reasonable for a node to get
instructions from the master node after it reports the failure.
In figure 6, node C and node D get new parent information
after they report the failure to the master node.

4.2.3. The Construction and Recovery of the

Ring-Structured Network
new node register and

master node response

master node

structure database

query and update

database

tail

add here

new node

permanent connections temporary connections slave nodes

Figure 7. The construction of the ring-

structured network

Construction: As in the tree-structured network, when

the system starts, there is only the master node that is the

head of the ring. New nodes are added to the system

dynamically according to the order of their registration

requests. The steps involved in a construction event are

the same as in the tree-structured network. In the ring-

structured network, the new node is always added as the

tail of the ring. Figure 7 shows the construction of the

ring-structured network

Figure 8. The recovery of the ring-structured

network

Recovery: During the execution of the system, when a

node in the system fails, both its previous node and next

node will report this failure to the master node. Since it is

possible that during the recovery process the failed node’s

previous node and next node may fail, the master node

will find two nearest neighbors of the failed node that are

alive and link them together. Figure 8 shows the recovery

of the ring-structured network.

4.2.4. The Program Design of the Master Node

The master node is a concurrent server that can

accomplish multiple tasks simultaneously. The

concurrence of the master node is implemented using

POSIX Threads [11]. There are four types of threads in the

master node: the main thread, the resource management

thread, the system structure management thread, and the

connection handling threads.

Main thread: It is the entry point of the program. It is

responsible for creating working threads to handle the

different functions of the master node.

Resource management thread: It is used to accomplish

the resource management tasks of the master node and

sends the instructional messages to its child nodes.

System structure management thread: It is the most

important part in the system. It is responsible for

computing an optimal method to construct and recover the

system so that the system has good scalability and

reliability.

Since each node in the system may have more than one

neighbor, in case of one node failure, all of its neighbors

need to report the failure to the master node. In the process

of handling a recovery event, it is possible for new

requests, including new registration requests and new

failure report requests, to be received. To clearly describe

these situations, we define the following terminologies.

Normal State: The system is running normally.

master node

structure database

2. query and update

database

permanent connections temporary connections slave nodes

dead node

1. neighboring nodes report the failure

3. link together

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Inprocess State: The master node is handling a recovery

event.

Process Time: The beginning time when the master

node starts to handle a new recovery event.

Maximum Delay: The longest time that the system can

be in “Inproess State”.

Timeout State: The system stays in the Inprocess State

longer than the Maximum Delay

For example, here is a description of the system state

transformation from the normal state. In the normal state,

the master node is expecting both the registration and

report request. After handling the registration request, the

system stays in the normal state. If the incoming request

is a report request and the failed node only has one

neighboring node, after handling this request, the system

stays in the normal state. If the incoming request is a

report request and the failed node has more than one

neighboring node, after handling this request, the system

changes to the inprocess sate. In the inprocess state, the

master node only accepts report requests that report the

current failure. If the incoming report request is the last

request to report the current failure, after handling this

request, the system changes back to the normal state. If

the incoming request is not the last report request to report

the current failure, the system stays in the inprocess state.

If the system stays in the inprocess state longer than the

maximum delay and not all the neighbors of the current

failed node report the current failure, the system will

change to the timeout state. In the time out state, the

master node will compute a method to wrap up the current

recovery event.

The steps involved in wrapping up the current recovery

event are as follows:

The master node detects if the neighboring node that
should have but has not reported the current failure is still
active.

If it is active, the master node will send an instructional
message to tell it to connect the new parent node.

Otherwise, a node in the system will be chosen to replace
the position of the unreported node. In the tree-structured
network, the node with the maximum position ID that is still
active will be chosen while in the ring-structured network, the
nearest neighbor node that is still active will be chosen to
replace the unreported node.

Connection handling thread: The main thread creates a

connection handling thread for each directly connected

child node. It is responsible for handling the

communication with the child node, detecting the status of

the child nodes. Since the resource management messages

are transmitted along the permanent TCP connections

periodically, while the peer is down, the sender will get a

failure signal while it is trying to send message to the

receiver.

4.2.5. The Program Design of the Slave Node

Similar to the master node, the slave nodes are

concurrent servers. The concurrence of the slave node is

implemented using POSIX Threads [11]. There are five

kinds of threads in the slave node: the main thread, the

resource management thread, the client thread, connection

handling threads, and the message merge handling thread.

Main thread: The main thread is the entry point of the

program. It is responsible for creating working threads to

handle the different tasks of the slave node

Resource management thread: It is responsible for

generating and reporting its working status and the

resource usage information.

Client thread: It is used to handle the communication

with the parent node. It is responsible for detecting and

reporting the failure of the parent node, and connecting to

the new parent node according the instructions from the

master node.

Connection-handling thread: It is used to handle the

communication with the child node. It is responsible for

detecting and reporting the failure of the child node.

Message-merging thread: The slave node uses this

thread to merge the resource management messages from

all the child nodes and its own resource management

message

5. Test environment and results

5.1. The Test Environment

Our tests were conducted on the PowerPC G4 cluster in

the Scalable Computing Laboratory, Ames Laboratory of

U.S. Department of Energy. The G4 Cluster is a 32 node

“Beowulf” style cluster computer consisting of 16 single

processor G4s with 512 MB RAM and 16 dual processor

G4s with 1GB RAM, all running Debian Linux. They use

Ethernet and Myrinet for network access.

The master node is the manager of the system. It

requires more system resources than a slave node. To test

the construction and the recovery performance of the

system, each slave node starts at a different time and runs

for a random time period. This is implemented in a script

file that is submitted to the batch system.

5.2. Test Results

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

We tested two aspects of system performance. First, we

tested the time used for a new node to be added to the

system and the time used to recover to the given structure

in case a node fails in the system. Second, we tested the

Round Trip Time (RTT) for messages transmitted in the

system. The time unit used in the following results is

milliseconds.

Figure 9 shows the average time used to add a new node

to the system with different network topologies and

different system sizes. We can see that there is no

significant difference in the time used to add a node to

system. The reason is that the steps involved in adding a

new node to the system are fixed. The system structure

management thread of the master node is an iterative

server; it handles the construction and recovery event in a

sequential way. Only after it finishes handling a

registration request, will it handle a new registration or

report request.

40

45

50

55

60

65

70

75

80

85

10 20 30 40 50 60 70 80 90 100

System Size

M
il
li
s
e
c
o

n
d

s

binary tree

ternary tree

5-ary tree

ring

Figure 9. The construction performance

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

System Size

M
il
li
s
e
c
o

n
d

5-ary tree

ternary tree

binary tree

ring

Figure 10. The recovery performance

Figure 10 shows that the average time used to recover

the system when there is a node failure in the system. We

can see that the time used for a recovery event is related to

the network topologies. The time used grows with the

degree of the node. The reason is that when a node fails,

all its neighbors have to report this failure to the master

node. The more neighbors one node has, the more report

requests the master node has to process. The time used to

process a recovery event in a 5-ary tree-structured network

is much longer than that used in a ring-structured network.

In the tree-structured network, the time used also grows

with the number of slave nodes in the system. When a

node fails in a tree-structured network, the master node has

to find the active node with the maximum position ID to

replace the failed node. The more nodes one system has

the more complex it is to find a node to replace the failed

node.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

System Size

M
A

X
 R

T
T

(M
S

)

5-ary tree

ternary tree

binary tree

ring

Figure 11. The maximum RTT with zero

payload

Figure 11 and Figure 12 show the maximum RTT for

zero payload and XML payload messages (252 bytes)

transmitted with different network topologies and different

system sizes. From these figures we can see, the RTT for

XML payload (252 bytes) messages is much higher than

that of zero payload messages. This is because when

receiving an XML message, each node has to process the

XML message and processing an XML message is a time

consuming task. Another point we can see from these

figures is that the maximum RTT in a ring-structured

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

System Size

M
A

X
 R

T
T

(m

s
)

ring

binary tree

ternay tree

5-ary tree

Figure 12. The maximum RTT with XML

payload

network grows significantly with the system size. The

reason is that the diameter of the system grows linearly

with the system size. The diameter of an n-ary tree with m

nodes is 11)1(log +nm
n

. Thus in an n-ary tree-

structured network, the maximum RTT grows much more

slowly than in a ring-structured network. In our tests,

when the system has 100 nodes, the longest RTT for

XML payload (252 bytes) messages in the 5-ary complete

tree is 10% of that in the ring-structured network. The

growth rate decreases as the degree of the tree increases.

6. Conclusion

6.1. Conclusions

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

This paper compared the network topologies used to

construct distributed systems, and presented test results for

systems using tree-structured networks and ring-structured

networks as the network topologies. From the discussions

in the previous sections and the test results in section 5,

we draw the following conclusions:

It is easier to maintain the system structure in a ring-

structured network. However, the longest RTT grows

linearly with the system size. For large systems this can

be a significant limitation and thus limits the overall

scalability of the system. Ring-structured networks are

suitable for small to medium sized systems with small

messages.

The scalability of a tree-structured network system is

related to the node’s capacity and the height of the tree.

We can carefully choose an appropriate degree n to

construct a complete n-ary tree-structured network such

that the height of the tree balances the growth in the tree

size versus the resource requirements for a node to

communicate with additional child nodes. Tree-structured

network is superior to the ring-structured network when

the system size and the messages transmitted in the

system have large payloads.

6.2. Future Work

In our system, there is only one master node. It is

responsible for managing the system structure. If the

master node fails, all the information about the system

structure will be lost and there will be no node left to

manage the system. One of our future tasks is to construct

a backup master node that will backup the system

structure information continuously. In case that the master

node fails, the backup master node can be used to assume

control and manage the system structure.

.

7. Acknowledgment

This work was performed under the auspices of the

U.S. Department of Energy under contract W-7405-Eng-

82 at Ames Laboratory operated by the Iowa State

University of Science and Technology. Funding was

provided by the Mathematical, Information and

Computational Science division of the Office of Advanced

Scientific Computing Research.

8. References

[1] Mukesh Singhal and Niranjan G. Shivaratri, “Advanced

Concepts in Operating Systems”, McGraw-Hill, 1994.

[2] Abraham Silberschatz and Peter Baer Galvin, “Operating

System Concepts”, Fifth Edition, John Wiley & Sons, 1999.

[3] Andrew Warfield, Yvonne Coady, and Norm Hutchinson,

“Identifying Open Problems in Distributed System”,

Proceedings of European Research Seminar on Advances in

Distributed Systems (ERSADS), 2001.

[4] Bruno R. Preiss, “Data Structures and Algorithms with

Object-Oriented Design Patterns in C++”, Wiley, 1998.

URL:http://www.brpreiss.com/books/opus4/html/page356.h

tml (date accessed: November 15, 2004).

[5] W. Richard Stevens, “UNIX Network Programming”,

Volume 1, Second Edition, Prentice Hall, 1998.

[6] Mark Birbeck, Jon Duckett, Oli Gauti Gudmundsson, Pete

Kobak, Evan Lenz, Steve Livingstone, Daniel Marcus,

Stephen Mohr, Jonathan Pinnock, Keith Visco, Andrew Watt,

Kevin Williams, Zoran Zaev, and Nikola Ozu, “Professional

XML”, 2n d Edition, Wrox Press, 2001.

[7] XML Tutorial,

URL:http://www.w3schools.com/xml/default.asp

(date accessed: November 15, 2004).

[8] Jerry Emerick, “Managing XML Data Storage”, ACM

Crossroads archive, Volume 8, Issue 4, Pages: 6 – 11, 2002.

[9] Ronald Bourret, “XML and Databases”,

URL:

http://www.rpbourret.com/xml/XMLAndDatabases.htm

(date accessed: November 15, 2004).

[10] Douglas E. Comer and David L. Stevens,

“Internetworking with TCP/IP”, volume III, Prentice Hall,

1996.

[11] David R. Butenhof, “Programming with POSIX Threads”,

Addison Wesley, 1997.

[12] Mark G. Sobell, “A Practical Guide to Red Hat Linux 8”,

Addison Wesley, 2003.

[13] Herbert Schildt, “C: The Complete Reference”, Fourth

Edition, McGraw-Hill, 2000.

[14] The Apache XML Project, “Xerces C++ Parser”,

URL: http://xml.apache.org/xerces-c

(date accessed: November 15, 2004).

[15] Scalable Systems Software for Terascale Computer

Centers,

URL: http://www.scidac.org/ScalableSystems

(date accessed: November 15, 2004).

[16] The Project of Scientific Discovery through Advanced

Computing,

URL: http://www.scidac.org

(date accessed: November 15, 2004).

[17] Network Topologies,

URL:http://www.webopedia.com/quick_ref/topolog

ies.asp (date accessed: January 19, 2005).

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

