
King Fahd University of Petroleum & Minerals

College of Computer Science & Engineering

COE-541 Local & Metropolitan Area Networks

Simulation & Performance Evaluation of CSMA/CA

Project Report

Presented by

Muhamad Khaled Alhamwi
260212

Submitted to

Prof. Mayez Al-Mohammad

1 Introduction

Wireless networks are becoming of more interest in recent days. They are easy to use

and configure. The most famous and widely-used standard is IEEE802.11 for WLAN.

As in wired networks, collisions can occur in wireless LANs when more than on

station transmits at the same time while using a shared transmission medium. Of

course, the air is the shared medium in wireless LANs. IEEE802.11 [1]standard [1]

defines the medium access methods in the MAC layer. It has two main functions

namely: distributed coordination function (DCF), and point coordination function

(PCF). DCF is mandatory while PCF is optional in the standard. In this work, we are

concerned with DCF functionality only. So, we will not consider PCF further in our

discussion.

DCF employs carrier sense multiple access with collision avoidance (CSMA/CA).

This differs from CSMA/CD which is carrier sense multiple access with collision

detection. Stations that transmit over the wireless channel can not detect collisions

because they are not capable of transmitting and receiving at the same time. So,

CSMA/CA tried to avoid collisions instead of detecting them. It employs the

mechanism called: "listen before talk", which means that every station has to sense

the medium for possible transmission. If the medium was sensed idle for a certain

period of time, the station proceeds with transmission of the packet. Otherwise, the

station defers the transmission until the medium becomes idle. Then, it calls the

backoff algorithm. More details will be presented about this protocol in the next

sections.

2 Related Work

CSMA/CA protocol is there in the literature since a long period of time. There exist

many papers that discuss the performance issues of this protocol and try to propose

different ways of enhancing its performance. A lot of research has been done to

improve the backoff procedure of the CSMA/CA protocol by changing the contention

window adaptively. The backoff algorithm greatly affects the performance of

CSMA/CA because it determines the time that the stations wait for before

transmission when the medium is sensed busy. So, if we have big delays without a

clear advantage, it would cause low utilization of the channel and waste in the

available bandwidth. On the hand, if we have very small delays between

retransmission trials, we would have more and more collisions and again the result

will be low utilization of the channel and wasting of the bandwidth.

The work of [1] [2] proposes a two-stage algorithm to enhance the performance of the

backoff algorithm of CSMA/CA protocol and consequently enhancing the

performance of the IEEE802.11 WLAN. This algorithm works in a similar way to the

standard. It increases the contention window when a station encounters a collision,

and decreases it when a station has a successful transmission. However, this algorithm

restricts the possible values of the contention window to only two values.

A 2-D Markovian model for the binary exponential algorithm is presented in [4]. In

this model, different stages were defined for the backoff algorithm with their

probabilities. Also the authors provided an accurate analysis of the network

throughput for basic access and RTS/CTS modes. The authors of [3] provided a

simpler 1-D Makovian model for BEB (Binary Exponential Backoff) algorithm. This

was provided under the assumption that the collision probability is constant regardless

of the backoff stage. Surprisingly, this assumption was valid and they got exactly the

same formula for network throughput. Different backoff algorithms were presented

and analyzed with their Markovian models in [3]. The BEB works by doubling the

contention window in case of collision and resetting it to its minimum value in case of

successful transmission. The EIED (Exponential Increase Exponential Decrease)

algorithm works by doubling in case of collision and halving in case of a successful

transmission. The EILD (Exponential Increase Linear Decrease) algorithm works

similarly to EIED, but it decrements one from the window in case of a successful

transmission. These algorithms were compared under saturation assumption.

An enhanced backoff algorithm is also presented in [5]. In this work, the authors

proposed a modified backoff algorithm that changes its contention window

dynamically around the optimal value. After a successful transmission, the window w

is set to Max(w/2, CWmin), and set to Min(2w, CWmax) after collision. We can see

that this algorithm works like EIED described in [3] with increase rate of 2 and

decrease rate of 2.

The authors of [6] found formula for the theoretical throughput of IEEE802.11 and

proved that the standard works far from this optimal throughput. Then, they proposed

techniques to get higher throughput closer to the theoretical limit that they defined.

They did extensive simulations to show the effectiveness of their approach.

An optimal value for the contention window was found by [7]. This was done for both

access modes: basic access and RTS/CTS. The linear feedback model was used to

compute the throughput and delay of the protocol. They showed that the protocol

performance degrades greatly when the hidden terminal problem dominates in the

network, and when the packets size is very large. In this case, the usage of RTS/CTS

becomes essential.

An adaptive contention window was proposed in [8] which depends on the estimated

number of active stations in the network. Then, a formula is applied to find the

contention window size according to the estimated value and packet transmission

time. Then, the performance of this approach was evaluated. It concluded that this

approach outperforms the standard protocol.

3 Proposed Approaches

We have proposed two approaches to implement CSMA/CA protocol simulator: the

single-threaded event-driven approach which depends on events to simulate the

protocol operations, and the multithreaded approach which requires two threads per

station. These two approaches are described in more details in the next subsections.

3.1 Single-Threaded Event-driven approach

In this approach, the simulator is programmed using one single thread that performs

all the operations like processing all types of events, and updating the simulation

statistics. This approach is simple to program when you have the events diagram

ready and correct, but it is not so efficient in terms of performance if it is not

programmed properly in a way that tries to minimize the number of events created

and processed.

Initialize variables;
while (overallProcessedEvents < MAX_EVENTS {
 events = getNextEvent(list, simTime);

simTime = events(0).time;
 while (length(events) > 0)
 foreach event in events {
 processed = processEvent(list, event, simTime);
 if (processed < length(events))
 Set 'events' to the newly created events

else
 events = [];

}
}

}
Generate Report;

First, we have to initialize the variables that will be used in the simulator. Then, the

outer while loop checks whether we have to terminate the simulation. The termination

condition can be the number of processed events so far, or it can be the time spent till

now. In the shown pseudo-code, the termination condition checks for the total number

of processed events. During each iteration, the new events (earliest ones) should be

selected from the list of events and processed. The 'for' loop goes over all of the

events in 'events' variable and call the function 'processEvent'.

Some new events may be created while processing the current events and need to be

process in the same iteration. This happens when the newly created events have the

same time as the simulator time 'simTime' variable.

Start

End

Initialize Variables

Create “GENERATE_PACKET” events for all stations

Select Next Event(s)

Check Event Type

Process Event According to its Type

Update Statistics & Variables

Is Simulation
Over? Yes

No

Create More Event(s) if needed

Remove Process Events

Figure 1. Simulator Flowchart

A simplified flowchart of the event-driven simulator is shown in Figure 1. When

processing the current event(s), one or more events can be created if needed according

to the event types as will be shown later. After processing the current event(s), they

should be removed from the events list.

3.2 Multi-Threaded Approach

In this approach, the simulator program is composed of multiple threads that

cooperate in order to achieve the simulation purpose. Each station can be assigned

two threads: one for packets generation and the other one for processing these packets

and trying to send them. So, each station has a producer thread and a consumer thread

to generate and consume packets respectively. In addition to these threads, there is

one more main thread that checks for waiting threads and wakeup some or all of them

depending on a waiting condition that is associated with each thread.

This approach is more realistic because it reflects the real operation of each station

independently. Each station is represented by two threads one to generate and another

to process packets. However, this approach is less extensible when compared with

other approaches because of the high cost associated with creating so many threads to

support the simulation for a big number of stations. This may slow down the

simulation speed as the need for context switching between threads will increase, and

we will have more sleeping threads occupying space in memory without doing any

useful work for most of the time. Here is the pseudo-code for this approach.

3.2.1 Thread TrafficGeneratorThread
void run() {
 while (true) {
 p = generatePacket();
 stationQueue.addPacket(p);
 if (stationQueue.packetsCount == 1) {
 stationServer.wakUp();

}
duration = getInterArrival();
waitingList.addThread(this, WAIT_TIME, duration);
suspend current thread;

}
}

3.2.2 Thread StationServerThread
void run() {
 while (true) {
 if (stationQueue.packetsCount == 0) {
 waitingList.addThread(this, WAIT_PACKETS, 0);
 suspend this thread;

}
 p = stationQueue.getFirstPacket();
if (medium.isIdle()) {
 waitingList.addThread(this, WAIT_TIME, DIFS);

 suspend this thread;
 transmit(p);
}
else {
 waitingList.addThread(this, WAIT_MEDIUM_FREE, 0);
 this.suspend();
 waitingList.addThread(this, WAIT_TIME, DIFS);
 this.suspend();
 Initialize backoffTimer
 while (backoffTimer != 0) {

waitingList.addThread(this,
WAIT_TIMER_MEDIUM_BUSY, backoffTimer);

Update backoffTimer
 this.suspend();
 if (medium.isBusy()) {
 waitingList.addThread(this,

WAIT_MEDIUM_FREE, 0);
 this.suspend();
 waitingList.addThread(this, WAIT_TIME,

DIFS);
 this.suspend();

}
}
transmit(p);

}
}

}

3.2.3 Thread MainThread
medium = new Medium();
stations = new Stations[numOfStations];
for i = 1 to numOfStations {

stations[i] = new Station(new TrafficGeneratorThread(),new
StationServerThread(medium));

stations[i].startThreads();
}
simTime = 0;
while(simTime < MAX_SIM_TIME) {
 if (waitingList.getSleepingThreadsCount() == 0) {
 sleep for some time;

}
waitingElems = waitingList.getFirstThreads(medium);
simTime += waitingElems.elementAt(0).value;
for i = 1 to waitingElems.size() {
 waitingElems.elementAt(i).thread.resume();
}

}

The following are the data structures that are needed by the previous code shown

earlier. We can see that we have the keyword 'synchronized' before the declaration of

some functions. This is needed for synchronization among the running threads as they

may compete to access some data structure. If we allow the running threads to access

the data structures without controlling them properly, we will have race condition

problems and inconsistent data.

3.2.4 Data Structures

StationQueue:
Vector packets;
synchronized void addPacket(Packet p);
synchronized Packet getFirstPacket();

Medium:
int state;
synchronized boolean isIdle();
synchronized boolean isBusy();
synchronized void changeState(newState);

WaitingListElem:
Thread threadP;
int reason;
int value;
const int WAIT_PACKETS = 0;
const int WAIT_TIME = 1;
const int WAIT_MEDIUM_FREE = 2;
const int WAIT_TIMER_MEDIUM_BUSY = 3;

4 Implemented Simulator

The approach that we used in this work to implement CSMA/CA protocol simulator is

the event-driven one. We have eleven different types of events. The events' types are

shown in the following table with a brief description for each type:

Event Type Meaning / Usage

GENERATE_PACKET This event triggers the creation of a new packet when

fired.

START_CSMA This event triggers the beginning of the frame

transmission trial.

DEFER This event is used to defer the transmission of a station

because the medium was sensed busy.

START_BACKOFF This event starts the backoff period of a station

DEC_BACKOFF This event decrements the backoff timer of a station

and possibly trigger transmission event.

STOP_BACKOFF This station is similar to DEC_BACKOFF. However,

it is only created when a station has DEC_BACKOFF

and the medium becomes busy before firing this event.

TRANSMIT_FRAME This event starts transmitting the packet that is the

head of the station queue. It changes the medium state

from idle to busy or collision depending on the number

of simultaneous transmissions.

TRANSMIT_ACK This event starts sending acknowledgement to the

sending station. It also changes the medium state from

idle to busy.

FREE_MEDIUM This event frees the medium by changing its state from

busy or collision to idle again.

NO_ACK This event is fired when the sending station did not

receive an acknowledgment within the allowed

timeout. It increments the transmission attempts

counter, and adjusts the contention window according

to the backoff algorithm. This event creates a

START_CSMA event for retransmission of the lost

packet if the retry limit has not been reached.

RECV_ACK This event is fired when the sending station receives an

acknowledgment for a previously sent packet. This

will cause the removal of the sent packet from the

station queue.

Each event has three attributes: the station to which it belongs, its type, and at which

time it should fires. The following diagram shows the relation among the different

types and how they are created:

Figure 2. The events diagram of CSMA/CA simulator

Each event type is represented by a rectangular box. Each arrow represents the

creation of a new event as the result of processing the current event. On each arrow,

we can see that there is a '/' character separating two statements. The statement on the

left represents the condition under which the new event is created, and the statement

on the right represents the time associated with the newly created event. If we have '+'

at the beginning of the time, this means that the new event time will be the current

simulator time + the amount after it. If we don't have a '+', this means that the new

event time is equal to the indicated time. For example, the FREE_MEDIUM event

will be created from TRANSMIT_FRAME event under no condition and at time 'Fin',

where 'Fin' is time at which the frames transmission completes. We can see

STOP_BACKOFF event is not shown in the events diagram. This will be explained

later.

The GENERATE_PACKET event is always creating another event of the same type

after the inter-arrival time. This is indicated by the loop shown in the above figure.

This event can generate a START_CSMA event when the queue is empty. This is

necessary to initialize the transmission for the first time, or when the queue becomes

empty for some time and station becomes inactive. The START_CSMA event can

generate TRANSMIT_FRAME event if the medium is sensed idle. Otherwise, it

generated a DEFER event until the medium becomes idle again (Fin). The DEFER

event generates START_BACKOFF event after DIFS interval if the medium is

sensed idle. The START_BACKOFF event generates DEC_BACKOFF event after

the minimum backoff period.

The minimum backoff period is calculated as the smallest value of backoff timers

generated by the backlogged stations. The DEC_BACKOFF can generate DEFER

event if the station backoff timer is greater than the minimum, which means this

station will not win in this trial and the medium will be utilized by some other station.

However, if the backoff timer of this station is equal to the minimum backoff value,

the TRANSMIT_FRAME event is created in next time slot (this is what +1 means).

Of course, a collision will occur when we have more than one station which their

backoff timers are equal to the minimum value.

The TRANSMIT_FRAME event generates the FREE_MEDIUM event after the

transmission completes (at Fin). It also generates either TRANSMIT_ACK event in

case there is no collision or NO_ACK in case of collision. The TRANSMIT_ACK

event generates FREE_MEDIUM event at acknowledgment transmission completion

time (at Fin), and it generates RECV_ACK event also at Fin time without any

condition. This means implicitly that the acknowledgement transmission is reliable

and collision of ack with other transmission or ack loss can not happen. RECV_ACK

and NO_ACK events do not generate any other event.

In order to continue transmitting packets while the station does not have an empty

queue, we need to generate START_CSMA event from TRANSMIT_FRAME event

in case there are more packets to transmit after the current one.

As we know from the standard [1], the backlogged station should not decrement its

backoff timer if the medium is sensed busy. However, in the shown diagram, this may

happen. This is because we are not sensing the medium continuously as this will

impose high overhead on the simulator especially if the number of stations is high. In

order to avoid such a situation, when the medium becomes busy as a result of

processing TRANSMIT_FRAME or TRANSMIT_ACK event, the function

"updateAffectedEvents" is called. This function will handle this issue. Fro example, if

the station has a DEC_BACKOFF event, it will convert it to STOP_BACKOFF

event. Here the usage of STOP_BACKOFF event can be seen. The

STOP_BACKOFF event then generates DEFER event to wait until the medium

becomes idle again. Actually, this function "updateAffectedEvents" does many

similar things and the conversion of DEC_BACKOFF to STOP_BAKCOFF is one of

them.

5 Implementation

The simulator has been implemented in MATLAB. We used the events diagram

shown earlier. MATLAB is a very powerful tool that can be used to write programs

and plot the results using the many built-in functions. An ordered list of all the current

events is maintained. The events are sorted according to the time. When a new event

is created, it should be added to the sorted list in the right position to keep the list

sorted. So, the simulator always processes the event(s) that are on the head of the list.

These events are the ones that will fire first. If we look carefully at the events diagram

shown earlier, we can see that each station should have at most one of the following

events: START_CSMA, DEFER, START_BACKOFF, DEC_BACKOFF,

STOP_BACKOFF, and TRANSMIT_FRAME. Let us call these events transmit

events. Each station, according to its state, can have at most one of the transmit

events. This is an intuitive conclusion. One station can not be transmitting a frame

(TRANSMIT_FRAME) while it is deferring its transmission (DEFER).

In order to implement the function "updateAffectedEvents", we have to search the

whole events list for transmit events. Then, we have to update these events times

and/or types depending on the event type. This is inefficient especially if we have a

very large events list. Since, we are only interested in updating the transmit events, we

can keep a separate list of indices to the events list that corresponds to each transmit

event in it. Let us call this new list transmitEvent. The transmitEvent vector will have

a length equal to the number of stations. If the station is currently idle (does not have

a packet to transmit), the corresponding element in transmitEvent will be set to zero.

Otherwise, it will have the index value of the corresponding element in the events list.

Now, we need to search only the transmitEvent vector for the non-zero elements to

update what is needed.

To run the simulator, we have two main MATLAB scripts. One is Main.m which is

command line-based. The other one is MainGUI.m which uses graphical user

interface. The Main.m script is not recommended to use as it does not provide the

capabilities provided in MainGUI.m. When we started our implementation, we used it

for running and testing the simulator. However, it can be ignored after providing the

GUI.

5.1 Scheduling Scenarios

Usually, the user does not simulate only one scenario. But rather, he simulates many

different scenarios to compare them to evaluate the protocol performance. For

example, one scenario could be to set packet size to 300 bytes, another could be for

500 bytes, and so on. By fixing all other parameters, the user can check the effect of

changing the packet size on the available performance measures under these specific

conditions. Then, different set of scenarios can be run to compare their performance

and come up with conclusions. In order to be able to schedule the running of multiple

simulations, multiple scenarios can be created and run. Each scenario has a name and

a complete set of simulation parameters. The simulation can be terminated by

specifying the maximum number events to process or by specifying the maximum

time in minutes.

The simulation data structures (events list, stations states, medium, and others) and

results (collected statistics) can be saved on an XML file. We used the toolbox

xml_toolbox-3.1.2 to save and load XML files. Two functions were used to save/load

MATLAB data structures. The function "xml_save" is used to save the data structure

given as argument to the specified file name. The function "xml_load" is used to load

the data structure saved in the specified file name. The user can run the simulation for

some time or for a specific number of events. Then, he can save the results and quit

the simulator. After that, he can run the simulator again for some other period of time.

He can keep the simulation results or flush them to start a new simulation. After

running the simulator, the user can save the results and plot them using the same

simulator. A window is provided for the user for plotting the collected statistics versus

some criteria chosen by the user. For example, the user can plot the throughput

against the number of stations. Each scenario represents a point in the plot. After

plotting the results, the user can decide to resume the simulation to get better plots.

5.2 MATLAB Implementation issues

MATLAB is a single-threaded program and it can not create other threads to

parallelize the developed simulator. So, if the user presses a button on the GUI, he has

to wait until the corresponding function terminates. During this period, the GUI

becomes unresponsive. This is due to the fact that MATLAB uses only single thread

to manage all the operations. An option to solve this issue and make the GUI always

responsive is to create another thread that does the requested operation. This can not

be done using MATLAB only. A Java thread has to be created for this purpose, and

this thread should be created from MATLAB. Then, the created Java thread will call

some MATLAB function to perform the request task. In this case, the GUI is released

directly after pressing a button and enables the user to use it again for other

commands. This issue has not been resolved in this work, because of time limitation.

The main focus of this work is to get a running simulator that gives correct results. Of

course, developing a simulator from scratch, debugging it, and verifying the results

require a lot of time and efforts.

5.3 Simulator Snapshots

The main GUI of the simulator is shown in Figure 3. Three scenarios have been

created in this example.

Figure 3. CSMA/CA Simulator Main GUI snapshot

After adding the required scenarios, the simulator can be started by pressing 'Start

Simulator' button. When finished, you can save your work by pressing 'Save All'

button. This will save all the variables used in the simulation which requires relatively

a big amount of storage. In order to plot the results, 'Save Results' button should be

pressed to save the collected statistics on an XML file. Then, the 'Plot Results' button

can be pressed to show the plotting dialog which is shown in Figure 4. This dialog

plots the results loaded from the XML file. You can choose the x-axis and y-axis

values that you want from the drop-down menu. You can enter the values for x-label

and y-label. You can save the plotted data to a text file in two-column format.

Furthermore, previous plots can be compared by pressing 'Compare with' button. The

user will be prompted to enter the name of the XML file to load. A new item will be

added to the list of scenarios' sets shown on the right. The legend value will take the

file name by default, but it can be changed from the corresponding text field.

Figure 4. Plot Results Dialog snapshot

Whenever a change is made to the previously described fields in this dialog, the

'update' button should be pressed to update the plotted figure.

6 Simulation Results

6.1 Simulation Parameters

The used simulation parameters are similar to those found in [1] [2]. The following

table summarizes them:

Parameter Value

ACK Size 38 bytes

Data Rate 1Mbps

CWmin 31

CWmax 1023

Packets Inter-arrival Time 2 msec

Propagation Delay 0

Slot Time 20 microseconds

SIFS 10 microseconds

DIFS 50 microseconds

Retry Limit 7

ACK Timeout 500 microseconds after sending the frame completely

Station Queue Length 300 packets

In our simulation, the propagation delay is assumed to be negligible. The packet size

is varied from one simulation to another. The packet size is exponentially distributed.

The inter-arrival time is exponentially distributed with mean 2000 microseconds

6.2 Performance Metrics

The main performance metrics that were used are summarized in the following list:

• LAN Throughput

• Collision Ratio

• Average Queue Length

• Average Queuing Time

The LAN throughput can be calculated by dividing the overall time spent in

successful transmissions by the overall simulation time. The collision ratio is the

number of collisions divided by the overall number of transmissions (including those

that are collided). The average queue length is the average length of the stations

queues. The average queue length for a station is time-average value. The average

queuing time is the sum of the waiting time for all sent packets divided by the number

of transmissions averaged for all stations.

6.3 Results & Analysis

The simulation parameters were set to the values described in section 6.1. The plot

shown in Figure 5 shows the LAN throughput versus the number of stations for

packet sizes of 500, and 1000 bytes. The packet size is exponentially distributed with

the mean values indicated. We can see that the throughput is decreases as the number

of stations increases. This is due to the increase in the number of collisions which is

caused by the increased contention to access the medium. As the number of stations

increases, the load on the network also increases which causes higher number of

collisions. This figure of throughput is similar to the one shown in [2] for

IEEE802.11. There is some difference between the two plots. This may be due to

some variation in the simulation parameters. For example, that work did not state the

value used for the acknowledgment timeout. Two curves are shown: one with label

500 and the other one with label 1000. These two numbers represent the packet size.

Figure 5. LAN Throughput vs. Number of stations

We can say that for bigger packet size we have higher throughput. This is not so clear

in the shown figure because we have some fluctuations in the plots. However, we can

generalize this conclusion before studying other possible values for the packet size.

The following figure shows the collision ratio versus the number of stations. This plot

explains the previous. For the same reason, as the number of stations increases, the

number of collisions increases. Of course, higher collision ratio means lower

throughput.

Figure 6. Collision Ratio vs. Number of stations

The average queue length is plotted in the next figure. For bigger packet size, we have

larger queues. This is due to the fact that larger packets take longer time to be

transmitted. So, the queue will keep the packets for more time. This will cause larger

queues for the stations.

Figure 7. Average queue length vs. Number of stations

The average queuing time versus the number of stations is shown in the following

figure. Similarly to the previous plot, the queuing time increases when we increase the

packet size. Larger packets stay longer in the queue which means higher delay.

Figure 8. Average queuing time vs. Number of stations

The next figure shows the packets' drops. As we have larger queues and higher

delays, we have larger number of packets dropped.

Figure 9. Average packets drop vs. Number of stations

7 Simulator Capabilities

In summary, the simulator enables the user to do the following:

• Add / Change / Delete scenarios.

• Configure many protocol parameters and traffic characteristics.

• Choose the backoff algorithm.

• Save the simulation results.

• Resume the simulation after loading the last work.

• Plotting the results and comparing different set of scenarios.

• All of the above features are available through single comprehensive GUI.

8 Conclusions

An event-driven simulator can be efficient if it is programmed carefully. It can be

even made faster if it is exploiting multithreading capability in the programming

language used for implementation. Simulators are useful tools to evaluate the

performance of the existing protocols and the proposed ones. They facilitate this

without the need to actually implementing the protocol to be evaluated, and having a

real setup for this purpose.

Larger packets may give better performance in terms of throughput. However, it may

cause more delays to other waiting packets and consequently higher number of

dropped packets due to limited queuing.

9 Future Work

The simulator can be enhanced more to be a flexible simulator and able to simulate

not only CSMA/CA but also simulating other protocols like CSMA/CD. Also, more

parameters and algorithms can be included in the simulator in the purpose of testing

them and verifying the results. Someone can study the possibility of creating a

multithreaded simulator that is also event-driven. This simulator can run faster than

the current one by exploiting the available SMP (Symmetric Multi Processing)

architecture.

10 References

[1] IEEE Std 802.11, 1999 Edition, Information technology – elecommunications
and information exchange between systems – Local and metropolitan area
networks – Specific requirements. Part 11: MAC and PHY specifications.

[2] A. Al-Akeel, "Optimizing Backoff Procedure for Enhanced Throughput and

Fairness in Wireless LANs", MS Thesis, King Fahd University of Petroleum
& Minerals 2007.

[3] Vukovic, I.N.; Smavatkul, N., “Saturation throughput analysis of different

backoff algorithms in IEEE802.11,” Personal, Indoor and Mobile Radio
Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on
, vol.3, no., pp. 1870-1875 Vol.3, 5-8 Sept. 2004

[4] G. Bianchi, “Performance Analysis of The IEEE802.11 Distributed

Coordination Function”, IEEE Journal on Selected Areas in Communications,
pp. 535-547, Vol. 18, March 2000.

[5] Wen-Kuang Kuo and C.-C. Jay Kuo, "Enhanced Backoff Scheme in
CSMA/CA for IEEE 802.11", 2003.

[6] F.Cali, M.Conti, E.Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to

Achieve a Theoretical Throughput Limit”, IEEE/ACM Trans. On Networking,
V8, N6, pp.785-799, Dec. 2000.

[7] Yunli Chen, Qing-An Zeng, and Dharma P. Agrawal, "Performance Analysis

and Enhancement for IEEE 802.11 MAC Protocol", 2003.

[8] Giuseppe Bianchi, Luigi Fsatta, Matteo Oliveri, "Performance Evaluation and
Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless LANs",
1996.

