
Developing a Graphical Robotics Simulator

 Chris Lattner and Ming-Shu Hsu

School of Engineering
University of Portland
Portland, OR 97229

ABSTRACT

An interactive robotics graphical computer simulation program, GRAS (Graphical Robot Animator and
Simulator), has been developed. The GRAS program reads a data file of robot geometry data and displays
the robot configuration as a 3D solid model. It simulates a teach pendant for user interaction. The program
was written in Java language for maximum portability and application. GRAS is a generalized program so
it can simulate a variety of robots with different configurations. Examples of PUMA560 and Pegasus
robots are provided. The GRAS program is available on the web site
http://www.egr.up.edu/contrib/hsu/gras.1 and can be downloaded to the user's computer from the Internet.

INTRODUCTION

Today, many universities offer a robotics course. However, due to the complexity of the robot geometry
the teaching of robotics has always been uneasy in the classroom. In addition, because of the high
equipment and maintenance cost of the industrial robot many schools are teaching robotics without a real
robot. To assist with this situation, an interactive graphical computer program, GRAS (Graphical Robot
Animator and Simulator), has been developed. The use of this simulation program enables teaching
robotics material in the classroom or in environments that are not conducive to purchasing and maintaining
an industrial robot. This program, providing with a simulated hands-on experience, will be a great aid for
teaching and learning the principles of robotics.

The GRAS program reads a data file of the robot geometry and displays the robot as a 3D solid model. It
simulates a teach pendant for user interaction in two ways: Clicking the mouse on the specified joint will
simulate pushing a button on the teach pendant of the joint and cause the robot to move the joint by one
increment; Specifying all joints values will simulate executing a move command in a robot program and
cause the robot to move from one location to another. The location of the end effector, and the
configuration of the wrist, elbow, and shoulder joints are also calculated and displayed. GRAS is a
generalized program so it can simulate a variety of robots with different configurations for up to six axes
with any combination of prismatic and revolute joints. Examples of a six-axis Puma-560 robot and a five-
axis Pegasus robot are included to illustrate the generality of the program. The program was written in Java
language for maximum portability and application. It is available on the web site
http://www.egr.up.edu/contrib/hsu/gras.1 and can be downloaded to the user's computer from the Internet.

The development of the GRAS program is the result of an interdisciplinary research involving three fields,
namely robotics, interactive computer graphics, and Internet Java programming. The following sections
describe the theories in these three subjects and the implementation of the GRAS program.

THE ROBOT CONFIGURATION

An industrial robot is a series of links connected by joints moving in a 3D space. The relationships
between the robot adjacent links can be described by the standard Denavit-Hartenberg (D-H) representation
and the four parameters are link length a, twist angle α, offset d, and rotation angle θ [1]. Among these four
parameters, three are fixed values representing the robot physical geometry and the other one varies
allowing the robot joints movement. Depending on the type of joint, the joint variable is either the offset d
for a prismatic pair or the rotation angle θ for a revolute pair. As depicted in Figure 1, the four parameters
between any two adjacent links are defined as follows:

ai is the link length from the intersection of the zi-1 axis with the xi axis to the origin of the
ith coordinate system along the xi axis.

αi is the twist angle from the zi-1 axis to the zi axis about the xi axis.

di is the offset distance from the origin of the (i-1)th coordinate system to the intersection of
the zi-1 axis with the xi axis along the zi-1 axis.

θi is the joint angle measured from the xi-1 axis to the xi axis about the zi-1 axis.

Figure 1: Link Parameters

Since the robot's joints move independently, we need to have independent coordinate systems to describe
the relationships between any two adjacent links. Assigning an orthonormal Cartesian coordinate system to
each link at its joint axis and one at the base, we can establish the kinematic configuration of each link[2,3].
Then, by applying the Denavit-Hartenberg representation to each link, a homogeneous transformation
matrix i-1Ai , known as the A matrix, relating the ith coordinate frame to the adjacent (i-1)th coordinate frame
can be derived. The A matrix for a revolute joint is given below.

i-1Ai = Tz,d Rz,θ Tx,a Rx,α

1000

cossin0

sinsincoscoscossin

cossinsincossincos

iii

iiiiiii

iiiiiii

d

a

a

αα
θαθαθθ
θαθαθθ

−
−

=

where
Tu,v = a transformation matrix of translation along u-axis by a distance v

and Rm,n = a transformation matrix of rotation about m-axis by an angle n

The i-1Ai matrix transforms a point in the ith coordinate frame to the adjacent (i-1)th coordinate frame. Thus,
through successive transformations of the A matrix, the location of a point on the link i can be transformed
to the base coordinate system.

{oP } = oA1
1A2 . . .

i-2Ai-1
i-1Ai {

iP}

where
{iP} = the position vector of the point P expressed in the ith coordinate frame
{oP} = the position vector of the point P expressed in the base coordinate frame

RENDERING INTERACTIVE COMPUTER GRAPHICS

The graphics rendering subsystem of GRAS is very important – without it, no visual feedback would be
possible. Because of the importance that it plays in the user’s understanding of the robot model, it is
imperative that the rendition be an accurate model of the current robot geometry. Also important to the
GRAS experience is the speed of the rendering engine; high performance is required for interactive
graphics. Although a photo-realistic model of the robot geometry could be produced, this would be
unsuitable for real-time animation. Many user interface factors, such as these, have influenced the design
of the rendering engine built into GRAS.

The first stage of the rendering pipeline converts the local coordinates of each robot link into a set W of
vertices in the world coordinate system. The current joint angles of the model and the link geometry are
used to calculate the resulting world geometry for all of the vertices (as described in the robot configuration
section); this geometry information forms the set W. The next step of the rendering pipeline converts the
set W into a set E of vertices in the eye coordinate system by rotating and translating the world coordinates
into the view space defined by the current location of the eye. The final step of the view transformation
converts from the eye coordinate system to two dimensional screen coordinates system, forming a new set
of vertices S that are suitable for drawing in the current display window. See Figure 2 below.

Transform vertices from
robot l inks to W space.

Transform vertices from
W space to E space.

Transform vertices from
E space to S space.

Calculate l ighting and
color shades in S space.

Fill robot model ’s
polygons in S space.

Repeat for each view of
the robot.

Figure 2: GRAS Rendering Pipeline

Internally, the geometry information for each individual link of the robot is kept apart from the other links.
When a redraw of the robot is requested, the current joint angles are used to compile a single model of the
robot with the joints fixed into the position to be drawn. Every surface in the resulting model contains a list
of vertices (which are connected to form polygons), and a color to shade the surface. Each vertex is
represented as a homogenous column matrix of the form T

ZYX 1=V . Thus, each vertex in the surfaces

is represented in three dimensions with an X, Y, and Z component.

Once the geometry of the robot has been compiled into W, each view of the robot transforms the world
coordinates of the vertices into viewing coordinates, based on the location and orientation of the eye. To
transform vertices from W to E, a transformation matrix Tv is used. This transformation matrix can
accommodate translation (Xt, Yt, Zt) along the X, Y, and Z axes as well as rotation about the X and Y axes.
The transformation matrix Tv may be represented as the composition of separate matrices to rotate about
the X-axis (Xx,θ), rotate about the Y-axis (Ry,ϕ), and translate along the x, y, and z axes (ττf).

1000

0cossin0

0sincos0

0001

, θθ
θθ

θ

−
=xR

1000

0cos0sin

0010

0sin0cos

, ϕϕ

ϕϕ

ϕ

−

=yR

1000

100

010

001

t

t

t

f Z

Y

X

=ττ

1000

coscossincossin

sincoscossinsin

sin0cos

,,
t

t

t

fyx Z

Y

X

θϕθθϕ
θϕθθϕ

ϕϕ

ϕθ

−−
−

== ⋅⋅ ττRRT

When the user interacts with a view of the robot, a new Tv matrix is calculated based on the user request. If
the user requests that the model be rotated 10° about the Y-axis, a new Tv matrix is created with the correct
values for a 10° rotation. This new Tv matrix is then composed with the original Tv viewing matrix to
update the camera transformation and the view is redrawn with the new Tv.

To calculate the points in the E set from points in the W set, Tv is pre-multiplied into each vertex in W.
The resulting vertices form the E set. Thus,

WE VTV ⋅= v

T

v

T
ZYXZYX 11 WWWEEE ⋅= T

To calculate points in the set S, the vertices in E are multiplied by a projection matrix P to project the
vertices into the Z=1 plane, and to scale the X and Y components to fit the current display window. For
this transformation, P is defined as follows:

1000

000

00

00

1
Z

Z
HZ

Z
WZ

H

W
F

F

⋅

⋅

=P

1

1

11000

000

00

00

1

H

W

Z

Y

X

H

W

V Z
HZY

Z
WZX

Z

Z
HZ

Z
WZ

F

F

F

F

+
+

=⋅==
⋅⋅−

⋅⋅

⋅−

⋅

ES PV

Where W is one half of the target window’s width, H is one half the target window’s height, ZF is the
current Zoom-Factor, and X, Y, Z are the current point to be projected. After this transformation, the X and
Y components of the resulting vertex are in display window coordinates, and the Z component of the
resulting vector is 1. As such, this is a two dimensional point ready to be plotted in the client window
coordinates.

As an example, if the current display window is of size 640x480, W=320 and H=240. Assuming the Zoom
Factor is set to 1, projecting point (-12, 17, 22)T returns a value of (145, 54, 1, 1)T. To plot this vertex, the
pixel at (X=145, Y=54) is filled. To draw a polygon, multiple vertices are projected and lines are drawn
between them – these lines are then filled with a solid color.

To shade the polygons in the model, Lambert’s reflection model is used. Lambert’s model states that the
intensity of the light reflected off of a surface is determined by the orientation of the surface with respect to
the light source. Specifically, this intensity Si is proportional to the cosine of the angle between the surface
normal and the light source vector.

NL

LNLNLN

⋅
++

== zzyyxx
NLi θcosS

Where N is the surface normal vector and L is the light source vector.

In practice, a number of factors simplify the equation above. First, because the light is fixed in location, it
has a pre-normalized length of 1.0. Also, because the light vector is directed along the Z-axis, the Lx and
Ly portions of the vector are always zero (Lz is always 1.0, but shown for context). This considerably

simplifies the above equation, leaving the equation NLN zzNLiS == θcos . The evaluation speed of this

formula is crucial to GRAS, because its simplicity is directly related to GRAS’ performance.

Once the surface intensity Si has been calculated, the polygon corresponding to the surface is filled with an
adjusted color based on the color associated with the surface. Each surface maintains a base color, which is
the color of the surface under 100% light intensity. This color is represented as a composition of red, green
and blue components (R, G, B) which have a range from 0 to 1. The resulting color is calculated by scaling
each component by the surface intensity. This yields the surface color Sc: ()BSGSRS iiic ⋅⋅⋅= ,,S .

Vertices from the set S are used to find the coordinates for the two-dimensional vertices of the current
surface. This surface is then rendered by drawing a solid polygon between the transformed points in screen
space with the color Sc.

THE INTERNET AND THE JAVA PROGRAMMING LANGUAGE

For many reasons, the Internet has rapidly become a very important way of gathering and dispersing
information. The Java programming language is uniquely suited for Internet programming tasks, primarily
because of its wide spread availability and common use on the Internet. For exactly these reasons, we
chose the Internet as the distribution media for GRAS and Java as the programming language. This section
examines the key implications of the Internet and Java on GRAS.

The Internet is an ideal distribution media for GRAS because it allows free access to many potentially
interested people, and allows the software to be run directly from a browser. As a system of cross-links,
the Internet allows web pages with mutual themes to be linked together… allowing one to find related
information quickly. This specific property allows web pages that focus on robotics topics to link to the
GRAS page. This structure builds a community of robotics related pages, and GRAS belongs to that
community.

 Another key factor that influenced our decision to support the Internet is the ease of use that it provides.
This allows people who are fluent in robotics techniques and interested in the teaching applications of
GRAS, to access and use GRAS - even if they are not particularly computer literate. As more people are
exposed to the Internet, GRAS is accessible to a potentially larger audience. The Internet is truly the
distribution medium of the future.

The Java language is a relatively new programming language developed by Sun Microsystems. Java
features an elegant programming style and sophisticated integration with the Internet. Most importantly,
however, Java aims to provide truly cross-platform binary executables. This means that the same
executable file can run on a PC, a Macintosh, or a Unix workstation – without any additional support effort
by system administrators. This cross platform architecture is key for GRAS, because many potential users
are not familiar with the Unix environment that many robotics tools require.

The elegant programming style that is encouraged by the Java language enables the development of very
modular and extensible programs. In particular, it will be easy to extend GRAS to provide new rendering
modes, trajectory motion models, and robot geometry solvers. This allows GRAS to be easily extended in
the future to simulate and test new algorithms in the robotics realm, as well as to adapt for potential class
assignments.

Overall, the Java language allows GRAS to be a more useful and friendly program. By being a cross
platform application, users of many different operating systems and applications can run GRAS on the
machines available to them. This also allows heterogeneous computing environments to maintain one copy
of the binary executable for all of their systems. In addition to compatibility, the extensibility of the Java
language enables new features to be added very easily, allowing GRAS to be extended into an even more
useful tool. This is crucial for using GRAS in a teaching environment where the tool must be tailored to
the student’s changing levels of understandings.

The seamless integration of Java with web pages allows dynamic delivery of GRAS program, and direct
execution from the browser. This allows users to be able to transfer their knowledge about navigating web
pages into a way to start the execution of a program. The flexible nature of the Internet even allows the
user to download the entire GRAS program to their local machine, which allow it to be run on machines
that are not connected to the Internet at all.

EXAMPLE OF THE GRAS PROGRAM

Two robots, Puma-560 and Pegasus, were chosen as the examples for illustrating the implementation of the
GRAS program. When the program was executed, the robot geometry was displayed along with two
menus: Teach Pendant and Robot Inspector, as shown in Figures 3 and 4 for the Puma-560 robot. The
Teach Pendant menu serves as an input device and the Robot Inspector menu is an area providing the robot
geometry information.

Figure 3: Puma Robot Figure 4: Puma Robot

There are two modes in the Teach Pendant menu: Joint and World. When the Joint mode was selected, the
six input values represent the values to be applied to the six joints respectively. When the World mode was
selected, the first three input values represent the (X, Y, Z) coordinates of the end effector position while
the next three values represent the rotation angles (O, A, T) of the end effector orientation.

Figure 5: Pegasus Robot

To illustrate the generality of the program, a five-axis Pegasus robot was simulated in Figure 5. By only
providing a geometry file to describe the robot, the GRAS program is able to simulate a robot of any
complexity, with any geometry configuration. It is also capable of performing direct kinematics
transformations on these arbitrary robots.

CONCLUSION

An interactive graphical computer simulation program, GRAS, has been developed. The program
simulates controlling a robot arm with a teach pendant, displaying the robot with a 3D solid model. GRAS
is available from the Internet http://www.egr.up.edu/contrib/hsu/gras.1, where it can be downloaded to the
user's computer for use. Although the program presented in this paper is complete for these purposes, the
authors would appreciate feedback on suggested improvements.

REFERENCES

1. J. Denavit and R.S. Hartenberg, "A Kinematic Notation for Lower Pair Mechanisms Based on
Matrices," J. Appl. Mech., 1955.

2. K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelligence,
McGraw-Hill Book Company, 1987.

3. Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control, The MIT Press,
1982.

4. Chan S. Park, Interactive Microcomputer Graphics, Addison-Wesley Publishing Company, 1985.

5. Foley, Van Dam, Feiner, and Hughes, Computer Graphics: Principles and Practice, Addison
Wesley, 1993.

