
SimRobot – A General Physical Robot
Simulator and its Application in RoboCup?

Tim Laue, Kai Spiess, and Thomas Röfer

Bremer Institut für Sichere Systeme, Technologie-Zentrum Informatik, FB 3,
Universität Bremen, Postfach 330 440, 28334 Bremen, Germany.

E-Mail: {timlaue,kspiess,roefer}@tzi.de

Abstract. This paper describes SimRobot, a robot simulator which is
able to simulate arbitrary user-defined robots in three-dimensional space.
It includes a physical model which is based on rigid body dynamics. To
allow an extensive flexibility in building accurate models, a variety of
different generic bodies, sensors and actuators has been implemented.
Furthermore, the simulator follows an user-oriented approach by includ-
ing several mechanisms for visualization, direct actuator manipulation,
and interaction with the simulated world. To demonstrate the general ap-
proach, this paper presents multiple examples of different robots which
have been simulated so far.

1 Introduction

When working with robots, the usage of a simulation is often of significant im-
portance. On the one hand, it enables the evaluation of different alternatives
during the design phase of robot systems and may therefore lead to better de-
cisions and cost savings. On the other hand, it supports the process of software
development by providing an replacement for robots that are currently not on-
hand (e. g. broken or used by another person) or not able to endure long running
experiments (e. g. learning tasks [1]). Furthermore, the execution of robot pro-
grams inside a simulator offers the possibility of directly debugging and testing
them. This is a great benefit when working with platforms that do not offer any
direct debugging facilities, e. g. the Sony AIBO robot.

In the past, several robot simulators have been developed with different main
focus on complexity, accuracy, and flexibility. There are also differences in the
possibility of creating and integrating own robot models and virtual environ-
ments. Some of the simulators are restricted to a two dimensional environment
or are only approximating dynamics and realistic interaction of the robots with
the environment. In the following, we give a short overview of current related
works on robot simulators with accurate dynamics simulation for three dimen-
sional environments and with relevance to the RoboCup domain. These will be
compared with SimRobot.
? The Deutsche Forschungsgemeinschaft supports this work through the priority pro-

gram “Cooperating teams of mobile robots in dynamic environments”.



UCHILSIM [1] is a robot simulator developed by the University of Chile. It is
specially designed for the RoboCup Four-legged League. The simulator contains
dynamics simulation using the Open Dynamics Engine (ODE) [2], a graphics
engine, and has a window based graphical interface. The environment and the
robots are described in a VRML structure extended by nodes for simulator
elements and physical attributes. It has interfaces to their UChile1 software
package and their learning component. At the current stage, this simulator is
rather specific for one RoboCup league.

Another 3-D simulator used in the RoboCup domain is Übersim [3], which has
a focus on vision-centric robots in dynamic environments. It has a client/server
based architecture, where clients communicate with the server over TCP/IP. The
simulator also uses ODE for dynamics simulation. Own robots can be modeled
by programming their structure in C classes. In the current release [4], only two
sensors are predefined: a camera sensor and an inclinometer. At the moment
there seems to be no graphical user interface for interacting directly with the
robots or the environment during simulation time.

A more general 3-D multi-robot simulator with graphical interface and dy-
namics simulation is Gazebo [5], a part of the Player/Stage project [6]. This
simulator has a large variety of sensors and comes with models of existing robots
such as the Pioneer2DX or the SegwayRMP. The robots and sensors can be con-
trolled by the Player server or controllers can be written using a library provided
with the simulator. The simulated environment is described in XML files using
several predefined elements and robots. It also offers the possibility of creating
and integrating own robots as plug-ins but this has to be done by code-based
modeling in C.

Webots [7, 8] is a commercial robotic simulator developed by the Cyberbotics
Ltd. It has an ODE-based physics simulation and provides several robot models
such as Sony Aibo, Khepera, or Pioneer2. The robots and the environment are
described using the VRML standard for graphical models, extended by nodes
for the Webots elements, sensors, and physical attributes. Controllers can be
programmed in C++ or Java and connected to third party software through a
TCP/IP interface.

In comparison with these simulators, the following features of SimRobot may
be pointed out and will be described in this paper: The simulator is not limited to
any special class of mobile robots1. By using an XML-based modeling language,
users are enabled to specify robots and their environments completely without
any additional use of other programming languages. A large set of body elements,
actuators and generic sensors allows the free composition of arbitrary robot
models. An important element of simulations, which is ignored in many cases, is
the support of the work of the user. This is addressed by SimRobot by providing
several possibilities of visualization and interaction with the simulated world.

To simulate rigid body dynamics, SimRobot also uses ODE, since this engine
has a wide variety of features and has been used successfully in many other

1 Admittedly, SimRobot will not support the special domains of underwater robotics
and aircrafts.



SimRobot Executable Scene

SimRobotCore GUI Controller

Loaded

Linked

Simulation

C++ Components

XML Description

Fig. 1. The modules of SimRobot and their dependencies.

projects. The visualization as well as the computation of imaging sensor data is
based on OpenGL, because this industry standard offers the best performance
on modern hardware on different platforms.

Previous works on this simulator project have been a kinematic robot simu-
lation [9] and a preliminary release (without dynamics) for the GermanTeam in
the Sony Four-legged Robot League [10].

This paper is organized as follows: Section 2 describes the general architecture
of SimRobot, Section 3 shows several special features of the user interface, the
Sections 4 and 5 describe the elements which SimRobot is able to simulate, some
applications of the simulation are shown in Section 6, the paper ends with the
conclusion in Section 7.

2 Architecture

2.1 Components of the simulator

As shown in Fig. 1, SimRobot consists of several modules that are linked
to one single application. This approach, which is different from many other
client/server-based simulation concepts, has been chosen because it offers the
possibility of halting or stepwise executing the whole simulation without any
concurrencies. It allows also a more comprehensive debugging of the executed
robot software.

The main components of SimRobot are:

SimRobotCore. The simulation core, which may also be qualified as engine or
kernel, is the most important part of the application. It models the robots
and the environment, simulates sensor readings, and executes commands
given by the controller or the user. Even most parts of the visualization are
integrated into the simulation core.



<Hinge name="subWheelAxis">

<AnchorPoint x="0.022" y="0" z="0"/>

<Axis x="0" y="1" z="0"/>

<Elements >

<Cylinder radius="0.006" height="0.004">

<Rotation x="90" y="0" z="0"/>

<Appearance ref="VeryDarkGray"/>

<PhysicalAttributes >

<Mass value="0.02"/>

</PhysicalAttributes >

</Cylinder >

</Elements >

</Hinge>

Fig. 2. An excerpt from a scene description using the RoSiML language. A sub-wheel
of a Small Size robot (see Sect. 6) is modeled via a hinge joint and a cylinder.

The kernel is platform independent. It is connected to a user interface and
a controller via a well-defined interface. This enables an easy porting to
other platforms as well as the embedding into other applications. A previous
version had been used in the RobotControl software of the GermanTeam
[10]. At the moment, the current kernel becomes integrated in the Linux
framework of our Small Size team (see Sect. 6).

GUI The user interface is responsible for the display of information (e. g. dif-
ferent views of the simulated scene) and for the interaction with the user. It
is described in more detail in Sect. 3.

Controller The controller implements a sense-think-act cycle. In each simula-
tion step, it is called by the simulation, reads the available sensors, plans the
next action, and sets the actuators to the desired states. A controller which
is suitable for the modeled scene has to be provided by the user. Normally,
it contains the control software of the simulated robots, but it may also be
left empty.

Scene The specification of the robots and the environment, in the context of
SimRobot named as scene, is modeled via an external XML file and loaded
at runtime. It is described in the following section.

2.2 Specification of robots and their environment

The use of an external specification language allows the modeling of scenes with-
out any modifications or extensions of the source code of the simulator. Thus
the modeling process becomes simpler and people without programming skills
are also enabled to use the simulator.

Together with researchers from the Fraunhofer Institute for Autonomous In-
telligent Systems, the specification language RoSiML (Robot Simulation Markup
Language) [11] has been developed (see example in Fig. 2). It is a part of a



joint effort to establish common interfaces for robot simulations. The aim is to
exchange components between different simulators and to allow the migration
of robot models among simulators without any complicated adaptions.

The language by itself has been specified in XML Schema. This is a popular
choice, since XML is supported by a variety of editors and there also exist many
ready-to-use parsers. The cascaded structure of XML documents is also quite
suitable to reflect the structure of scenes inside the simulator, as it uses the scene
graph approach from computer graphics to organize and process all elements.

3 User Interface

The user interface (Fig. 3) of SimRobot has been designed to allow as much
visualization and interaction as possible as well as to be flexible enough to handle
simulations of any different kind of environments. Therefore a tree of all objects
of the scene is the starting point for all user operations. Each node of that tree
may be selected to open a view for that kind of object. In case of actuators (e. g.
a hinge joint), a control for direct manipulation is opened. For sensors, several
different visualization modes are implemented. Through this concept, it is also
possible to open several views of arbitrary subsets of the scene graph (as shown
in Fig. 3). These views offer a zoom, rotation, panning and different grades
of detail as well as the possibility to switch between the appearance and the
physical model of single objects, as shown in Fig. 4. Furthermore, it is possible
to interactively drag and drop and rotate objects inside the scene or to apply a
momentum to an object (e. g. to let a ball roll). This is quite useful to arrange
different settings while testing e. g. a robot behavior.

To add own views to a scene (as e. g. the world state in Fig. 3), an interface
for user-defined views has been implemented which enables the definition of own
debug drawings from inside the controller.

Other elements of the user interface are an editor for the scene description
files and a console for text output from the controller.

4 Physics and Actuators

As aforementioned, ODE is used for simulating rigid body dynamics. Therefore,
the set of simulated objects results from the abilities of that engine. Nevertheless,
we had to implement several extensions to fulfill the requirements of our general
approach.

4.1 Rigid bodies

For the design of robot shapes and the environment, several rigid bodies (mostly
adopted from ODE) may be used. The basic bodies are: Box, Cylinder, Capped-
Cylinder and Sphere. Each of them has divers attributes describing its appear-
ance (e. g. color) and physical behavior (e. g. mass or friction).



Fig. 3. The user interface of SimRobot while simulating the German Team 2004. The
internal frames show (from left to right, top to bottom): the object tree, a view of
the whole scenario, a simulated image of an AIBO camera including overlays from the
image processor of the simulated software, a user defined view of a robot’s world model,
a close view of a single robot, and the console.

This set has been extended by the so-called ComplexShape. A body of that
class has a graphical representation based on a number of geometric primitives
and a physical representation based on a set of basic bodies which may approx-
imate the shape. This approach allows the use of sightly detailed elements with
an accurate dynamic and collision behavior. The parts of the AIBO model in
Fig. 4 have been described by ComplexShape objects.

4.2 Actuators

To achieve a high grade of flexibility in creating robots, SimRobot supports
various kinds of joints corresponding to the joints provided by ODE. There



a) b)

Fig. 4. A Sony AIBO model consisting of a set of ComplexShape objects. a) The
graphical representation with details such as toes, tricot elements and LEDs on the
head. b) The physical representation consisting of simple boxes, spheres, and capped
cylinders.

are simple rotational joints with one axis or two perpendicular fixed axes, a
translational joint, a ball and socket joint and a simple wheel suspension like
joint with free rotation about one axis and rotation and compression along the
other axis. The joints can connect two movable rigid bodies or one body with
the static environment. The range of motion of a joint can be limited. Joints
can be unpowered or a motor can be attached to each axis. Due to the fact
that the motor provided by ODE has no specific controller, we implemented a P
and a PID controller to simulate servo motors. Additional controllers can easily
be integrated, if necessary. Besides the servo motor, a simple velocity controlled
motor is also provided. In ODE, joints are frictionless, i. e. a pendulum will never
stop swinging if no collision occurs. So we implemented a simple friction model
for damping motion in unpowered joints.

4.3 Automatic generation of object compounds

In SimRobot it is possible to specify complex rigid bodies through using the
provided simple elements without explicitly summarizing them with additional
XML tags in the scene description or performing additional calculations by the
user. The structure of the scene tree is used for this automatism. In the scene
tree, all elements of a subtree beneath a joint down to the leaf nodes or to other
joints are treated as one single physical body. All elements in this compound are
stuck together and behave as one single object. For correct dynamical behavior,
the masses, centers of masses and inertia tensors of all contained objects are
combined to a single rigid body. The geometrical representations of all combined
objects build the collision behavior of the compound object. In addition, single
objects or object groups can be excluded of the above described automatism
of combining and are treated as independently moving objects or compound
objects.



a) b)

Fig. 5. The results from two different sensors: a) An image from a simulated AIBO
camera and b) a depth image inside a demo scene mainly consisting of boxes and
cylinders.

5 Sensing

SimRobot realizes sensor simulation via a set of generic sensor classes, i. e. it
does not include specific sensors such as a special laser range finder or similar
devices. The available sensor classes are:

Camera. The camera sensor generates a two-dimensional array of RGB pixels
which have a color depth of 24 bits (one example is shown in Fig. 5a). Aside
from the standard perspective projection, it is also possible to use a spherical
projection with an equal angular distance between all pixels. To speed up
the process of image generation significantly, SimRobot is able to support
hardware accelerated off-screen rendering. This is a feature which several
manufacturers implement on their graphics hardware nowadays.

Distance Sensor. This sensor is quite equal to the camera, but instead of
pixels, it returns distances gained from the depth buffer of rendered images.
Due to its generic approach, there exist several applications for this sensor:
the generation of depth images (Fig. 5b), simulating a laser range finder
(Fig. 6b), or being modeled as a single value PSD sensor in an AIBO robot.

Bumper. For detecting the collision of objects, e. g. to model a touch sensor,
the so-called Bumper has been implemented. Unlike all other sensors, it is
not a special object in the scene graph. Furthermore, each body or group of
bodies may be assigned to be collision sensitive. This allows the creation of
arbitrarily shaped touch sensors. The information about collisions is directly
gained from the dynamics engine. As an addition, it is also possible for the
user to interactively provoke the sensing of a collision. We have used this
feature e. g. for pressing the buttons of simulated AIBO robots.

Actuator State. There also exist interfaces for inquiring the current states
of actuators. This includes the angles of joints as well as the velocities of
motors.



a) b)

Fig. 6. Applications of SimRobot: a) The physical representation of a Small Size plat-
form with an omnidirectional drive. The lines around the wheels denote the axes of
the sub-wheels. b) A simulated office environment with a navigating robot. The lines
starting at the robot denote the rays of its laser range finders.

6 Applications

As aforementioned, SimRobot has been used by the GermanTeam to simulate the
robots and the environment of the Sony Four-legged League. In previous years, a
kinematic version of SimRobot has been used, which needed several workarounds
to simulate correct body postures e. g. when executing kick motions. Due to the
absence of a collision handling, the ball had also to be moved manually. Together
with the physical simulation, a new model of the AIBO ERS-7 robot, which is
shown in Fig. 4, has been created. The appearance was kept, but all elements are
now additionally represented by rigid bodies, which are connected with adequate
joints to allow an accurate simulation of all 20 degrees of freedom. This model
enables a direct execution of the desired motions as well as an accurate handling
of collisions with other robots or the ball.

A completely different kind of robots is used in the RoboCup Small Size
League. To allow fast and flexible motions, wheel-based robots with omnidirec-
tional drives are used. These consist of three or four wheels which are arranged
in a triangle or a rectangle respectively. Each of these wheels is surrounded by
a set of small passive sub-wheels which enable the robot to move sidewards.
This approach has also found its way into the Middle Size League. To integrate
SimRobot into the environment of our Small Size team B-Smart [12], a platform
with such a drive has been modeled, as shown in Fig. 6a. The XML description
of a single sub-wheel has already been presented in Fig. 2. Though having a
completely different structure than the previously modeled walking robot, the
platform has been simulated successfully, showing the expected motion behavior
when driving around.

An application outside the RoboCup domain is the simulation of Rolland -
The Bremen Autonomous Wheelchair [13]. This robot has a differential drive
and is equipped with two laser range finders which are connected to a standard



notebook which executes the control software. Rolland performs navigation tasks
in office environments, as shown in Fig. 6b. Since this robot currently has a two
dimensional model of the world and is programmed to never collide with other
objects, the physical simulation is of minor usefulness for this platform. Never-
theless, it demonstrates the application of SimRobot in a large-scale environment
and the usage of distance sensors.

7 Conclusion and Future Works

This paper presented SimRobot, a robot simulator which supports rigid body
dynamics and the simulation of a variety of sensors and actuators. Through its
generic concept and the use of a special modeling language, it is able to simulate
arbitrary user-defined robots without any modifications of the simulator itself.
This has been shown by means of several examples of completely different robot
platforms which have been simulated successfully. The flexible approach of the
user interface has been able to offer a variety of visualizations and options for
interaction for each simulated environment.

The German Team as well as the B-Smart team will use this simulator in
2005. It will also be made available to other RoboCup teams, as described in the
following section.

Among other things, future works will concentrate on the simulation interface
standardization efforts described in Sect. 2.2. These will include generic plug-
in interfaces for sensors and actuators as well as the definition of a common
controller interface.

Availability of SimRobot

The simulator presented in this paper will be released under an open source
license in the near future. The most current available version, which does not
include the dynamics engine but most other features, has been released as a
part of the German Team 2004 code release [14]. An up-to-date binary version
for Microsoft Windows which includes several examples is also available [15]. A
release of a Linux version is planned.

Acknowledgements

The authors would like to thank all people who contributed to the development
of SimRobot by directly providing code or by testing and reporting problems,
the authors of the Open Dynamics Engine for making available the basis for our
physical simulation, and the researchers from Fraunhofer AIS for their contribu-
tions to the Robot Simulation Markup Language.



References

1. Zagal, J.C., del Solar, J.R.: UCHILSIM: A Dynamically and Visually Realistic
Simulator for the RoboCup Four Legged League. In: RoboCup 2004: Robot Soccer
World Cup VIII. Lecture Notes in Artificial Intelligence, Springer (2004)

2. Smith, R.: Open Dynamics Engine - ODE (2005) www.ode.org.
3. Go, J., Browning, B., Veloso, M.: Accurate and flexible simulation for dynamic,

vision-centric robots. In: Proceedings of International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS’04). (2004)

4. Go, J., Browning, B., Veloso, M.: Carnegie Mellon UberSim Project (2004)
http://www-2.cs.cmu.edu/ robosoccer/ubersim/.

5. Koenig, N., Howard, A.: Gazebo - 3D multiple robot simulator with dynamics
(2004) http://playerstage.sourceforge.net/gazebo/gazebo.html.

6. Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In: Proceedings of the 11th International
Conference on Advanced Robotics, Coimbra, Portugal (2003) 317 – 323

7. Michel, O.: Cyberbotics Ltd. - WebotsTM: Professional Mobile Robot Simulation.
1 (2004) 39–42

8. Cyberbotics Ltd.: Cyberbotics Webots (2005) http://www.cyberbotics.com/

products/webots/.
9. Röfer, T.: Strategies for using a simulation in the development of the Bremen

Autonomous Wheelchair. In Zobel, R., Moeller, D., eds.: Simulation-Past, Present
and Future, Society for Computer Simulation International (1998) 460–464

10. Röfer, T., Laue, T., Burkhard, H.D., Hoffmann, J., Jüngel, M., Göhring, D.,
Lötzsch, M., Düffert, U., Spranger, M., Altmeyer, B., Goetzke, V., v. Stryk,
O., Brunn, R., Dassler, M., Kunz, M., Risler, M., Stelzer, M., Thomas, D.,
Uhrig, S., Schwiegelshohn, U., Dahm, I., Hebbel, M., Nisticó, W., Schumann,
C., Wachter, M.: GermanTeam RoboCup 2004 (2004) Only available online:
http://www.robocup.de/germanteam/GT2004.pdf.

11. Ghazi-Zahedi, K., Laue, T., Röfer, T., Schöll, P., Spiess, K., Twickel,
A., Wischmann, S.: Rosiml - robot simulation markup language (2005)
http://www.tzi.de/spprobocup/RoSiML.html.

12. Kurlbaum, J., Laue, T., Lück, B., Mohrmann, B., Poloczek, M., Reinecke, D.,
Riemenschneider, T., Röfer, T., Simon, H., Visser, U.: Bremen Small Multi-Agent
Robot Team (B-Smart) Team Description for RoboCup 2004. In: RoboCup 2004:
Robot Soccer World Cup VIII. Lecture Notes in Artificial Intelligence, Springer
(2005)

13. Mandel, C., Hübner, K., Vierhuff, T.: A Demonstrator for Cognitive Aspects in
Service Robotics. In: XXVII Annual Meeting of the Cognitive Science Society
(submitted). (2005)

14. German Team: German Team web site. (2005) http://www.germanteam.org.
15. Röfer, T.: SimRobot Website (2005) http://www.tzi.de/simrobot.


