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Abstract. This paper presents a fast approach for edge-based self-
localization in RoboCup. The vision system extracts edges between the
field and field lines, borders, and goals following a grid-based approach
without processing whole images. These edges are employed for the self-
localization of the robot. Both image processing and self-localization
work in real-time on a Sony Aibo, i. e. at the frame rate of the cam-
era. The localization method was evaluated using a laser range sensor at
the field border as a reference system.

1 Introduction

The Sony Four-Legged Robot League (SFRL) is one of the official leagues in
RoboCup. Besides the use of four-legged robots, there are some other specialties
in that league. The first one is that the robot platform is standardized, i. e. the
Sony Aibo ERS-210 and ERS-210A (cf. Fig. 1a) are the only permitted systems,
and they can only be used without any modification. Therefore, in some sense the
SFRL can be seen as a software league, because it is neither possible nor required
to construct robots. Another characteristic is that the robots are completely
autonomous, i. e. there is no external computer beside the field (except from one
running the so-called game manager for the referee) that can help the players
in their calculations. The main sensor of the Sony Aibo is the camera located in
its head. The head can be turned around three axes (tilt, pan, and roll), and the
camera has a field of view of 58◦ by 48◦. Thus, all teams in the league have to
tackle the problem of directed vision (in contrast to omni-vision as often used
in the middle-sized league or in the first approaches of the small-sized league to
local vision systems). With 20 degrees of freedom, the color camera, and more
than 30 further sensors, the movements and the sensor equipment of the robots
are the most complex in RoboCup so far, and they have to be controlled by a
single 200 MHz MIPS processor (400 MHz in the ERS-210A), i. e. all algorithms
used, e. g. for image-processing or self-localization, have to be highly efficient to
run in real-time.
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Fig. 1. a) Two Sony Aibo robots and a ball. b) The field used in the SFRL.

The soccer field in the SFRL has a size of approximately 5m×3m (cf. Fig. 1b).
As the main sensor of the robot is a camera, all objects on the RoboCup field are
color coded. There are two-colored flags for localization (pink and either yellow,
green, or skyblue), the two goals are of different color (yellow and skyblue), the
ball is orange (as in all RoboCup leagues), and the robots of the two teams wear
tricots in different colors (red and blue). However, there are no flags on a real
soccer field, and as it is the goal of the RoboCup initiative to compete with
the human world champion in 2050, it seems to be a natural thing to develop
techniques for self-localization that do not depend on artificial clues. In the
SFRL, all teams have to participate in three technical challenges as part of the
RoboCup championship. In 2003, self-localization without the six two-colored
flags around the field is one of these challenges. This challenge can be seen as a
preparation to remove the flags in the soccer games in 2004.

2 Grid-Based Line Detection

The localization method presented in this paper relies on the detection of edges
between differently colored objects on the field: the edges between the skyblue
goal and the field, the edges between the yellow goal and the field, the edges
between the border and the field, and the edges between the field lines and the
field (cf. Fig. 2a). The key idea of the method presented here is not to actually
extract lines from the image, but pixels on lines instead. This approach is faster
and more robust against misinterpretations, because lines are often partially
hidden either by other robots or due to the limited opening angle of the camera.

A very common preprocessing step for vision-based object recognition is color
segmentation using color tables, e. g. [1, 9]. Such methods directly map colors to
color classes on a pixel by pixel basis, which has some crucial drawbacks. On
the one hand, the color mapping has to be adapted when the lighting conditions
change, on the other hand, the mapping results in a loss of information, because
the membership of a pixel in a certain class is a yes/no decision, ignoring the
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Fig. 2. Detection of lines. a) Three types of lines: field/goal, field/border, and field/line.
b) The scan lines are scanned from top to bottom and from left to right. White pixels:
increase in Y-channel, black pixels: decrease in Y-channel.

influences of the surrounding pixels. Some researchers try to overcome these
limitations [5], but the solutions are too slow to work under real-time conditions
on a robot such as the Aibo.

The key ideas of the image-processing method used in this paper are that
speed can be achieved by avoiding processing all pixels of an image, and a certain
independence of the lighting conditions can be reached by focusing on contrast
patterns in the three different color channels. In case of the Aibo, these channels
are Y, U, and V.

To find pixels on edges, in the image horizontal and vertical lines having a
distance of ten pixels to each other are scanned from left to right and from top
to bottom following the method described in [6] (cf. Fig. 2b). In contrast to
this method color classification is only applied when a significant decrease in the
Y-channel is recognized, because the field is darker then the adjacent surfaces
of the field lines, the border, and the goals. If such a decrease in brightness has
been detected, the colors above and below are this edge are checked for being
green, white, skyblue, or yellow using a color table (cf. [7] for a solution to this
problem without using color tables).

If the color above the decrease in the Y-channel is skyblue or yellow, the pixel
lies on an edge between a goal and the field. The differentiation between a field
line and the border is a bit more complicated. In most of the cases the border
has a bigger size in the image than a field line. But a far distant border might be
smaller than a very close field line. For that reason the pixel where the decrease in
the Y-channel was found is assumed to lie on the ground. With the known height
and rotation of the camera the distance to that point is calculated by projecting
it to the ground plane. The distance leads to expected sizes of the border and
the field line in the image. For the classification these sizes are compared to the
distance between the increase and the decrease of the Y-channel in the image.
The projection of the pixels on the field plane is also used to determine their
relative position to the robot (cf. Fig. 3).
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Fig. 3. The projection of edge points to the field plane. a) Vertically. b) Horizontally.

3 Self-Localization Based on Edge Points

An approach to self-localization is the so-called Monte-Carlo localization (MCL)
by Fox et al. [3]. It is a probabilistic method, in which the current location of
the robot is modeled as the density of a set of particles. Each particle can be
seen as the hypothesis of the robot being located at that position. Therefore,
such particles mainly consist of a robot pose (x, y, θ), i. e. a vector representing
the robot’s x/y-coordinates and its rotation θ.

In many implementations, MCL was used on robots equipped with distance
sensors such as laser scanners or sonar sensors, e. g. in the original one [3]. Only
in a few approaches, vision is used for self-localization [2, 11]. Self-localization
in RoboCup is different, because the area the robots can be located at is rela-
tively small, i. e. the field, but in that area the position of the robots has to be
determined quite precisely to allow different robots of the same team to commu-
nicate about objects on the field, and to follow some location-based rules of the
game. Odometry is very unreliable, because the robots walk, and they tend to
push each other around. As the Aibo is equipped with a sensor with a narrow
opening angle of 58◦, only a few objects usable for self-localization can be seen
at once, and sometimes misreadings are in the majority. The method presented
here takes these circumstances into account.

3.1 Monte-Carlo Localization

A Markov-localization method requires both a motion model and an observa-
tion model. The motion model expresses the probability for certain actions to
move the robot to certain relative positions. The observation model describes
the probability for taking certain measurements at certain locations.

The localization approach works as follows: first, all particles are moved ac-
cording to the motion model of the previous action of the robot. Then, the
probabilities qi are determined for all particles on the basis of the observation
model for the current sensor readings. Based on these probabilities, the so-called
resampling is performed, i. e. moving more particles to the locations of samples
with a high probability. Afterwards, the average of the probability distribution is



determined, representing the best estimation of the current robot pose. Finally,
the process repeats from the beginning.

3.2 Motion Model

The motion model represents the effects of actions on the robot’s pose. First
of all, an odometry position is maintained that is derived from the motions
performed (gaits, kicks, etc.). As this value is only a rough estimate, in addition
a random error ∆error is assumed that depends on the distance traveled and the
rotation performed since the last self-localization. For each sample, the new pose
is determined as posenew = poseold+∆odometry+∆error. Note that the operation
+ involves coordinate transformations based on the rotational components of the
poses.

3.3 Observation Model

The localization is based on the points on edges determined by the image-
processing system (cf. Sect. 2). Each pixel has an edge type (field, border, yellow
goal, or blue goal), and by projecting it on the field, a relative offset from the
body center of the robot is determined. Note that the calculation of the offsets is
prone to errors because the pose of the camera cannot be determined precisely. In
fact, the farther away a point is, the less precise the distance can be determined.
However, the precision of the direction to a certain point is not dependent on
the distance of that point.

Information Provided by Edge Points. The four edge types provide very
different information: The field lines are mostly oriented across the field. As lines
only provide localization information perpendicular to their orientation, the field
lines can only help the robot to find its position along the field. The field lines are
seen less often than the border. The border is surrounding the field. Therefore
it provides information in both Cartesian directions, but it is often quite far
away from the robot. Therefore, the distance information is less precise than the
one provided by the field lines. The border is seen from nearly any location on
the field. Goals are the only means to determine the orientation on the field,
because the field lines and the border are mirror symmetric. The goals are seen
only rarely.

If the probability distribution for the pose of the robot had been modeled by
a large set of particles, the fact that different edges provide different information
and that they are seen in different frequency would not be a problem. However,
to reach real-time performance on an Aibo robot, only a small set of samples
can be employed to approximate the probability distribution. In such a small
set, the samples sometimes behave more like individuals than as a part of joint
distribution. To clarify this issue, let us assume the following situation: as the
field is mirror symmetric, only the recognition of the goals can determine the
correct orientation on the field. Many samples will be located at the actual
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Fig. 4. Distances from edges. Distance is visualized as thickness of dots. a) Field lines.
b) Border. c) One goal. d) The other goal.

location of the robot, but several others are placed at the mirror symmetric
variant, because only the recognition of the goals can discriminate between the
two possibilities. For a longer period of time, no goal is detected, but the border
and the field lines are seen. Under these conditions, it is possible that the samples
on the wrong side of the field better match the measurements of the border and
the field lines than the correctly located ones, resulting in a higher probability
for the wrong position. So the estimated pose of the robot will flip from one
orientation alternative to the other without ever seeing a goal. This is not the
desired behavior, and it would be quite risky in actual soccer games.

To avoid this problem, separate probabilities for field lines, borders, and goals
are maintained for each particle.

Closest Model Points. The projections of the pixels are used to determine
the three probabilities of each sample in the Monte-Carlo distribution. As the
positions of the samples on the field are known, it can be determined for each
measurement and each sample, where the measured points would be located on
the field if the position of the sample was correct. For each of these measured
points in field coordinates, it can be calculated, where the closest point on a real
field line of the corresponding type is located. Then, the horizontal and vertical
angles from the camera to this model point are determined. These two angles
of the model point are compared to the two angles of the measured point. The



smaller the deviations between the model point and the measured point from a
hypothetic position are, the more probable the robot is really located at that
position. Deviations in the vertical angle (i. e. distance) are judged less rigidly
than deviations in the horizontal angle (i. e. direction).

Calculating the closest point on an edge in the field model for a small number
of measured points is still an expensive operation if it has to be performed for,
e. g., 100 samples. Therefore, the model points are pre-calculated for each edge
type and stored in two-dimensional lookup tables with a resolution of 2.5 cm.
That way, the closest point on an edge of the corresponding type can be deter-
mined by a simple table lookup. Figure 4 visualizes the distances of measured
points to the closest model point for the four different edge types.

Probabilities. The observation model only takes the bearings on the edges
into account that are actually seen, i. e., it is ignored whether the robot has
not seen a certain edge that it should have seen according to its hypothetical
position and the camera pose. Therefore, the probabilities of the particles are
only calculated from the similarities of the measured angles to the expected
angles. Each similarity s is determined from the measured angle ωseen and the
expected angle ωexp for a certain pose by applying a sigmoid function to the
difference of both angles weighted by a constant σ:

s(ωseen, ωexp, σ) = e−σ(ωseen−ωexp)2 (1)

If αseen and αexp are vertical angles and βseen and βexp are horizontal angles,
the overall similarity of a sample for a certain edge type is calculated as:

p = s(αseen, βseen, αexp, βexp) = s(αseen, αexp, 4) · s(βseen, βexp, 100) (2)

Calculating the probability for all points on edges found and for all samples in the
Monte-Carlo distribution would be a costly operation. Therefore, only a single
point of each edge type (if detected) is selected per image by random. To achieve
stability against misreadings, resulting either from image processing problems or
from the bad synchronization between receiving an image and the corresponding
joint angles of the head, the change of the probability of each sample for each edge
type is limited to a certain maximum. Thus misreadings will not immediately
affect the probability distribution. Instead, several readings are required to lower
the probability, resulting in a higher stability of the distribution. However, if the
position of the robot was changed externally, the measurements will constantly
be inconsistent with the current distribution of the samples, and therefore the
probabilities will fall rapidly, and resampling (cf. Sect. 3.4) will take place.

The filtered probability p′ for a certain edge type is updated (p′old → p′new)
for each point of that type:

p′new =

p′old + 0.01 if p > p′old + 0.01
p′old − 0.005 if p < p′old − 0.005
p otherwise.

(3)



The probability q of a certain particle is the product of the three separate prob-
abilities for edges of field lines, the border, and goals:

q = p′field lines · p′border · p′goals (4)

3.4 Resampling

In the resampling step, the samples are moved according to their probabilities.
This is done in two steps: First, the samples are copied from the old distribution
to a new distribution. Their frequency in the new distribution depends on the
probability q of each sample, so more probable samples are copied more often
than less probable ones, and improbable samples are removed. In a second step
that is in fact part of the next motion update, the particles are moved locally
according to their probability. The more probable a sample is, the less it is moved.
This can be seen as a probabilistic random search for the best position, because
the samples that are randomly moved closer to the real position of the robot will
be rewarded by better probabilities during the next observation update steps,
and they will therefore be more frequent in future distributions. The samples
are moved according to the following equation:

posenew = poseold +

∆trans(1− q)× rnd
∆trans(1− q)× rnd
∆rot(1− q)× rnd

 (5)

rnd returns random numbers in the range [−1 . . . 1]. Typical values used for
∆trans and ∆rot are 20 cm and 30◦.

3.5 Drawing from Observations

So far, the observation of edge points has only been used to determine the prob-
ability of the robot for being at a certain location. However, observations can
also be used to generate candidate positions for the localization, i. e. to place
samples at certain positions on the field. This approach follows the sensor reset-
ting idea of Lenser and Veloso [8], and it can be seen as the small-scale version of
the Mixture MCL by Thrun et al. [10]. As a single observation cannot uniquely
determine the location of the robot, candidate positions are drawn from all loca-
tions from which a certain measurement could have been made. To realize this,
the robot is equipped with a table for each edge type that contains a large num-
ber of poses on the field indexed by the distance to the edge of the corresponding
type that would be measured from that location in forward direction. Thus for
each measurement, a candidate position can be drawn in constant time from a
set of locations that would all provide similar measurements. As all entries in
the table only assume measurements in forward direction, the resulting poses
have to be rotated to compensate for the direction of the actual measurement.

Such candidate positions are used to replace samples with a low probability.
Whether a sample j is replaced or not is also drawn, based on the probability



of that sample in relation to the average probability of all samples, i. e. if the
following condition is satisfied:

rnd

n

n∑
i

qi > qj (6)

In this case, rnd provides a random number between 0 and 1. If a sample is
replaced, the new sample has probabilities p′ that are a little bit below the av-
erage. Therefore, they have to be acknowledged by further measurements before
they are seen as real candidates for the position of the robot.

3.6 Estimating the Pose of the Robot

The pose of the robot is calculated from the sample distribution in two steps:
first, the largest cluster is determined, and then the current pose is calculated
as the average of all samples belonging to that cluster. To calculate the largest
cluster, all samples are assigned to a grid that discretizes the x-, y-, and θ-
space into 10 × 10 × 10 cells. Then, it is searched for the 2 × 2 × 2 sub-cube
that contains the maximum number of samples. All samples belonging to that
sub-cube are used to estimate the current pose of the robot. Whereas the mean
x- and y-components can directly be determined, averaging the angles is not
straightforward, because of their circularity. Instead, the mean angle θrobot is
calculated as the orientation of the sum of all direction vectors:

θrobot = atan2

(∑
i

sin θi,
∑

i

cos θi

)
(7)

4 Experiments

To judge the performance of the localization approach, two different experiments
were conducted. The first one measures the localization error when the robot is
continuously moving. The second one evaluates the precision in reaching certain
goal points.

4.1 Experimental Setup

To be able to evaluate the precision of an approach for self-localization, a refer-
ence method for localization is required. Gutmann and Fox [4] have analyzed dif-
ferent localization approaches using the Aibo by manually controlling the robot
around using a joystick, and whenever it reached a position that was previously
marked, they stored the position of that marker and the position as calculated
by the robot in a log file. They also stored all perceptions of the robot, allowing
them to test different localization approaches based on the same data.

The setup used for the experiments presented in this paper is a little bit
different. To be able to continuously track the position of the robot, a laser



Fig. 5. The experimental setup. The laser scanner is fixed to the border of the field.
The robot carries a vertical paper tube on its back that is measured by the laser sensor.

range finder was placed at the border of the field. Within its opening angle of
180◦, it measured distances in a height of 35 cm, i. e. above the goals. The robot
used for the experiment was equipped with a paper tube on its back that was
high enough to be detected by the laser range finder (cf. Fig. 5). This way, the
position of the robot could easily be determined by searching for an area that was
significantly closer to the laser scanner than the neighboring areas. The shortest
distance within that area plus the radius of the tube was used as distance to the
robot. Together with the angle under which the robot was measured, the exact
location of the robot was determined.

In both experiments, the robot was continuously turning its head from left
to right and vice versa. The Monte-Carlo localization method used 100 samples.

4.2 Experiment 1

The goal of the first experiment was to judge the precision of the localization
approach when the robot is continuously moving. To accomplish this, the robot
was randomly moved around on the field with a maximum speed of 15 cm/s
using a joystick. The positions of the robot as calculated by the robot itself and
as measured by the laser scanner were stored in a file. The experiment took
about 18 minutes, resulting in approximately 5300 measurements.

The result was an average error of 10.5 cm, i. e. less than 4% of the width of
the soccer field and less than 2.2% of its length. 60% of the measurements had
an error less than this average. Figure 6a shows the path traveled and the errors
made. Please note that this outcome is similar to the results presented in [4],
with the two exceptions that Gutmann and Fox used color marks for localization,
and that they performed their experiments on a small 3m×2m field. In addition,
they worked on a log file, allowing them to optimally adjust the parameters of
their algorithms, e. g. the Monte-Carlo localization approach used needed only
30 samples.
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Fig. 6. Experimental results. Each line connects a position calculated by the robot
with one determined by the laser scanner. a) First experiment. b) Second experiment.

4.3 Experiment 2

The goal of the second experiment was to evaluate the precision in reaching
certain goal points. In this experiment, random goal positions were given to the
robot. The system then performed the so-called go-to-point skill to reach the
specified location. When the robot did not move anymore, the coordinates of the
goal position, the position calculated by the robot, and the position measured
by the laser scanner were stored in a file. In the experiment, 68 positions had to
be reached.

There were two results: the average error between the goal position and the
position reported by the laser scanner was 9.4 cm. 66% of the goals were reached
with smaller deviations. However, the go-to-point skill does not reach the goal
position precisely. It often stops one or two cm too early. Therefore, the average
error between the position measured by the robot and the position measured by
the laser sensor is smaller, namely 8.4 cm. 60% of the goals were even reached
with a smaller error. Figure 6b shows the 68 goal positions and the positions
reached by the robot.

5 Conclusions and Future Work

This paper presents an approach for edge-based self-localization in the SFRL. It
is based on a vision system that extracts edges without processing whole images.
The localization method is a variant of the well known Monte-Carlo localization.
While using only a small number of samples, it increases the stability of the
localization by maintaining separate probabilities for different edge types for
each sample. These probabilities are only adapted slowly. This results in a fast,
robust, and precise self-localization of the robot, and it can be seen as a milestone
for the SFRL, because it shows that a self-localization without the color beacons
is possible.

However, the results presented in this paper only show that edge-based local-
ization is possible for a robot that is alone on the field. Further experiments have
to show whether the localization method will also work during actual RoboCup



games. While the recognition of the edge points is quite robust, the head cannot
swing from left to right and back during actual soccer games, because the robot
has to track the ball. Therefore, the situation is different, and it requires for a
suitable control strategy for the head posture.
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7. M. Jüngel, J. Hoffmann, and M. Lötzsch. A real-time auto-adjusting vision sys-
tem for robotic soccer. In 7th International Workshop on RoboCup 2003 (Robot
World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelli-
gence. Springer, 2004. to appear.

8. S. Lenser and M. Veloso. Sensor resetting localization for poorly modeled mobile
robots. In Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), 2000.

9. F. K. H. Quek. An algorithm for the rapid computation of boundaries of run length
encoded regions. Pattern Recognition Journal, 33:1637–1649, 2000.

10. S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture proposal
distribution. In Proc. of the National Conference on Artificial Intelligence, pages
859–865. AAAI, 2000.

11. J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization for
mobile robots using an image retrieval system based on invariant features. In
Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
2002.


