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1 Introduction

The CMDasH'07 team follows our past teams CMDash’06, CMDash’05, CM&Eat,
CMPack’'03, CMPack'02, CMPack’01, CMPack’00, CMTrio’'9N&a CMTrio'98 [5,
3,7,6]. We have continued our research into new ways of niogl¢he world and
maintained our focus on robust behaviors and cooperatiahid paper, we provide an
overview of the specific technical components in our teamfaods in detail on several
recent additions.

2 Vision

The vision module is responsible for converting raw YUV caanienages into infor-
mation about objects that the robot sees and are relevahettask. This is done in
two major stages. The low level vision processes the whaladrand identifies regions
of the same symbolic color. As in previous years, we use CMWif2, 1] for our low
level vision processing. The high level vision module usese regions to find objects
of interest in the image. We have continued to improve bgbeets of the robot’s vision
which allows our team to operate well in a variety of lighticgnditions.

2.1 Robot Detection

One way to address the problem of robot detection is to sdaraled or blue regions
in the color segmented image, and if the regions conformruestefined constraints, a
robot is then detected. This seems like a reasonable so|timovever, in our experience
the shade of blue of the robot uniforms is so dark that it shapvas black in the color
segmented images. Since the background color is black anshddows on the robot
are also black, finding blue robots effectively with this had is difficult. In addition,
trying to correct the segmentation to emphasize the retiognif the uniform color
blue results in classifying a lot of the background and shadas blue as well, so the
problem still persists. Instead, we chose a solution thatlavéirst identify where the
field was located in the image and subsequently detect désthing on the field.
Finally, the detected obstacles were assumed to be rolsatise @nly obstacles on the
field during game play, besides the ball, are robots.



Pre-processing the segmented image The first pre-processing step is to reduce the
image size of the segmented image. The original 208x160eepd image is reduced
by a factor of four, by essentially scanning across the inmadgeg grid lines that are
parallel to the image horizon line and recording one out efg¥our pixels. By scan-
ning along these grid lines instead of the image rows/cokyrime algorithm is able to
account for any rotation of the AIBOs camera. The image isiced in order to sim-
plify and speed up the task of searching for robots in the enAg further processing is
performed on this reduced image. After size reduction,riiegie is scanned to find the
field horizon. The field horizon is defined as the line that beparates the background
from the soccer field in the original image, and that is pat#&tl the image horizon line.
The field horizon is detected by scanning the columns of tdeaed image looking
for the start of a sequence of green pixels. The height of idjeelst point in the image
that starts a sequence of green pixels denotes the locdtiba field horizon. After the
field horizon has been detected, field lines are removed mngogthe image columns
for small white regions surrounded by green. Field lines @redcenter circle are re-
moved because they tend to interfere with the detection stbabes on the field. Figure
1 shows an example of a reduced image and detected field horizo

(a) The original segmented image  (b) The reduced image wittected
field horizon

Fig. 1.

Detecting Obstacle Regions Using the assumption that robots are always on the field,
we can search below the field horizon for pixels that are ne¢gi(not field) and not
orange (not ball) and group them to form obstacles, whichaviéntually become our
detected robots. Each column in the image is scanned betofietd horizon searching
for the start of a sequence of four green/orange pixels, mttwioint the scanned length
along the column is recorded and scanning is initiated orfdt@wing column. This
procedure essentially finds the length along each column obatacle that intersects
the field horizon line. Columns with small lengths are thrawih Neighboring columns
with lengths a reasonable amount apart are grouped togdtherengths of all the
columns within a group are averaged to find the length forghatip. Using this length,



along with the starting and ending column positions, a boumtiox is created for
each group; these bounding boxes represent the obstacétsdmn the field. Resulting
bounding boxes that are too small or in some way inadequatesanoved. The final
bounding boxes are considered to encompass robots andgeaptbe output of the
robot detector. Example outputs are shown in Figure 2.

(a) Initial column scan results  (b) Final detected obstacle(c) Robot detection overlayed
for obstacle colors after grouping columns onto originaga

Fig. 2.

Robot Color and Distance Estimates The team color is determined by searching for
red regions within the bounding box of the detected robbtarvincing red regions are
found within a robots bounding box, the robot is said to behenred team; blue team
otherwise. The distance to a detected robot is calculat¢aliyg the center pixel of the
bottom line of its bounding box and projecting a ray througbnito the ground plane.
The distance to the intersection point is considered to éelistance to the robot. The
robot detector is able to detect robots up to a maximum distaf approximately 1.2
m away. Results of the robot detector along with the predittéeam colors are shown
in Figure 3.

3 Localization

The CMDasH'07 team continues to use our Monte Carlo localization (MGy3tem
developed for use on the AIBOs to continually estimate thieibal location on the field.
Our MCL algorithm uses a sensor-based resampling techticugelocalize the robots
when they are lost called Sensor Resetting LocalizationTH#is algorithm is robust
to modelling errors including unmodelled movements, suehohots being pushed or
removed for penalties, as well as for systematic errors fiehelandmarks, goals, and
field lines are used as features for the localization system.

4 World Modeling

To act intelligently in complex and dynamic environmenggs of mobile robots must
estimate the position of objects by using information aiedifrom a wide variety of



Fig. 3. A sequence of images showing robot detection results.

sources. Some examples of such sources include trackeet otffrmation from each
robot’s sensors, models of how each robot is able to affecttirironment and manipu-
late those objects within it, and information obtained freammates. For any problem
of reasonable complexity, teams of mobile robots do not fa@eensors necessary to
perceive all aspects of a dynamic environment. As a refidtsources of information
used in such a state estimator can be corrupted by noisestleatremely difficult if
not impossible to fully model. In our research into robusints of robots capable of
operating within dynamic adversarial environments, weetfaund that not all sources
of information about a single quantity of interest can bediath equally. To address
this problem, we utilize a method for reasoning over a disooius hypothesis space
where a strict ordering is imposed on the sources of infaonaBy segmenting the
information sources into different classes, a prioritibégtrarchy of state estimates are
inferred. Using this hierarchy, the decision process thatgs each individual robot’s
actions can easily select the most informative state etitnaise as its input. A robot’s
actions can affect its perception of the environment as agthe environment. By rea-
soning about the expected utility of certain classes ofrestts over others, the robot
can select the “best” estimate from the set to act upon. Thiprvide more informa-
tion to the robot that will in turn update the ordered hiehgrof possible estimates.

4.1 Updating Robot Models'M erging Robot Detection Results

Every vision frame presents new robot detection resultchviiust be incorporated
into the global model of the game state and potentially netcgainst previous ob-
servations of robot locations. Merging the robot detectisults with current models
of teammate and opponent robots is necessary to avoidisitaavhere two or more



robot models are created which pertain to the same physibatrSuch situations are
undesirable for two reasons:

1. The world model ceases to accurately represent the ¢gaeme state.
2. The robot models are not able to incorporate new locaiittogheir position his-
tory, thus limiting the accuracy of the motion model.

One method of modeling robot locations which does not ingaherging subse-
quent detection results is to project the current field ofwid the robots camera onto
the playing field of the world model, remove all robot obséinrs contained within
the viewing area, and replace them with new robot detectsalts from the current
vision frame if any exist. This method of robot modeling agihe merging/matching
problem by relying on the notion that when the world modek&dwmines that there are
teammate or opponent robots located in the field of view ofrtimts camera, the
new robot detection results will provide the most updatezhfimns for such robots,
and therefore allow for the previous observations to beadiad beforehand. While
this method provides a simple mechanism for modeling rate#tions and avoids, for
the most part, creating multiple models for single physiohbts, it does not maintain
a position history for the robots being modeled and hence do¢ provide enough
information for velocity estimation/motion modeling. $awe are interested in mod-
eling the motion of teammate and especially opponent robafave not adopted this
simplified modeling method and instead have implementedsaorewhich maintains a
history of recorded positions on the playing field for eactdeled robot and hence per-
forms the necessary merging/matching of new robot detecésults with those made
previously.

Update Algorithm Merging new robot observations with previous observatfoois
the world model involves matching robot models with new itgtmsition estimates, or
rather, identifying which robot model, if any, should getdaped with a new position
estimate. Robots are represented in the world model as lpgg}ions in the global
coordinate system of the soccer playing field, however fachiag purposes it is also
necessary to take into account the physical dimensionsabthot. The modeled robot
radius is double the actual physical robot radius to accéamerror in the location
estimates. The following is an outline of the robot modelatedlgorithm:

The time-to-live counter is decremented for all robot medelthe current field of
view of the robot projected onto the playing field. The timeive counter represents
the number of frames allowed that contain the robot modé@éthe projected field of
view, but not detected from vision, and is initially set to ft@mes. Once the time-to-
live counter reaches zero, the robot observation is remfreed the world model, as
it is deemed inaccurate. This field of view reasoning is simib the one used in the
simplistic method presented earlier, however instead ohédiately removing robot
observations that are within the projected field of view,tthree-to-live counter is intro-
duced to provide robustness against errors in the visuattieh method and field of
view estimation.

All robot observations returned by vision are compared ragjahe robot models
already existing in the world model, in order to match thobsesvations that corre-
spond to the same physical robot. In finding a match for a nesgation, all potential



matches of robot models are evaluated and the best of theth@lbne most resem-
bling the new observation, is updated with the new positistimeate. A robot model
is considered a potential match with a new observation fraionr when the distance
between their respective locations on the field is less tivandbot radius lengths. The
procedure iterates through the robot models and the firsingtiat match found is con-
sidered to be the best match until another potential matfifuisd, at which point the
two are compared against one another and the one that isttke fitavith the new ob-
servation is made the new best match. This procedure cagtinatil all robot models
that are potential matches have been evaluated, and tharbesig them determined.
The algorithm for comparing two potential matches takes atcount the distance be-
tween both robot models and the visual observation locatimteam color of each
and that of the visual robot, and the position history sizéhefrobot models (larger is
better). If both robot models match up equally with the visiservation, then the best
match is kept the same.

If a robot model is found to match the new observation retditmgvision, its po-
sition is updated in the world model. However, if no existiopot model matches the
visual observation, then a new robot model is created in twdwnodel at the given
location and initialized with a timeout value of 4 secondse Timeout value is provided
in order to remove robot models considered out of date. ltlshbe noted that every
time a visual robot observation is matched with an existioigot model, the times-
tamp is updated and the timeout is essentially reset, spdssible for any given robot
model to exist within the world model for longer than 4 secqirab long as its position
is updated and existence reaffirmed from visual observation

4.2 Robot Motion Tracking

Tracking the motion of robots in the world model is useful foany aspects of the
game, but most importantly, by providing information abting movement of robots on
the field the current situation of the game can be more readigssed. For example,
by having a robot observe the motion of an opponent robotingltowards the ball
and correctly predict that the opponent will arrive to thé fiest, the robot can decide
to assume a more defensive role that would try to preventpipement from getting an
accurate shot on goal, rather than to continue walking tdsviire ball and potentially
getting scored on. In order to achieve this motion and spesédsament of robots on
the playing field, velocity estimates are calculated basethe observed sequence of
locations through time of the robots being tracked.

Velocity Estimation Each time a new visual robot observation is matched with an
existing robot model, the updated position of the robotdsext in the position history
list for that robot model. In order to facilitate the velgcttalculation on a robot model,
the robot position history is actually separated into tvasli the x-position list and
the y-position list. Each x or y position entry in the list® associated with the time
it was recorded. To avoid the calculation of spurious or ype®locity estimates, the
position history lists must contain the minimum number afareled positions before
any velocity calculation is performed for the robot modeheTminimum number of



positions is equal to 10, and is intended to represent abmerttird of a second of
motion information. The velocity calculation is performasifollows:

x-velocity The slope of the least-squares fitting line through the gstmmp, x-
position) data points is calculated and represehtg At = vz, the estimated velocity
of the robot in the x-direction.

y-velocity The slope of the least-squares fitting line through the €stamp, y-
position) data points is calculated and represehjgAt = vy, the estimated velocity
of the robot in the y-direction.

The calculated x and y velocities are combined to producedhecity vector es-
timate for the robot model, and this is the vector that is reggbto behaviors. The
velocity vector, once attached to the current position efribbot model, can be used
to predict the motion of the robot and enhance situationaramess during game play.
Another method would be to predict the future location of tbleot based on the cal-
culated least-squares line fit over the data, by finding thedyapositions along the
line at a certain time in the future. It should be noted, havgthat velocity estimates
are only available for robot models that are currently witthie field of view of the
robot, since no assumptions can be made about robots mowtaigle of view and we
want to minimize error in the estimates as much as possibées swt to provide false
information to behaviors.

Motion Tracking Results Figure 4 shows visual results of the robot modeling and
velocity estimation systems. The velocity estimate is espnted by a vector, which
is the visual representation of the direction and magnitfiggpeed) of motion of the
robot to which it is attached. The visual robot detectiorutssare also provided for
comparison/evaluation. The example illustrates the vglestimation fairly accurately
capturing the actual path of motion of the robot.

5 Behaviors

The introduction of visual detection and modeling of tearterend opponent robots
allows for the creation of a variety of different game bebasithat without such in-
formation were either impossible or very hard to implemBehaviors are able to gain
more information about the current state of the game, wHiotva for better situational
assessment and strategy building. Teammate robots callgcaact to the presence of
opponent robots and reason about the appropriate actidalsgdased on the situation,
instead of blindly reacting only to the ball. For examplensider the situation when a
robot walks towards the ball and it suddenly disappears frizmy when another robot
walks in front of it. If the robot has no knowledge on the lécatof other robots on the
field, it would most likely decide to start spinning in placeldok for the ball since it
has no idea where it could be and all directions of view arebylikely to contain the
ball. However, if the robot had information about the locas of robots on the field, it
could reason that the ball is being occluded by another rabdtthat is why it cannot
be seen. The robot could then decide to try and move arounwlioe in question and
search for the ball there. Many more behaviors are possitite the introduction of



Fig.4. Visual robot detection/modeling/velocity results fromaraing robot viewing moving
robot walking in nearly linear fashion from left to right

robot modeling, some of which have successfully been impterd and two of these
are presented in this section.

5.1 Navigation with Obstacle Avoidance

One of the most helpful behaviors as far as improving game lpds to be the ability

to navigate towards a desired target, whether it be an objecthe ball or a global

point on the field, while avoiding obstacles. Obstacles @figld are other robots, so
having robot locations within the world model and being ableasily access that in-
formation greatly facilitates the creation of such a bebiawlot only is it desirable to

avoid robots when traveling towards a desired location &v@mt running into them,
which wastes valuable time and makes reaching the targdt moce difficult, but also

to avoid penalties called against pushing robots. Creaimgffective obstacle avoid-
ance navigation behavior will help to minimize these péesjtin addition to helping

the robots get to where they want to go.

Navigation Behavior The navigation behavior that was developed consists of two

states and has the following state machine, beginning Witfirtitial state:



Go To Point The robot is directed to walk in a straight-line path diletbwards
the desired target. If the robot has been in this state fareetl0.3 seconds, is roughly
facing the target and there is a robot blocking the path intfqgick the most appropriate
side to move to, left or right, depending on whether or nobgen and its proximity to
the target, and transition twvoid

Avoid The robot is directed to move to the side chosen in the posvitate while
maintaining a minimum distance away from the robot in frortterefore, the robot
need not move directly sideways, but can add a forward watkpmment as long as the
distance to the other robot remains above or equal to thenmimi allowable. If the
robot has been in this state for at least 0.5 seconds andithecerobot blocking the
path in front, or the robot has been in this state for more thaaconds, transition to
Go To Point

The time constants are to avoid oscillations in the behaasiat in the case of the
Avoid state, also to encourage continuing progress towards #sireddarget. The be-
havior is very simple, thanks to the information providedatrobot locations in the
world model, yet it is very effective during actual game attans. Figure 5 provides an
example of a situation where the navigation algorithm isiu$ée red robot detects the
presence of the blue robot in its path towards the ball aniideto avoid it by moving
towards the left side, as it is open and closest to the target.

(a) Photo of the obstacle avoidance situation (b) Segmémage taken during situation
with the path chosen by the algorithm with robot detectoulteshown
shown in light green

Fig.5.

Results The navigation behavior has been successfully integratiedthe CMDash

team game play, and has helped to improve the team perfoethming actual com-
petition. Figure 6 provides video capture images takenngua game that show the
execution of the navigation behavior and how it allowed @inat to gain control of the
ball even though two separate robots from the opposing teara in its way initially.



Fig.6. Video capture images of blue robot performing navigationaas ball with obstacle
avoidance during a game

5.2 Dodging Opponents when Shooting

The behavior to avoid, or dodge, opponent robots when atteghfp shoot on goal or
down the field is a similar yet slightly different behaviooifn that of navigating while
avoiding obstacles. This behavior was first implemented.eed with great success by
UTS in 2004, when the team reached the finals of the intemalticompetition. The
dodge behavior only executes after the robot has gainedat@itthe ball beneath its
chin and wants to shoot, or kick the ball, towards a specifiation. Once the robot
grabs the ball, the Turn behavior executes, which atteropthdnge the orientation of
the robot so that it is facing the desired target. Once tha hass reached the desired
orientation, it checks for the existence of opponent robofsont of the robot by ac-
cessing all robot locations from the world model, and sediagy of them fall within
the region in front of the robot. If so, the Turn behavior tloatls the Dodge behavior,
whose job it is to try and avoid the opponent robot before shgdowards the target,
S0 as to get a clear shot off.

Dodging Behavior The dodging behavior has three states:

Initial: The direction of motion is chosen, left or right, in ordeaimid the opponent
robot in front. The dodge direction is chosen simply basedvhith side is closer to
the inside of the field, because dodging towards the outditteedield and accidentally
leaving the field causes loss of possession of the ball. Ti@m$o Dodge

Dodge The robot is directed to move to the side chosen in the puswstate at full
speed, with no forward walking component. If the robot hasrbim this state for at
least 0.3 seconds and there are no longer robots in fromt tthasition toKick. If the
robot has been holding the ball for approximately 3 secothds abort the behavior to
avoid penalty.



Kick: Kick the ball forwards towards the target. The behaviohe&treset, and ready
to be called again by the Turn behavior if necessary.

Results The dodging behavior, like the navigation behavior, hasilseecessfully inte-
grated into our team game play, and has helped tremendauisigreasing the chances
of our team scoring after gaining control of the ball whilenthe opponent goal area.
The dodging behavior is also very effective in avoiding opgat robots when trying to
clear the ball down the field. Figure 7 shows video captureygsaf the dodge behav-
ior being executed during competition. The red robot aftabping the ball detects the
presence of the opponent goalie robot, then quickly sidesdteits right side until the
goalie is no longer impeding the shot, then kicks forward scates a goal.

Fig. 7. Video capture images of red robot dodging opponent bluetriobfore shooting and scor-
ing goal

6 Upcoming Research

The focus of our upcoming research will be on improving oamegame strategy for
individual robots and among teammates. Currently the rgtsion and modelling is
only used for navigation and dodging, however we would liéncorporate it into
the behaviors to increase situational awareness and to bedter strategic decisions.
There are various more behaviors that can be created to thlemtage of the infor-
mation provided by the robot detection and modeling prooesjwall of which can add
a new dimension to the functionality, performance, and teark of our robot soccer
team. Some of the behaviors which are particularly intergshclude: passing to vi-
sual teammates, using robot vision for teammate coordinathen approaching the



ball or during a designed play, communicating informatibow@ moving opponents to
teammates that are beyond the visible range of detecti@ahpasitioning around the
field so as to remain in open regions away from opponent robots

7 Conclusion

With CMDASH'07 , we pursue our research on teams of intelligent robots.cén-
tinue to note that a team of robots needs to be built of skilldd/idual robots that can
coordinate as a team in the presence of opponents. We hdvagnn our experiences
from last year and enhanced our AIBO software with new viseaures, more exten-
sive modeling and estimation of the world, improved behearchich are reactive to the
location of opponent robots, and we are working to improvet@ammate coordination
and game strategy.
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