
Designing Agent Behavior with the Extensible
Agent Behavior Specification Language XABSL?

Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias Jüngel

Institut für Informatik, LFG Künstliche Intelligenz, Humboldt-Universität zu Berlin,
Rudower Chaussee 25, 12489 Berlin, Germany

E-Mail: (loetzsch|bach|hdb|juengel)@informatik.hu-berlin.de

Abstract. Specific behavior description languages prove to be suitable
replacements to native programming language like C++ when the num-
ber and complexity of behavior patterns of an agent increases. The XML
based Extensible Agent Behavior Specification Language (XABSL) also
simplifies the process of specifying complex behaviors and supports the
design of both very reactive and long term oriented behaviors. XABSL
uses hierarchies of behavior modules called options that contain state
machines for decision making. In this paper we introduce the architec-
ture behind XABSL, the formalization of that architecture in XML and
the software library XabslEngine that runs the formalized behavior on an
agent platform. The GermanTeam [9] employed XABSL in the RoboCup
Sony Four Legged League competitions in Fukuoka.

1 Introduction

The Sony Four Legged League (as well as the Humanoid League) differs from
the ”wheel based leagues” in the complexity of physical actions that have to be
employed both for interaction and perception. The Sony robots have four legs
with 3 DOF each, and a head with 3 DOF. Instead of kicking with a single
kicking device like in the middle or small sized league, this allows for a lot
of different kicking skills using legs, body, or even head, which often require
preparatory movements. Instead of moving on wheels many different styles of
walking are used in different situations. With the introduction of Wireless LAN
communication in the Sony League in 2002, cooperative strategies became more
complex and consequently require adequately formulated high level behavior.

For perception, the Sony robots need a set of perception behaviors, too.
Because the field of vision, the image quality and the quality of the other sensors
are very limited, information has to be collected over time, the movement of legs
and head has to be coordinated with current vision needs and the perception
process needs to be supported by methods like active vision. Usually, the related
behaviors have to be merged with the other movement skills.

This huge set of abilities results in the need for a complex behavior control
architecture that integrates many behavior patterns. It should be modular in
? The Deutsche Forschungsgemeinschaft supports this work through the priority pro-

gram “Cooperating teams of mobile robots in dynamic environments”.

the meaning that behavior patterns can be reused in different contexts. It has to
support reactive and realtime decision making as well as long term deliberative
behaviors. The set of behaviors needs to be easy to extend - adding new behaviors
should not have side effects on other ones.

We found C++ not well suited for specifying agent behaviors. Especially
extension and maintenance of complex behavior control systems may become a
tedious and error prone task. More high level behavior specification languages
allow for a separation of the behavior design from the implementation of the
agent platform.

1.1 Related Work

In all RoboCup leagues, intentional cooperation and the pursuit of long term
strategic behavior remain a challenge. According to the dynamics of soccer, the
agents act with only very limited foresight.

Most teams in RoboCup are using layered architectures, with compar-
atively reactive behaviors (basic skills) at the lowest level (cf. e.g. [2, 15, 8]).
Ordering different behaviors on layers allows to follow different goals in paral-
lel. Behaviors on higher levels invoke or activate behaviors on lower levels. As
long as the architecture has to manage only few basic behaviors, the separation
of behaviors in two or three layers may be sufficient. But in our experience, it
becomes very difficult to control more than a few basic behaviors without intro-
ducting further hierarchies, when their usage depends on a careful analysis of
the situation, when they require complex preconditions to be achieved and when
their performance needs a considerable amount of time.

There are other attempts to use behavior languages in order to simplify the
process of behavior development. For example, GOLOG [12] is an logic based
robot control language. Funge [11] developed the cognitive modeling language
(CML) for the domain of computer games. Obst and Stolzenburg [16, 1] employ
UML state charts for specifying multiagent systems. They follow a layered state
machine approach with a fixed number of layers. They used UML because there
exists a rich set of easy-to-adapt editors for editing state charts.

State machines are well suited for behavior modelling (cf. e.g. [16, 1, 7]).
The decision which action is executed next depends not only on the environment
but also on the last state. That allows to keep behaviors stable and to define hys-
tereses between two behaviors for avoiding oscillations when the sensor readings
are noisy.

1.2 Main Contributions

In this paper we present a flexible, open hierarchical behavior control architec-
ture. It consists of state machines which manage the transitions to new behaviors
according to the last state and the recent situation. In a flat architecture, the
number of transitions between states increases very fast with the number of
states. Therefore we use options to encapsulate a limited number of states and

transitions according to their abstractness. The options form a rooted directed
acyclic graph. In section 2.1 we describe that approach in detail.

Based on that architecture, we introduce XABSL as an XML based behavior
language that allows to completely specify the behavior of autonomous agents.
The development of a robot control includes the design of a hierarchy of op-
tions and the implementation of their internal state machines. XABSL supports
both tasks using the advantages of XML technologies. The XABSL framework
contains a variety of visualization and debugging tools. The runtime system
XabslEngine (section 2.3) executes the behaviors written in XABSL.

The GermanTeam [9] competes in the Sony Four Legged League and is a
national team that consists of separate teams from five German universities,
amongst them the Humboldt University in Berlin. Section 3 shows how XABSL
was employed by that team and which experiences were made in the competi-
tions. XABSL could be proven to allow the efficient integration of program parts
from different groups. It is possible to develop a new robot control with about
50 different behaviors in only two weeks.

2 Developing Agent Behavior with XABSL

2.1 The Architecture behind XABSL

In the presented architecture an agent consists of a number of behavior modules
called options. The options are ordered in a rooted directed acyclic graph, the
option graph (cf. Fig. 1a), which may be expanded into a tree. The terminal
nodes of that graph are called basic behaviors. They generate the actions of the
agent and are associated with basic skills.

The task of the option graph is to activate and parameterize one of the basic
behaviors, which is then executed. Beginning from the root option, each active
option has to activate and parameterize another option on a lower level in the
graph or a basic behavior. Within options, the activation of behaviors on lower
levels is done by state machines (cf. Fig. 1b). Each state has a subsequent option
or a subordinated basic behavior. Note that there can be several states that have
the same subsequent option or basic behavior.

Each state has a decision tree (cf. Fig. 2) with transitions to other states at
the leaves. For the decisions the agent’s world state, other sensory information
and messages from other agents can be used. As timing is often important, the
time how long the state is already active and the time how long the option is
already active can be taken into account. Additionally, each state can set special
requests, that influence the information processing or determine how and where
the robot should point its camera.

2.2 Behavior Specification in XML

In previous RoboCup participations the GermanTeam made the experience that
implementing such an architecture totally in C++ is error prone and not very

a) b)

goalie

goalie
before
kickoff

goalie
playing

return
to

own
goal

stand

position
inside
goal

kick
go
to

ball

go
to

point

option goalie-playing
stay
in

goal

get
to

ball

position
inside
goal

clear
ball

kick

return
to

goal

go
to

ball

return
to

own
goal

Fig. 1. a) The option graph of a very simplified goalie (this is only a simple example
– the option graph developed by the GermanTeam for the competitions in Fukuoka
contains about 50 options). Boxes denote options, ellipses denote basic behaviors. The
edges show which other option or basic behavior can be activated from within an option.
b) The internal state machine of the option ”goalie-playing”. Circles denote states, the
circle with the two horizontal lines denotes the initial state. An edge between two
states indicates that there is at least one transition from one state to the other. The
dashed edges show which other option or basic behavior becomes activated when the
corresponding state is active. The charts were generated automatically from the XML
source in Fig. 3.

comfortable. The source code became very large and it was quite hard to extend
the behaviors. Therefore the Extensible Agent Behavior Specification Language
(XABSL) was developed to simplify the process of specifying behaviors.

XABSL is an XML 1.0 [4] dialect specified in XML Schema [10]. The reasons
to use XML technologies instead of defining a new grammar from scratch were
the big variety and quality of existing editing, validation and processing tools
(many XML Editors are able to check if an XABSL document is valid at run-
time), the possibility of easy transformation from and to other languages as well
as the general flexibility of data represented in XML languages. Behaviors spec-
ified in XABSL can be easily visualized using XSLT [6] and DotML [13]. Note
that the figures 1 and 2 were generated automatically from the XML source in
Fig 3.

Agents based on the architecture introduced in the previous section can be
completely described in XABSL. We have implemented language elements for
options, their states, and their decision trees. Boolean logic (||, &&, !, ==, ! =, <,
<=, > and >=) and simple arithmetic operators (+, −, ∗,/ and %) can be used
for conditional expressions. Custom arithmetic functions (e.g. distance−to(x, y))
that are not part of the language can be easily defined and used in instance
documents.

Symbols are defined in XABSL instance documents to formalize the interac-
tion with the software environment. Interaction means access to input functions
and variables (e. g. from the world state) and to output functions (e. g. to set

a) b)

option goalie-playing

state get-to-ball

clear
ball

return
to

goal

get
to

ball

if else

ball
seen

if else-if else

ball.distance
< 15 cm

ball too
far away

if

if

else if

else

else

(< 2000)
{

(< 150)
 {

transition-to-state ();
 }

(> 900)
 {

transition-to-state ();
 }

 {
transition-to-own-state ();

 }
}

{
transition-to-state ();

}

//ball seen

//ball kickable

//ball too far away

ball.time-since-last-seen

ball.distance

clear-ball

ball.distance

return-to-goal

get-to-ball

return-to-goal

Fig. 2. The decision tree of the state ”get-to-ball”. a) Graphical notation: The leaves
of the tree are transitions to other states. The dashed circle denotes a transition to the
own state. b) Pseudo code of the decision tree. Note that both charts were generated
automatically from the XML source in Fig. 3.

requests for other parts of the information processing). For each variable or func-
tion that shall be used for conditions a symbol has to be defined. This makes
the XABSL framework independent from specific software environments and
platforms.

An example:

<decimal-input-symbol name="ball.x" measure="mm"
description="The absolute x position on the field"/>

<decimal-input-symbol name="utility-for-dribbling" measure="0..1"
description="Utility for dribbling instead of passing/kicking"/>

<boolean-input-symbol name="goalie-should-jump-right"
description="A ball is right ahead and rolls into to own goal"/>

The first symbol ”ball.x” simply refers to a variable in the world state of the
agent, ”utility-for-dribbling” stands for a member function of an utility analyzer
and ”goalie-should-jump-right” represents a complex predicate function that de-
termines if a fast moving ball is headed to the right portion of the own goal. In
options, these symbols then can be referenced.

An example:

<if>
<condition description="behind the ball">
<less-than>
<decimal-input-symbol-ref ref="self.x"/>
<plus>
<decimal-input-symbol-ref ref="ball.x"/>
<decimal-value value="200"/>

<plus>
</less-than>

</condition
<transition-to-state ref="foo"/>

</if>
<else>
<if>
<condition description="clear right">
<boolean-input-symbol-ref="goalie-should-jump-right"/>

</condition>
<transition-to-state ref="clear-right"/>

</if>
<else> ... </else>

</else>

The developer may decide whether to express complex conditions in XABSL
by combining different input symbols with boolean and decimal operators or by
implementing the condition as an analyzer function in C++ and referencing the
function via a single input symbol.

As the basic behaviors are written in C++, prototypes and parameter defi-
nitions have to be specified in an XABSL document so that states can reference
them.

An XABSL behavior specification can be distributed over many files. The
GermanTeam uses different XML files for symbol definitions, basic behavior
definitions, predefined conditions, agents and options. This helps larger teams
of behavior developers to work in parallel. It is easier to keep an overview over
the whole agent and a version control system like CVS can be easily used.

We developed tools for generating three different types of documents from
an XABSL instance document set:

– An Intermediate Code which is executed by the XabslEngine (see sction
2.3). This was done because on many embedded computing platforms (like
Sony’s AIBO), XML parsers are not available due to resource and portability
constraints.

– Debug Symbols containing the names for all options, states, basic behaviors
and symbols make it possible to implement platform and application depen-
dent debugging tools for monitoring option and state activations as well as
input and output symbols.

– An extensive auto-generated HTML-documentation containing SVG-charts
for each agent, option and state which helps the developers to understand
what their behaviors do.

Fig. 3 shows an example for an XABSL source file. For more details about
the language, the XABSL web site [14] contains a complete language reference,
the XML schema files and examples.

<option name="goalie-playing" initial-state="stay-in-goal"
 description="goalie playing behavior">
 …
 <state name="get-to-ball">
 <following-basic-behavior ref="go-to-ball"/>
 <set-output-symbol ref="head-control-mode"
 value="search-for-ball"/>
 <decision-tree>
 <if>
 <condition description="ball seen">
 <less-than>
 <decimal-input-symbol-ref
 ref="ball.time-since-last-seen"/>
 <decimal-value value="2000"/>
 </less-than>
 </condition>
 <if>
 <condition description="ball kickable">
 <less-than>
 <decimal-input-symbol-ref
 ref="ball.distance"/>
 <decimal-value value="150"/>
 </less-than>
 </condition>

 <transition-to-state ref="clear-ball"/>
 </if>
 <else -if>
 <condition description="ball too far away">
 <greater-than>
 <decimal-input-symbol-ref
 ref="ball.distance"/>
 <decimal-value value="900">
 </greater-than>
 </condition>
 <transition-to-state ref="return-to-goal"/>
 </else-if>
 <else>
 <transition-to-state ref="get-to-ball"/>
 </else>
 </if>
 <else>
 <transition-to-state ref="return-to-goal"/>
 </else>
 </decision-tree>
 </state>
 ...
</option>

Fig. 3. An example for an XABSL XML notation: a source code fragment for the state
get-to-ball (cf. Fig. 2) of option goalie-playing (cf. Fig. 1).

2.3 The Runtime System XabslEngine

For running the compiled behavior on a target agent platform, the runtime en-
vironment XabslEngine has been developed. The engine is meant to be platform
and application independent and can be easily employed on other robotic plat-
forms. This results in a variety of abstract helper classes that have to be adapted
to the current software environment.

The XabslEngine parses and executes the intermediate code. It links the
symbols from the XML specification that were used in the options and states
to the variables and functions of the agent platform. Therefore, for each used
symbol an entity in the software environment has to be registered to the engine.

The following example connects the C++ variable worldState.ballPosition.x
to the XABSL symbol ”ball.x”:

myEngine.registerDecimalInputSymbol("ball.x",
&worldState.ballPosition.x);

While options and their states are represented in XML, basic behaviors are
written in C++. They have to be derived from a common base class and regis-
tered to the engine.

The engine provides extensive debugging interfaces to be able to monitor
the option and state activations, the values of the symbols and the parameters

a) b)

Fig. 4. Scenes from a video of a round robin game against the team Georgia Tech (4:1)
in Fukuoka: a) Use of communication. The first forward (1) performs a bicycle kick
directed to the opponent goal. The second forward (2) was told to wait in front of the
opponent goal to be able to help if the kick fails. b) Positioning. The second forward
(1) tries to dribble the ball into the opponent half. The defender (2) stays behind it to
support the forward. The first forward (3) waits in the opponent half for a pass.

of options and basic behaviors. Instead of executing the engine from the root
option, single options or basic behaviors can be tested separately.

A complete documentation of the engine, along with the code, can be found
at the XABSL web site [14].

3 Application

XABSL was developed for the participation of the Aibo Team Humboldt from the
Humboldt-Universität zu Berlin at the GermanOpen 2002 in Paderborn. Later
on this approach was chosen for the participation of the GermanTeam in the
RoboCup 2002 in Fukuoka [9]. In the competitions the GermanTeam won all its
games except against the later finalists from CMU and UNSW.

The strength of the team was based on a big set of different behavior patterns.
For instance the players employed over 16 different kicks in different situations.
Amongst them the bicycle kick is a good method for getting the ball behind
the player without previously turning around the ball. (cf. Fig. 4a) All these
kicks require different behaviors for approaching the ball. Some work better for
bigger ball distances, some require to grab the ball with the both front legs.
Varying ball handling behaviors were chosen depending on whether the ball was
in the opponent half, in the own half, at the left border, at the right border or
in front of the opponent goal. XABSL proved to be suitable for implementing
and integrating all these different abilities.

On higher levels, a set of team strategies based on communication was imple-
mented. As it is often disadvantageous when two players try to obtain the ball

the robots negotiated which of them handles the ball and which stays behind or
waits for a pass (cf. Fig. 4a). The state based architecture of XABSL simplifies
the developing of such strategies. Each robot sends its option and state activa-
tions to all other robots so that all players know what the others plan to do.
However, since the wireless communication is not always reliable, all strategies
have to be able to resort to non-communicative behavior, when necessary.

Complex positioning strategies were also employed. Each player had to care
for an area of responsibility which changed depending on the score, the number
of own players and the distribution of opponent players on the field (cf. Fig. 4b).

Although XABSL is a state based architecture, continuous approaches can
easily be integrated into the behaviors. A potential field was employed to deter-
mine an optimal dribbling direction. This direction was made available to the
options by an input symbol. A Fuzzy Logic based basic behavior for approach-
ing the ball was implemented. Several options used continuous utility models for
state transitions.

The hierarchical constitution of XABSL allows it to make many both very
short-term and reactive decisions and more deliberative and long-term decisions
co-instantaneous. The lower behaviors in the option hierarchy that are respon-
sible for ball handling react instantly on changes in the environment. The more
high-level behaviors like waiting for a pass, positioning or role changes try to
prevent frequent state changes to avoid oscillations.

Altogether the GermanTeam implemented over 50 different options for the
games in Fukuoka. About 10 team members were involved in developing and
tuning the behaviors. The modular approach of XABSL made it easy to extend
or advance the behaviors. New options could easily be added to existing ones
without having negative side effects. Better solutions of existing options could
be developed in parallel and were easily to compare with the previous ones.

Additionally, to help behavior control developers who want to employ XABSL
on their own robotic platform, an example agent was implemented for the Ascii
Robot Soccer environment [3]. In this simple soccer simulation by Tucker Balch
the field is displayed in a 78 characters long and 21 lines wide text terminal.
A team of four ”>” players plays against a team of four ”<” players with an
”o” as the ball. All agents retrieve the full information about the world and
the set of possible actions is very limited. This makes the implemented XABSL
agent simple and easy to understand. The example implementation containing
the XabslEngine and the visualization tools can also be downloaded from the
XABSL web site [14].

4 Conclusion and Outlook

In this paper we present an approach for behavior design for teams of au-
tonomous agents based on hierarchical state machines. The Extensible Agent
Behavior Specification Language (XABSL) is an XML dialect that allows to
conveniently develop behaviors using that architecture. We show how the Ger-

manTeam employed that language to develop complex team behaviors for the
RoboCup competitions in the Sony Four Legged League. The language and the
code library XabslEngine are independent from the software platform that the
GermanTeam uses. It is relatively easy to employ XABSL on other robotic plat-
forms; the code library is open source and publicly available at our website [14].

Future work Current developments of our behavior architecture aim at sup-
porting the pre-deliberation of long-term strategies, which has to take place in
parallel with the real-time execution of these strategies. This is done by adopting
the Double Pass architecture [5], which has been developed for the simulation
league team AT Humboldt of our work group. The Double Pass architecture
annotates option hierarchies in its deliberation pass as intended, desirable or
inapplicable, and executes the resulting plans in its second pass using a least
commitment approach. The accommodation of additional condition types and
different run-time requirements ask for extensions of XABSL as well as for the
XabslEngine.

Acknowledgments The authors would like to thank the members of the Ger-
manTeam (especially Uwe Düffert, Jan Hoffmann and Max Risler) for filling the
XABSL framework with content and Thomas Röfer for technical advice.

References

1. T. Arai and F. Stolzenburg. Multiagent systems specification by UML statecharts
aiming at intelligent manufacturing. In Proceedings of the 1st International Joint
Conference on Autonomous Agents & Multi-Agent Systems, C. Castelfranchi, W.
Lewis Johnson (Eds.), pages 11–18, 2002. Volume 1.

2. R. C. Arkin. Behavior-Based Robotics. The MIT Press, 1998.
3. T. Balch. The ascii robot soccer homepage. 1995. http://www-

2.cs.cmu.edu/ trb/soccer/.
4. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. W3C recom-

mendation: Extensible markup language (XML) 1.0 (second edition). 2000.
http://www.w3.org/TR/REC-xml.

5. H.-D. Burkhard, J. Bach, R. Berger, B. Brunswiek, and M. Gollin. Mental models
for robot control. In M.Beetz et al (Eds.): Advances in Plan-Based Control of
Robotic Agents, Lecture Notes in Artificial Intelligence, pages 71–88, 2002.

6. J. Clark. W3C recommendation: XSL transformations (XSLT) version 1.0. 1999.
http://www.w3.org/TR/xslt.

7. Z. Crisman, E. Curre, C. Kwok, L. Meyers, N. Ratliff, L. Tsybert, and D. Fox.
Team description: UW huskies-02. In RoboCup 2002 Robot Soccer World Cup VI,
Gal A. Kaminka, Pedro U. Lima, Raul Rojas (Eds.), Lecture Notes in Computer
Science, 2003. to appear.

8. A. Dahlströhm, F. Heintz, M. Jacobsson, J. Thapper, and M. Öberg. The NOAI
team description. In RoboCup 2000: Robot Soccer World Cup IV, P. Stone, T.
Balch, and G. Kraetszchmar (Eds.), number 2019 in Lecture Notes in Artificial
Intelligence, pages 412–416, 2001.

9. U. Düffert, M. Jüngel, T. Laue, M. Lötzsch, M. Risler, and T. Röfer. GermanTeam
2002. In RoboCup 2002 Robot Soccer World Cup VI, G. Kaminka, P. Lima, R.
Rojas (Eds.), Lecture Notes in Computer Science, 2003. to appear. more detailed
in http://www.tzi.de/kogrob/papers/GermanTeam2002.pdf.

10. D. C. Fallside. W3C recommendation: XML schema part 0: Primer. 2001.
http://www.w3.org/TR/xmlschema-0/.

11. J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: Knowledge, reason-
ing and planning for intelligent characters. In Siggraph 1999, Computer Graphics
Proceedings, Alyn Rockwood (Editor), pages 29–38. Addison Wesley Longman, Los
Angeles, 1999.

12. H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59–83, 1997.

13. M. Lötzsch. DotML Documentation. 2003. http://www.martin-
loetzsch.de/DOTML.

14. M. Lötzsch. XABSL web site. 2003. http://www.ki.informatik.hu-
berlin.de/XABSL.

15. R. R. Murphy. An Introduction to AI Robotics. The MIT Press, 2000.
16. O. Obst. Specifying rational agents with statecharts and utility functions. In

RoboCup 2001 Robot Soccer World Cup V, A. Birk, S. Coradeschi, S. Tadokoro
(Eds.), number 2377 in Lecture Notes in Artificial Intelligence, pages 173–182,
2002.

