
CMDash’07: Technical Report

Manuela Veloso, Juan Fasola, Somchaya Liemhetcharat, MikePhillips,
Gregory Delmar

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
http://www.cs.cmu.edu/˜coral

1 Introduction

The CMDASH’07 team follows our past teams CMDash’06, CMDash’05, CMPack’04,
CMPack’03, CMPack’02, CMPack’01, CMPack’00, CMTrio’99, and CMTrio’98 [5,
3, 7, 6]. We have continued our research into new ways of modeling the world and
maintained our focus on robust behaviors and cooperation. In this paper, we provide an
overview of the specific technical components in our team andfocus in detail on several
recent additions.

2 Vision

The vision module is responsible for converting raw YUV camera images into infor-
mation about objects that the robot sees and are relevant to the task. This is done in
two major stages. The low level vision processes the whole frame and identifies regions
of the same symbolic color. As in previous years, we use CMVision [2, 1] for our low
level vision processing. The high level vision module uses these regions to find objects
of interest in the image. We have continued to improve both aspects of the robot’s vision
which allows our team to operate well in a variety of lightingconditions.

2.1 Robot Detection

One way to address the problem of robot detection is to searchfor red or blue regions
in the color segmented image, and if the regions conform to some defined constraints, a
robot is then detected. This seems like a reasonable solution, however, in our experience
the shade of blue of the robot uniforms is so dark that it showsup as black in the color
segmented images. Since the background color is black and the shadows on the robot
are also black, finding blue robots effectively with this method is difficult. In addition,
trying to correct the segmentation to emphasize the recognition of the uniform color
blue results in classifying a lot of the background and shadows as blue as well, so the
problem still persists. Instead, we chose a solution that would first identify where the
field was located in the image and subsequently detect obstacles lying on the field.
Finally, the detected obstacles were assumed to be robots, as the only obstacles on the
field during game play, besides the ball, are robots.



Pre-processing the segmented image The first pre-processing step is to reduce the
image size of the segmented image. The original 208x160 segmented image is reduced
by a factor of four, by essentially scanning across the imagealong grid lines that are
parallel to the image horizon line and recording one out of every four pixels. By scan-
ning along these grid lines instead of the image rows/columns, the algorithm is able to
account for any rotation of the AIBOs camera. The image is reduced in order to sim-
plify and speed up the task of searching for robots in the image. All further processing is
performed on this reduced image. After size reduction, the image is scanned to find the
field horizon. The field horizon is defined as the line that bestseparates the background
from the soccer field in the original image, and that is parallel to the image horizon line.
The field horizon is detected by scanning the columns of the reduced image looking
for the start of a sequence of green pixels. The height of the highest point in the image
that starts a sequence of green pixels denotes the location of the field horizon. After the
field horizon has been detected, field lines are removed by scanning the image columns
for small white regions surrounded by green. Field lines andthe center circle are re-
moved because they tend to interfere with the detection of obstacles on the field. Figure
1 shows an example of a reduced image and detected field horizon.

(a) The original segmented image (b) The reduced image with adetected
field horizon

Fig. 1.

Detecting Obstacle Regions Using the assumption that robots are always on the field,
we can search below the field horizon for pixels that are not green (not field) and not
orange (not ball) and group them to form obstacles, which will eventually become our
detected robots. Each column in the image is scanned below the field horizon searching
for the start of a sequence of four green/orange pixels, at which point the scanned length
along the column is recorded and scanning is initiated on thefollowing column. This
procedure essentially finds the length along each column of an obstacle that intersects
the field horizon line. Columns with small lengths are thrownout. Neighboring columns
with lengths a reasonable amount apart are grouped together. The lengths of all the
columns within a group are averaged to find the length for thatgroup. Using this length,



along with the starting and ending column positions, a bounding box is created for
each group; these bounding boxes represent the obstacles located on the field. Resulting
bounding boxes that are too small or in some way inadequate are removed. The final
bounding boxes are considered to encompass robots and represent the output of the
robot detector. Example outputs are shown in Figure 2.

(a) Initial column scan results (b) Final detected obstacles (c) Robot detection overlayed
for obstacle colors after grouping columns onto original image

Fig. 2.

Robot Color and Distance Estimates The team color is determined by searching for
red regions within the bounding box of the detected robots. If convincing red regions are
found within a robots bounding box, the robot is said to be on the red team; blue team
otherwise. The distance to a detected robot is calculated bytaking the center pixel of the
bottom line of its bounding box and projecting a ray through it onto the ground plane.
The distance to the intersection point is considered to be the distance to the robot. The
robot detector is able to detect robots up to a maximum distance of approximately 1.2
m away. Results of the robot detector along with the predicted team colors are shown
in Figure 3.

3 Localization

The CMDASH’07 team continues to use our Monte Carlo localization (MCL)system
developed for use on the AIBOs to continually estimate theirglobal location on the field.
Our MCL algorithm uses a sensor-based resampling techniqueto re-localize the robots
when they are lost called Sensor Resetting Localization [4]. This algorithm is robust
to modelling errors including unmodelled movements, such as robots being pushed or
removed for penalties, as well as for systematic errors. Thefield landmarks, goals, and
field lines are used as features for the localization system.

4 World Modeling

To act intelligently in complex and dynamic environments, teams of mobile robots must
estimate the position of objects by using information obtained from a wide variety of



Fig. 3. A sequence of images showing robot detection results.

sources. Some examples of such sources include tracked object information from each
robot’s sensors, models of how each robot is able to affect the environment and manipu-
late those objects within it, and information obtained fromteammates. For any problem
of reasonable complexity, teams of mobile robots do not havethe sensors necessary to
perceive all aspects of a dynamic environment. As a result, the sources of information
used in such a state estimator can be corrupted by noise that is extremely difficult if
not impossible to fully model. In our research into robust teams of robots capable of
operating within dynamic adversarial environments, we have found that not all sources
of information about a single quantity of interest can be handled equally. To address
this problem, we utilize a method for reasoning over a discontinuous hypothesis space
where a strict ordering is imposed on the sources of information. By segmenting the
information sources into different classes, a prioritizedhierarchy of state estimates are
inferred. Using this hierarchy, the decision process that governs each individual robot’s
actions can easily select the most informative state estimate to use as its input. A robot’s
actions can affect its perception of the environment as wellas the environment. By rea-
soning about the expected utility of certain classes of estimates over others, the robot
can select the “best” estimate from the set to act upon. This will provide more informa-
tion to the robot that will in turn update the ordered hierarchy of possible estimates.

4.1 Updating Robot Models/Merging Robot Detection Results

Every vision frame presents new robot detection results which must be incorporated
into the global model of the game state and potentially matched against previous ob-
servations of robot locations. Merging the robot detectionresults with current models
of teammate and opponent robots is necessary to avoid situations where two or more



robot models are created which pertain to the same physical robot. Such situations are
undesirable for two reasons:

1. The world model ceases to accurately represent the current game state.
2. The robot models are not able to incorporate new locationsinto their position his-

tory, thus limiting the accuracy of the motion model.

One method of modeling robot locations which does not involve merging subse-
quent detection results is to project the current field of view of the robots camera onto
the playing field of the world model, remove all robot observations contained within
the viewing area, and replace them with new robot detection results from the current
vision frame if any exist. This method of robot modeling avoids the merging/matching
problem by relying on the notion that when the world model determines that there are
teammate or opponent robots located in the field of view of therobots camera, the
new robot detection results will provide the most updated locations for such robots,
and therefore allow for the previous observations to be discarded beforehand. While
this method provides a simple mechanism for modeling robot locations and avoids, for
the most part, creating multiple models for single physicalrobots, it does not maintain
a position history for the robots being modeled and hence does not provide enough
information for velocity estimation/motion modeling. Since we are interested in mod-
eling the motion of teammate and especially opponent robots, we have not adopted this
simplified modeling method and instead have implemented a version which maintains a
history of recorded positions on the playing field for each modeled robot and hence per-
forms the necessary merging/matching of new robot detection results with those made
previously.

Update Algorithm Merging new robot observations with previous observationsfrom
the world model involves matching robot models with new robot position estimates, or
rather, identifying which robot model, if any, should get updated with a new position
estimate. Robots are represented in the world model as (x,y)locations in the global
coordinate system of the soccer playing field, however for matching purposes it is also
necessary to take into account the physical dimensions of the robot. The modeled robot
radius is double the actual physical robot radius to accountfor error in the location
estimates. The following is an outline of the robot model update algorithm:

The time-to-live counter is decremented for all robot models in the current field of
view of the robot projected onto the playing field. The time-to-live counter represents
the number of frames allowed that contain the robot model inside the projected field of
view, but not detected from vision, and is initially set to 10frames. Once the time-to-
live counter reaches zero, the robot observation is removedfrom the world model, as
it is deemed inaccurate. This field of view reasoning is similar to the one used in the
simplistic method presented earlier, however instead of immediately removing robot
observations that are within the projected field of view, thetime-to-live counter is intro-
duced to provide robustness against errors in the visual detection method and field of
view estimation.

All robot observations returned by vision are compared against the robot models
already existing in the world model, in order to match those observations that corre-
spond to the same physical robot. In finding a match for a new observation, all potential



matches of robot models are evaluated and the best of them all, the one most resem-
bling the new observation, is updated with the new position estimate. A robot model
is considered a potential match with a new observation from vision when the distance
between their respective locations on the field is less than two robot radius lengths. The
procedure iterates through the robot models and the first potential match found is con-
sidered to be the best match until another potential match isfound, at which point the
two are compared against one another and the one that is the better fit with the new ob-
servation is made the new best match. This procedure continues until all robot models
that are potential matches have been evaluated, and the bestamong them determined.
The algorithm for comparing two potential matches takes into account the distance be-
tween both robot models and the visual observation location, the team color of each
and that of the visual robot, and the position history size ofthe robot models (larger is
better). If both robot models match up equally with the visual observation, then the best
match is kept the same.

If a robot model is found to match the new observation returned by vision, its po-
sition is updated in the world model. However, if no existingrobot model matches the
visual observation, then a new robot model is created in the world model at the given
location and initialized with a timeout value of 4 seconds. The timeout value is provided
in order to remove robot models considered out of date. It should be noted that every
time a visual robot observation is matched with an existing robot model, the times-
tamp is updated and the timeout is essentially reset, so it ispossible for any given robot
model to exist within the world model for longer than 4 seconds, as long as its position
is updated and existence reaffirmed from visual observations.

4.2 Robot Motion Tracking

Tracking the motion of robots in the world model is useful formany aspects of the
game, but most importantly, by providing information aboutthe movement of robots on
the field the current situation of the game can be more readilyassessed. For example,
by having a robot observe the motion of an opponent robot walking towards the ball
and correctly predict that the opponent will arrive to the ball first, the robot can decide
to assume a more defensive role that would try to prevent the opponent from getting an
accurate shot on goal, rather than to continue walking towards the ball and potentially
getting scored on. In order to achieve this motion and speed assessment of robots on
the playing field, velocity estimates are calculated based on the observed sequence of
locations through time of the robots being tracked.

Velocity Estimation Each time a new visual robot observation is matched with an
existing robot model, the updated position of the robot is stored in the position history
list for that robot model. In order to facilitate the velocity calculation on a robot model,
the robot position history is actually separated into two lists, the x-position list and
the y-position list. Each x or y position entry in the lists are associated with the time
it was recorded. To avoid the calculation of spurious or noisy velocity estimates, the
position history lists must contain the minimum number of recorded positions before
any velocity calculation is performed for the robot model. The minimum number of



positions is equal to 10, and is intended to represent about one-third of a second of
motion information. The velocity calculation is performedas follows:

x-velocity: The slope of the least-squares fitting line through the (timestamp, x-
position) data points is calculated and represents∆x/∆t = vx, the estimated velocity
of the robot in the x-direction.

y-velocity: The slope of the least-squares fitting line through the (timestamp, y-
position) data points is calculated and represents∆y/∆t = vy, the estimated velocity
of the robot in the y-direction.

The calculated x and y velocities are combined to produce thevelocity vector es-
timate for the robot model, and this is the vector that is reported to behaviors. The
velocity vector, once attached to the current position of the robot model, can be used
to predict the motion of the robot and enhance situational awareness during game play.
Another method would be to predict the future location of therobot based on the cal-
culated least-squares line fit over the data, by finding the x and y positions along the
line at a certain time in the future. It should be noted, however, that velocity estimates
are only available for robot models that are currently within the field of view of the
robot, since no assumptions can be made about robots moving outside of view and we
want to minimize error in the estimates as much as possible soas not to provide false
information to behaviors.

Motion Tracking Results Figure 4 shows visual results of the robot modeling and
velocity estimation systems. The velocity estimate is represented by a vector, which
is the visual representation of the direction and magnitude(speed) of motion of the
robot to which it is attached. The visual robot detection results are also provided for
comparison/evaluation. The example illustrates the velocity estimation fairly accurately
capturing the actual path of motion of the robot.

5 Behaviors

The introduction of visual detection and modeling of teammate and opponent robots
allows for the creation of a variety of different game behaviors that without such in-
formation were either impossible or very hard to implement.Behaviors are able to gain
more information about the current state of the game, which allows for better situational
assessment and strategy building. Teammate robots can actually react to the presence of
opponent robots and reason about the appropriate actions totake based on the situation,
instead of blindly reacting only to the ball. For example, consider the situation when a
robot walks towards the ball and it suddenly disappears fromview when another robot
walks in front of it. If the robot has no knowledge on the location of other robots on the
field, it would most likely decide to start spinning in place to look for the ball since it
has no idea where it could be and all directions of view are equally likely to contain the
ball. However, if the robot had information about the locations of robots on the field, it
could reason that the ball is being occluded by another robotand that is why it cannot
be seen. The robot could then decide to try and move around therobot in question and
search for the ball there. Many more behaviors are possible with the introduction of



Fig. 4. Visual robot detection/modeling/velocity results from standing robot viewing moving
robot walking in nearly linear fashion from left to right

robot modeling, some of which have successfully been implemented and two of these
are presented in this section.

5.1 Navigation with Obstacle Avoidance

One of the most helpful behaviors as far as improving game play has to be the ability
to navigate towards a desired target, whether it be an objectlike the ball or a global
point on the field, while avoiding obstacles. Obstacles on the field are other robots, so
having robot locations within the world model and being ableto easily access that in-
formation greatly facilitates the creation of such a behavior. Not only is it desirable to
avoid robots when traveling towards a desired location to prevent running into them,
which wastes valuable time and makes reaching the target much more difficult, but also
to avoid penalties called against pushing robots. Creatingan effective obstacle avoid-
ance navigation behavior will help to minimize these penalties, in addition to helping
the robots get to where they want to go.

Navigation Behavior The navigation behavior that was developed consists of two
states and has the following state machine, beginning with the initial state:



Go To Point: The robot is directed to walk in a straight-line path directly towards
the desired target. If the robot has been in this state for at least 0.3 seconds, is roughly
facing the target and there is a robot blocking the path in front, pick the most appropriate
side to move to, left or right, depending on whether or not itsopen and its proximity to
the target, and transition toAvoid.

Avoid: The robot is directed to move to the side chosen in the previous state while
maintaining a minimum distance away from the robot in front.Therefore, the robot
need not move directly sideways, but can add a forward walk component as long as the
distance to the other robot remains above or equal to the minimum allowable. If the
robot has been in this state for at least 0.5 seconds and thereis no robot blocking the
path in front, or the robot has been in this state for more than2 seconds, transition to
Go To Point.

The time constants are to avoid oscillations in the behaviorand in the case of the
Avoidstate, also to encourage continuing progress towards the desired target. The be-
havior is very simple, thanks to the information provided about robot locations in the
world model, yet it is very effective during actual game situations. Figure 5 provides an
example of a situation where the navigation algorithm is used. The red robot detects the
presence of the blue robot in its path towards the ball and decides to avoid it by moving
towards the left side, as it is open and closest to the target.

(a) Photo of the obstacle avoidance situation (b) Segmentedimage taken during situation
with the path chosen by the algorithm with robot detector result shown

shown in light green

Fig. 5.

Results The navigation behavior has been successfully integrated into the CMDash
team game play, and has helped to improve the team performance during actual com-
petition. Figure 6 provides video capture images taken during a game that show the
execution of the navigation behavior and how it allowed our robot to gain control of the
ball even though two separate robots from the opposing team were in its way initially.



Fig. 6. Video capture images of blue robot performing navigation towards ball with obstacle
avoidance during a game

5.2 Dodging Opponents when Shooting

The behavior to avoid, or dodge, opponent robots when attempting to shoot on goal or
down the field is a similar yet slightly different behavior from that of navigating while
avoiding obstacles. This behavior was first implemented andused with great success by
UTS in 2004, when the team reached the finals of the international competition. The
dodge behavior only executes after the robot has gained control of the ball beneath its
chin and wants to shoot, or kick the ball, towards a specific location. Once the robot
grabs the ball, the Turn behavior executes, which attempts to change the orientation of
the robot so that it is facing the desired target. Once the Turn has reached the desired
orientation, it checks for the existence of opponent robotsin front of the robot by ac-
cessing all robot locations from the world model, and seeingif any of them fall within
the region in front of the robot. If so, the Turn behavior thencalls the Dodge behavior,
whose job it is to try and avoid the opponent robot before shooting towards the target,
so as to get a clear shot off.

Dodging Behavior The dodging behavior has three states:
Initial : The direction of motion is chosen, left or right, in order toavoid the opponent

robot in front. The dodge direction is chosen simply based onwhich side is closer to
the inside of the field, because dodging towards the outside of the field and accidentally
leaving the field causes loss of possession of the ball. Transition to Dodge.

Dodge: The robot is directed to move to the side chosen in the previous state at full
speed, with no forward walking component. If the robot has been in this state for at
least 0.3 seconds and there are no longer robots in front, then transition toKick. If the
robot has been holding the ball for approximately 3 seconds,then abort the behavior to
avoid penalty.



Kick: Kick the ball forwards towards the target. The behavior is then reset, and ready
to be called again by the Turn behavior if necessary.

Results The dodging behavior, like the navigation behavior, has been successfully inte-
grated into our team game play, and has helped tremendously in increasing the chances
of our team scoring after gaining control of the ball while near the opponent goal area.
The dodging behavior is also very effective in avoiding opponent robots when trying to
clear the ball down the field. Figure 7 shows video capture images of the dodge behav-
ior being executed during competition. The red robot after grabbing the ball detects the
presence of the opponent goalie robot, then quickly side steps to its right side until the
goalie is no longer impeding the shot, then kicks forward andscores a goal.

Fig. 7. Video capture images of red robot dodging opponent blue robot before shooting and scor-
ing goal

6 Upcoming Research

The focus of our upcoming research will be on improving our team game strategy for
individual robots and among teammates. Currently the robotvision and modelling is
only used for navigation and dodging, however we would like to incorporate it into
the behaviors to increase situational awareness and to makebetter strategic decisions.
There are various more behaviors that can be created to take advantage of the infor-
mation provided by the robot detection and modeling procedures, all of which can add
a new dimension to the functionality, performance, and teamwork of our robot soccer
team. Some of the behaviors which are particularly interesting include: passing to vi-
sual teammates, using robot vision for teammate coordination when approaching the



ball or during a designed play, communicating information about moving opponents to
teammates that are beyond the visible range of detection, and positioning around the
field so as to remain in open regions away from opponent robots.

7 Conclusion

With CMDASH’07 , we pursue our research on teams of intelligent robots. We con-
tinue to note that a team of robots needs to be built of skilledindividual robots that can
coordinate as a team in the presence of opponents. We have built upon our experiences
from last year and enhanced our AIBO software with new visualfeatures, more exten-
sive modeling and estimation of the world, improved behaviors which are reactive to the
location of opponent robots, and we are working to improve our teammate coordination
and game strategy.

Acknowledgements

This research has been partly supported by Grant No. DABT63-99-1-0013, by generous
support from Sony, Inc., and by a National Physical Science Consortium Fellowship.
The content of this publication does not necessarily reflectthe position of the funding
agencies and no official endorsement should be inferred.

References

1. J. Bruce, T. Balch, and M. Veloso. CMVision, www.cs.cmu.edu/̃ jbruce/cmvision/.
2. J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image segmentation for inter-

active robots. InProceedings of IROS-2000, 2000.
3. S. Lenser, J. Bruce, and M. Veloso. CMPack: A complete software system for autonomous

legged soccer robots. InAutonomous Agents, 2001.
4. S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In

Proceedings of ICRA-2000, 2000.
5. William Uther, Scott Lenser, James Bruce, Martin Hock, and Manuela Veloso. CM-Pack’01:

Fast legged robot walking, robust localization, and team behaviors. In A. Birk, S. Coradeschi,
and S. Tadokoro, editors,RoboCup-2001: The Fifth RoboCup Competitions and Conferences.
Springer Verlag, Berlin, 2002.

6. M. Veloso and W. Uther. The CMTrio-98 Sony legged robot team. In M. Asada and H. Kitano,
editors,RoboCup-98: Robot Soccer World Cup II, pages 491–497. Springer, 1999.

7. M. Veloso, E. Winner, S. Lenser, J. Bruce, and T. Balch. Vision-servoed localization and
behavior-based planning for an autonomous quadruped legged robot. InProceeding of the
2000 International Conference on Artificial Intelligence Planning Systems (AIPS’00), 2000.


