Nano and Microrobotics

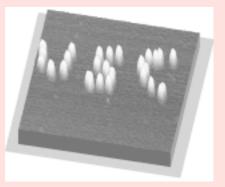
Ari Requicha Laboratory for Molecular Robotics University of Southern California Ron Fearing Biomimetics Millisystem Lab Dept. of EECS University of California, Berkeley

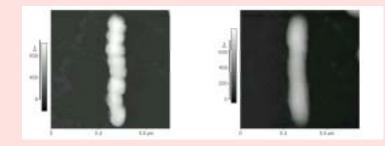
What is Nanorobotics? {Microrobotics?}

- Programmable assembly of nm-scale (~ 1-100 nm) {μm-scale (~ 100 nm-100 μm)} components either by manipulation with larger devices, or by directed self-assembly.
- Design and fabrication of robots with overall dimensions at or below the μm {mm} range and made of nm-scale {μm-scale} components.
- Programming and coordination of large numbers (swarms) of such nanorobots. (Not covered here.)
- Notes:
 - Nanoelectronics is relevant as well but not covered here.
 - Standard, passive, self-assembly may be viewed as a form of automation but is not robotic. Covered briefly here.
 - Millirobots are larger than microrobots and have critical dimensions at or below the centimeter range.

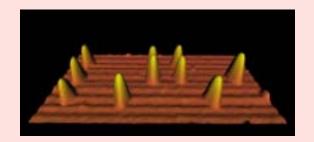
Underlying Science and Technology

- Macrorobotics traditionally uses principles and tools from information technology, control, mechanics... At small scales, other disciplines need to be included.
- Nano:
 - Chemistry
 - Quantum Physics (not bulk phenomena)
 - Biochemistry
 - Nanotechnology, mostly chemical processing
- Micro:
 - Solid State Physics
 - MEMS, semiconductor fabrication technology

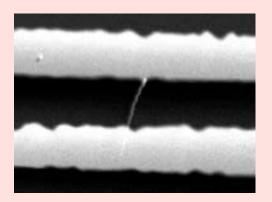



Major Labs and Investigators (Nano)

- USC Lab for Molecular Robotics Requicha, Koel, Thompson, Zhou. Nanomanipulation with AFM; nanosensors; nanoactuators; robotic selfassembly; sensor/actuator networks. Research moving towards building nanorobots and biomedical applications.
- CMU Nanorobotics Lab Sitti. AFM nanomanipulation. On-going.
- Michigan State University Xi. AFM nanomanipulation. On-going.
- University of North Carolina at Chapel Hill Taylor et al. AFM nanomanipulation, especially user interfaces. On-going.
- UCLA Montemagno. Hybrid systems using biomotors. On-going.
- Self-Assembly of Nanocomponents Adleman at USC, Reif at Duke, Seeman at NYU, Winfree at Caltech, ... Very active area.



Nanorobotics Examples (USC)

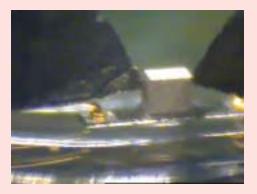


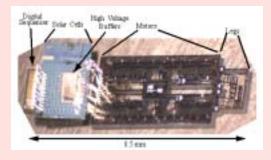
Pattern of 15 nm Au particles built by AFM manipulation (1996)

NanoCD: 'LMR' in ASCII encoded in the positions of nanomanipulated 15 nm Au particles Line of 100 nm latex particles built by nanomanipulation and sintering

 In_2O_3 nanowire sensor for NO_2 built by CVD

Major Labs and Investigators (Micro)


- RPI Center for Automation Technologies Akella, Bellouard, Huang, Lee, Popa, Sanderson, Sin, Stephanou. Microgrippers; arrayed micromanipulation; precision placement.
- UC Berkeley Fearing, Goldberg, Howe, Pister; flying and crawling micro-robots, dextrous micromanipulation, microassembly; fluidic self-assembly.
- Michigan State University- Xi; force controlled microassembly.
- Sandia National Labs Feddema; precision visually guided microassembly.
- Zyvex in-SEM micromanipulation.
- Univ. of Minnesota Nelson, now moved to ETHZ.
- Univ. of Washington- Boehringer; array micromanipulation, selfassembly.


Micro/Millirobotics Examples (UCB)

Flying insect; micromachined C fiber; 100mg weight, 30 mm wing span

Orthotweezers manipulating a strain gage 1000x150x12 μm

Solar powered MEMS leg for crawling robot

Major Accomplishments (Nano)

- Reliable, high-yield manipulation of nanoparticles with sizes ~ 10 nm in air and in liquid, at room temperature.
- Commercial software for nanomanipulation with SPMs.
- Multi-tip SPM arrays.
- Artificial molecular motors.
- Nanotube and nanowire sensors.
- Self-assembly theory and experimental demonstrations using nanoscale DNA components.

Major Accomplishments (Micro)

- Micro-robot components: flexure joints, actuators, structure, MEMS sensors
- Micro-grippers for 100 micron and smaller parts
- Adhesion control for reliable micro-part handling
- Visual servoing for precision handling
- Fluidic self-assembly for low-complexity parts

Influential Papers (Nano)

- J. A. Stroscio and D. M. Eigler, "Atomic and molecular manipulation with the scanning tunneling microscope", *Science*, Vol. 254, No. 5036, pp. 1319-1326, November 29, 1991.
- R. M. Taylor, W. Robinett, V. L. Chi, F. P. Brooks, W. V. Wright, R. S. Williams and E. J. Snyder, "The nanomanipulator: a virtual reality interface for a scanning tunneling microscope", Proc. ACM SIGGRAPH '93, Anaheim, CA, pp. 127-134, August 1-6, 1993.
- T. Junno, K. Deppert, L. Montelius and L. Samuelson, "Controlled manipulation of nanoparticles with an atomic force microscope", *Applied Physics Letters*, Vol. 66, No. 26, pp. 3627-3629, June 26, 1995.
- C. Baur, B. C. Gazen, B. Koel, T. R. Ramachandran, A. A. G. Requicha, and L. Zini, "Robotic nanomanipulation with a scanning probe microscope in a networked computing environment", *J. Vacuum Science & Technology B*, Vol. 15, No. 4, pp. 1577-1580, July/August 1997.
- R. Resch, A. Bugacov, C. Baur, B. E. Koel, A. Madhukar, A. A. G. Requicha, and P. Will, "Manipulation of nanoparticles using dynamic force microscopy: simulation and experiments", *Applied Physics A*, Vol. 67, No. 3, pp. 265-271, September 1998.
- C. Montemagno and G. Bachand, "Constructing nanomechanical devices powered by biomolecular motors", *Nanotechnology*, Vol. 10, No. 3, pp. 225-231, September 1999.
- V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, "Artificial molecular machines", *Angewandte Chimie Int'l Ed.*, Vol. 39, pp. 3348-3391, 2000.
- J. Kong, N. R. Franklin, C. Zhou, M. C. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors", *Science*, Vol. 2887, No. 5463, pp. 622-625, 28 January 2000.
- A. A. G. Requicha, "Nanorobots, NEMS and nanoassembly", *Proc. IEEE*, Vol. 91, No. 11, pp. 1922-1933, November 2003

Influential Papers (Micro)

- A.M. Flynn, "Gnat Robots (and How they will change Robotics)", IEEE Solid State Sensors Workshop, 1987, IEEE MicroRobots and Teleoperators Workshop, Hyannis, MA Nov. 9-11, 1987, New York: IEEE, pp. 22/1-5.
- Y-C. Tai, L-S. Fan, and R.S. Muller, "IC Processed Micro-motors: Design, Technology, and Testing", *Proceedings: IEEE Micro Electro Mechanical Systems*, pp. 1-6, Salt Lake City, Utah, 1989.
- R.S. Fearing, "Survey of Sticking Effects for Micro Parts Handling", *Proc. IEEE-RSJ Intelligent Robots and Systems*, Pittsburgh, PA August 3-5, 1995.
- K. F. Böhringer, B. R. Donald, Lydia Kavraki, Florent Lamiraux, "Part Orientation with One or Two Stable Equilibria Using Programmable Vector Fields", IEEE Transactions on Robotics and Automation, 16(2):157-170, April 2000.
- X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, K. F. Böhringer, "Controlled Multi-Batch Self-Assembly of Micro Devices", ASME/IEEE Journal of Microelectromechanical Systems 12(2):117-127, April 2003.
- K. F. Böhringer, Ronald S. Fearing, Ken Y. Goldberg, "Microassembly." In Shimon Nof, editor, The Handbook of Industrial Robotics (2nd edition), pp. 1045-1066, John Wiley & Sons, February 1999.
- Dan O. Popa, Harry E. Stephanou, "Micro and Meso Scale Assembly", to appear in the special issue of SME Journal of Manufacturing Systems, 2004.

Challenges

- High-throughput nano {micro} manipulation. Automatic, massively parallel operations needed.
- High reliability dextrous micromanipulation, force sensing, and joining processes.
- Building nano {micro} robots. Components are beginning to appear or are available but integration is challenging, and so is interfacing to macro and bio systems. Operation of mobile microrobots in outside (real) environments.
- Mass production of nano {micro} robots and other nano {micro} systems by directed self-assembly.
- Issues raised by biomedical applications (which are very promising): biocompatibility, toxicity, interfacing, forming research teams including MDs, …
- Programming and coordination of thousands/millions of nano {micro} robots; robotic self-assembly (related to reconfigurable robotics).

Recommended Funding Areas

- High-throughput nanomanipulation with SPMs.
- High-throughput micromanipulation with parallel microrobot arrays.
- Nanorobot construction.
- Mobile microrobot construction, integration, and operations in real environments, such as medical or exploration.
- Rapid prototyping technology for microrobots as an enabling tool for wider research.
- Non-SPM nanoassembly for mass production.
- In vivo sensor/actuator (robot) networks.

Foreign Accomplishments (Nano)

- Invention of the STM by Binnig and Rohrer at IBM Zurich Lab.
- Manipulation of colloidal nanoparticles by AFM, Samuelson group, Lund, Sweden.
- Development and characterization of artificial nanomachines by Stoddart at U. Birmingham (now at UCLA), Balzani at U. Bologna, Italy, Feringa at U. Groningen, Holland, ...
- Direct observation of rotary biomolecular motors, by Noji in Japan

Foreign Accomplishments (Micro)

Probably > 75% of microrobot work is being done outside the US.

- Univ. of Toronto, Mills; microrobot microassembly system.
- McGill- Martel; nanowalker precise multiple microrobots for nanofabrication.
- ETHZ Nelson; wafer level microassembly; visually guided microassembly; biological micromanipulations.
- EPFL- Siegwart; mobile microrobots.
- Univ. of Tokyo Sato; micro and nanomanipulation.
- Nagoya University Fukuda and Arai; mobile microrobots, biological micromanipulation, micro parts handling.
- Scuola Superiore Sant'Anna Dario, medical microrobots, I-Swarm.

Projects for International Cooperation

- Building mobile nano {micro} robots.
- Biomedical applications.

