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What is Nanorobotics? {Microrobotics?}
• Programmable assembly of nm-scale (~ 1-100 nm) {µm-scale (~ 100 nm-

100 µm)} components either by manipulation with larger devices, or by 
directed self-assembly.

• Design and fabrication of robots with overall dimensions at or below the 
µm {mm} range and made of nm-scale {µm-scale} components.

• Programming and coordination of large numbers (swarms) of such 
nanorobots. (Not covered here.)

• Notes:
� Nanoelectronics is relevant as well but not covered here.
� Standard, passive, self-assembly may be viewed as a form of 

automation but is not  robotic. Covered briefly here.
� Millirobots are larger than microrobots and have critical dimensions 

at or below the centimeter range.
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Underlying Science and Technology

• Macrorobotics traditionally uses principles and tools from information 
technology, control, mechanics�  At small scales, other disciplines 
need to be included. 

• Nano:
� Chemistry
� Quantum Physics (not bulk phenomena)
� Biochemistry
� Nanotechnology, mostly chemical processing

• Micro:
� Solid State Physics
� MEMS, semiconductor fabrication technology
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Major Labs and Investigators (Nano) 

• USC Lab for Molecular Robotics � Requicha, Koel, Thompson, Zhou. 
Nanomanipulation with AFM; nanosensors; nanoactuators; robotic self-
assembly; sensor/actuator networks. Research moving towards building 
nanorobots and biomedical applications.

• CMU Nanorobotics Lab � Sitti. AFM nanomanipulation. On-going.
• Michigan State University � Xi.  AFM nanomanipulation. On-going. 
• University of North Carolina at Chapel Hill � Taylor et al. AFM 

nanomanipulation, especially user interfaces. On-going.
• UCLA � Montemagno. Hybrid systems using biomotors. On-going.
• Self-Assembly of Nanocomponents � Adleman at USC, Reif at Duke, 

Seeman at NYU, Winfree at Caltech, � Very active area.
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Nanorobotics Examples (USC)

Pattern of 15 nm Au particles built 
by AFM manipulation (1996) 

NanoCD: �LMR� in ASCII encoded in 
the positions of nanomanipulated 15 
nm Au particles

Line of 100 nm latex particles built 
by nanomanipulation and sintering

In2O3 nanowire sensor for NO2 
built by CVD
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Major Labs and Investigators (Micro)

• RPI Center for Automation Technologies - Akella, Bellouard, Huang, Lee, 
Popa, Sanderson, Sin, Stephanou. Microgrippers; arrayed 
micromanipulation; precision placement.

• UC Berkeley - Fearing, Goldberg, Howe, Pister; flying and crawling 
micro-robots, dextrous micromanipulation, microassembly; fluidic self-
assembly.

• Michigan State University- Xi; force controlled microassembly.
• Sandia National Labs - Feddema; precision visually guided 

microassembly.
• Zyvex - in-SEM micromanipulation.
• Univ. of Minnesota - Nelson, now moved to ETHZ.
• Univ. of Washington- Boehringer; array micromanipulation, self-

assembly.
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Micro/Millirobotics Examples (UCB)

Flying insect; micromachined 
C fiber; 100mg weight, 30 mm 
wing span

Orthotweezers manipulating a 
strain gage 1000x150x12 µm

Solar powered MEMS 
leg for crawling robot
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Major Accomplishments (Nano)

• Reliable, high-yield manipulation of nanoparticles with 
sizes ~ 10 nm in air and in liquid, at room temperature.

• Commercial software for nanomanipulation with SPMs.
• Multi-tip SPM arrays.
• Artificial molecular motors.
• Nanotube and nanowire sensors.
• Self-assembly theory and experimental demonstrations 

using nanoscale DNA components.
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Major Accomplishments (Micro)

• Micro-robot components:  flexure joints, actuators, 
structure, MEMS sensors

• Micro-grippers for 100 micron and smaller parts
• Adhesion control for reliable micro-part handling
• Visual servoing for precision handling
• Fluidic self-assembly for low-complexity parts
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Influential Papers (Nano)
• J. A. Stroscio and D. M. Eigler, �Atomic and molecular manipulation with the scanning 

tunneling microscope�, Science, Vol. 254, No. 5036, pp. 1319-1326, November 29, 1991.
• R. M. Taylor, W. Robinett, V. L. Chi, F. P. Brooks, W. V. Wright, R. S. Williams and E. J. 

Snyder, �The nanomanipulator: a virtual reality interface for a scanning tunneling 
microscope�, Proc. ACM SIGGRAPH '93, Anaheim, CA, pp. 127-134, August 1-6, 1993.

• T. Junno, K. Deppert, L. Montelius and L. Samuelson, �Controlled manipulation of 
nanoparticles with an atomic force microscope�, Applied Physics Letters, Vol. 66, No. 26, pp. 
3627-3629, June 26, 1995. 

• C. Baur, B. C. Gazen, B. Koel, T. R. Ramachandran, A. A. G. Requicha, and L. Zini, �Robotic 
nanomanipulation with a scanning probe microscope in a networked computing 
environment�, J. Vacuum Science & Technology B, Vol. 15, No. 4, pp. 1577-1580, July/August 
1997.

• R. Resch, A. Bugacov, C. Baur, B. E. Koel, A. Madhukar, A. A. G. Requicha, and P. Will, 
�Manipulation of nanoparticles using dynamic force microscopy: simulation and 
experiments�, Applied Physics A, Vol. 67, No. 3, pp. 265-271, September 1998.

• C. Montemagno and G. Bachand, �Constructing nanomechanical devices powered by 
biomolecular motors�, Nanotechnology, Vol. 10, No. 3, pp. 225-231, September 1999.

• V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, �Artificial molecular machines�, 
Angewandte Chimie Int�l Ed., Vol. 39, pp. 3348-3391, 2000.

• J. Kong, N. R. Franklin, C. Zhou, M. C. Chapline, S. Peng, K. Cho, and H. Dai, �Nanotube
molecular wires as chemical sensors�, Science, Vol. 2887, No. 5463, pp. 622-625, 28 January 
2000.

• A. A. G. Requicha, �Nanorobots, NEMS and nanoassembly�, Proc. IEEE, Vol. 91, No. 11, pp. 
1922-1933, November 2003 
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Influential Papers (Micro)

• A.M. Flynn, �Gnat Robots (and How they will change Robotics)�, IEEE Solid State Sensors 
Workshop, 1987, IEEE MicroRobots and Teleoperators Workshop, Hyannis, MA Nov. 9-11, 
1987, New York: IEEE, pp. 22/1-5.

• Y-C. Tai, L-S. Fan, and R.S. Muller, �IC Processed Micro-motors: Design, Technology, and 
Testing�, Proceedings: IEEE Micro Electro Mechanical Systems, pp. 1-6, Salt Lake City, Utah, 
1989.

• R.S. Fearing, �Survey of Sticking Effects for Micro Parts Handling�,  Proc. IEEE-RSJ 
Intelligent Robots and Systems, Pittsburgh, PA August 3-5, 1995.

• K. F. Böhringer, B. R. Donald, Lydia Kavraki, Florent Lamiraux, �Part Orientation with One or 
Two Stable Equilibria Using Programmable Vector Fields�, IEEE Transactions on Robotics 
and Automation, 16(2):157-170, April 2000.

• X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, K. F. Böhringer, �Controlled 
Multi-Batch Self-Assembly of Micro Devices�, ASME/IEEE Journal of Microelectromechanical
Systems 12(2):117-127, April 2003.

• K. F. Böhringer, Ronald S. Fearing, Ken Y. Goldberg, �Microassembly.� In Shimon Nof, 
editor, The Handbook of Industrial Robotics (2nd edition), pp. 1045-1066, John Wiley & Sons, 
February 1999.

• Dan O. Popa, Harry E. Stephanou,    �Micro and Meso Scale Assembly��, to appear in the 
special issue of SME Journal of Manufacturing Systems, 2004.
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Challenges

• High-throughput nano {micro} manipulation. Automatic, massively 
parallel operations needed. 

• High reliability dextrous micromanipulation, force sensing, and joining 
processes.

• Building nano {micro} robots. Components are beginning to appear or 
are available but integration is challenging, and so is interfacing to 
macro and bio systems. Operation of mobile microrobots in outside 
(real) environments.

• Mass production of nano {micro} robots and other nano {micro} systems 
by directed self-assembly.

• Issues raised by biomedical applications (which are very promising): 
biocompatibility, toxicity, interfacing, forming research teams including 
MDs, � 

• Programming and coordination of thousands/millions of nano {micro}
robots; robotic self-assembly (related to reconfigurable robotics).
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Recommended Funding Areas

• High-throughput nanomanipulation with SPMs.
• High-throughput micromanipulation with parallel 

microrobot arrays.
• Nanorobot construction. 
• Mobile microrobot construction, integration, and 

operations in real environments, such as medical or 
exploration.

• Rapid prototyping technology for microrobots as an 
enabling tool for wider research.

• Non-SPM nanoassembly for mass production.
• In vivo sensor/actuator (robot) networks.
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Foreign Accomplishments (Nano)

• Invention of the STM by Binnig and Rohrer at IBM Zurich Lab.
• Manipulation of colloidal nanoparticles by AFM, Samuelson group, 

Lund, Sweden.
• Development and characterization of artificial nanomachines by 

Stoddart at U. Birmingham (now at UCLA), Balzani at U. Bologna, Italy, 
Feringa at U. Groningen, Holland, �

• Direct observation of rotary biomolecular motors, by Noji in Japan
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Foreign Accomplishments (Micro)

• Univ. of Toronto, Mills; microrobot microassembly system.
• McGill- Martel; nanowalker precise multiple microrobots for 

nanofabrication.
• ETHZ - Nelson; wafer level microassembly; visually guided 

microassembly; biological micromanipulations.
• EPFL- Siegwart; mobile microrobots.
• Univ. of Tokyo - Sato; micro and nanomanipulation.
• Nagoya University - Fukuda and Arai; mobile microrobots, biological 

micromanipulation, micro parts handling.
• Scuola Superiore Sant�Anna - Dario, medical microrobots, I-Swarm.

Probably > 75%  of microrobot work is being done outside the US. 
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Projects for International Cooperation

• Building mobile nano {micro} robots.
• Biomedical applications.


