[image: image1.png]

FINAL REPORT
Reliable Peer-to-Peer protocol for WLAN using the Stargate Embedded system

SUBMITTED TO:

Dr. MAYEZ AL-MOUHAMED

BY:

IRFAN ALI KHAN (G200802800)

SYED NAEEM FIRDOUS (G200803700)

Table of Contents

4INTRODUCTION

5LITERATURE SURVEY

5Performance Evaluation of Auctions WLAN for RoboCup Multi-Robot Cooperation

7Centralized Peer-to-Peer Video Streaming Over Hybrid Wireless Network

10A Dynamic Token Passing MAC Protocol for Mobile Ad Hoc Networks

11JXTA: A Technology Facilitating Mobile Peer-To-Peer Networks

13PROJECT OBJECTIVE

14IMPLEMENTATION

14STARGATE CONFIGURATION

14Configuring HyperTerminal (for Windows hosts)

15Stargate WLAN configuration

16UBTP Protocol

17Peer to Peer Auctioning using UBTP

18ALGORITHM

19Receiver Thread

19Process thread

19Sender Module

20RESULTS

24CONCLUSION AND FUTURE WORK

24REFERENCES

25APPENDIX

25Source Code

INTRODUCTION

The Stargate is a high performance processing platform designed for sensor, signal processing, control and wireless sensor networking applications. The Stargate is preloaded with Linux and basic device drivers. One Stargate board has the following components; Figure below shows the Stargate board:

1. 32-bit 400 MHz, Intel PXA 255 Intel Xscale RISC Processor

2. 32 MB Flash and 64 MB SDRAM

3. RS 232 serial port that by default displays screen output to the terminal program at the other side.

4. 10/100 Ethernet that can provide wired LAN connectivity

5. USB host that provides connections to USB devices when their drivers are installed.

6. Wireless LAN Ambicom 802.11b CF card that provides wireless connectivity

7. JTAG that provides additional connectivity and data transfer.

[image: image2.jpg]

Fig : Stargate Board

LITERATURE SURVEY

Performance Evaluation of Auctions WLAN for RoboCup Multi-Robot Cooperation

In Stargate embedded systems there is a need for fast, reliable, and power aware communication model for Ad-Hoc wireless networking to form a cooperative system. The currently available techniques are based on client-server, Publish/Subscribe, and Peer/Peer communication model which are not suitable for reliable communication. To address this issue the authors of this paper implemented and evaluated an auction based communication model using (1) TCP Peer to Peer Scheme, (2) UDP Peer to Peer (UPTP) Scheme, and (3) UDP Broadcast and Token Passing (UBTP) scheme. The Evaluation reports that the peer to peer communication using UDP broadcast and token passing scheme performs better than the other models used.

In this paper the authors have discussed the auction based communication model. They propose the following communication models:

TCP Peer to Peer (TPTP) Scheme

UDP Peer to Peer (UPTP) Scheme

UDP Broadcast and Token Passing (UBTP) Scheme

 In the auction based communication, auction is always requested from the head node and other nodes only reply to the auction or perform synchronization related tasks if required by the auction scheme. The schemes presented are based on UDP and TCP communication in different ways to accomplish the auction.

TCP Peer to Peer (TPTP) Scheme The main technique used in this scheme is that the head node communicates with each node that it wants to include in the auction using TCP packets. The auction request and reply from the node are both performed over the same TCP communication link. This scheme is reliable but it is not scalable as the head node has to open a new TCP connection for each node.
UDP Peer to Peer (UPTP) Scheme This scheme uses a technique where the head node sends UDP packets to each node that it wants to include in the auction. The UDP packet sent to each node contains destination node IP address, IP address of the source node and resource ID of the resource that is being auctioned. The head node performs auction in a sequential manner, i.e. the head node contacts the first node using a UDP packet and only after it gets the response through a UDP reply it contacts the next node for the auction. If any node does not respond then the head node take-up that node and go the next node after (N) retries. This scheme is reliable if the value of N is kept large enough (N = 10) but it is not scalable.
UDP Broadcast and Token Passing (UBTP) Scheme In the UBTP scheme the head node generates a UDP packet and broadcasts it to all nodes in the network. The UDP packet includes the node ID of all nodes that are part of the auction. The nodes are ordered in sequence according to which the nodes should reply. The packet also contains the ID number of the resource for which the auction is being preformed. The first node that is in the sequence replies to the head node and at the same time initiates a token packet. The token from the first node is forwarded to the second node in the sequence. The second node replies to the head node and transfers the token to the third node in the sequence. The third node responds in the same way and forwards the token to the fourth node. Similarly, all remaining nodes reply to the auction and forward the token. If any node fails to forwards the token then the next node automatically reply to the head node after a time-out of T milliseconds. The head node concludes the auction if it receives replies from all nodes otherwise it will broadcast a new auction request including the IDs of the nodes from which no bids were received so far. The process is repeated until all nodes responded or the originator gives up.
[image: image3.emf]
Distribution of TCP based auction with scattered times.

[image: image4.emf]
Distribution of UPTP based auction

[image: image5.emf]
Distribution of UBTP based auction
As it can be seen from the results that TCP communication has the highest delay in auctioning and UBTP has the least delay. The TCP communication has very high overhead that is not suitable for small communications. In this paper the authors have described a dynamic relational behavior for autonomous cooperative robots playing soccer. To handle dynamic game situations an effective auction based communication model is proposed based on (1) TCP Peer to Peer Scheme (TPTP), (2) UDP Peer to Peer (UPTP) Scheme, and (3) UDP Broadcast and Token Passing (UBTP) scheme. TPTP based communication has large and scattered time overhead and lack scalability for this environment. The stability and responsiveness is improved by using UPTP. However, the shortest and most stable times were obtained for UBTP. Therefore UBTP and UPTP are best to implement auction-based and peer-to-peer messaging needed in the implementation of proposed dynamic commitment scheme.
Centralized Peer-to-Peer Video Streaming Over Hybrid Wireless Network

Most wireless networks installed today are deployed as the wireless local area networks (WLANs), where all the packets are forwarded by the access point (AP). When the number of the users and the number of the flows in the WLAN increases, the contention for the wireless channel will lead to packet loss and packet delay, which degrade video perceptual quality. In [2], the author proposed a centralized peer-to-peer video streaming over hybrid wireless network to improve the performance of the video transport over wireless Internet. The hybrid wireless network is a combination of the infrastructure network and the ad hoc network. The video is encoded into multiple layers, and pre-stored in the server. When a mobile station (MS) requests a video from the server, the server will first check if any MS in the initiating cell caches the video content. They refer to the MS, which caches the video content, as the super-peer. If super-peer is found, it will be requested to transport the enhancement layers to the requesting MS over multiple paths via the ad hoc mode, while the server will transport the base layer to the requesting-peer via the WLAN mode. The base layer of the video is transported from the server via the WLAN mode, which benefits the centralized management of the video distribution, while the enhancement layers are delivered over the multiple paths via the ad hoc mode, which can reduce the congestion in the access point (AP). The AP in this proposed scheme is responsible for not only forwarding the packets, but also managing the cached videos and the MSs in the local wireless network. The advantages of this proposed scheme are: First, it sustains a centralized management of the content distribution. Second, it reduces the traffic contention in the AP, hence increasing the system throughput and decreasing the packet loss and delay in wireless network. They evaluated the performance of the centralized peer-to-peer video streaming over hybrid wireless network using network simulation version 2 (NS2). The simulation results show that the proposed scheme can achieve a better perceptual video quality compared to the WLAN deployment.

[image: image6.emf]
In the scheme when a Mobile station requests a video, it will send a SETUP message to the server. The server will first validate the authentication, authorization, and accounting (AAA) for this request. If the request is valid, the server will look up in its database to check if the requested video is available. If available, the server will send a SEARCH message to the AP of the initiating cell. Upon receipt of the SEARCH message, the AP will look up in the video table and the MS table to check if a super-peer is caching this video and the super-peer is currently alive. If no such super-peer is found, a negative acknowledgement (NACK) will be sent back to the server, and then the server will transport the base layer and the enhancement layers to the requesting peer via the WLAN mode. If one or more active super peers are found, the AP will send a VERIFY message to the best super-peer, which owns the best quality (highest enhancement layer) of the video content. If the super-peer is able and willing to provide a sufficient upload bandwidth to stream the enhancement layers to the requesting peer, it will feed back a positive acknowledgement (ACK) to the AP. Then, the AP sends an ACK to the server to inform the server to transport the base layer to the requesting peer via the WLAN mode. Meanwhile, the AP also sends an EL-START message to the chosen super-peer to command it to transport the enhancement layers to the requesting peer via the ad hoc mode. If the super-peer leaves the cell or powers off during the streaming period, the AP will be able to detect the disappearance of the super-peer by checking the MS table periodically. In that case, the AP will assign another super-peer to transport the remaining video content. This is called the hand-off among super-peers. If the requesting peer stops the video transmission, it will send a TERMINATION message to the AP, which will forward this message to the server informing the stop of the base layer transmission, and also forward this message to the super-peer to terminate the transport of the enhancement layers. If the AP detects the disappearance of the requesting peer during the streaming, the AP will generate the TERMINATION message and send it to the server and the super-peer.

[image: image7.emf]
Flowchart: the server transports the base layer, and the super-peer transports the enhancement layers, respectively
[image: image8.emf]
PSNR comparison for Foreman CIF sequence

[image: image9.emf]
The authors have proposed a centralized peer-to-peer video streaming architecture over hybrid wireless network to improve the performance of the video transport over wireless Internet. The base layer of the video is transported from the server via the WLAN mode, which benefits the centralized management of the video distribution, while the enhancement layers are delivered over the ad hoc multiple paths to reduce the congestion in the AP. The simulation results show that their proposed scheme can achieve a better perceptual video quality compared to the WLAN scheme.

A Dynamic Token Passing MAC Protocol for Mobile Ad Hoc Networks

In this paper the author presents a Dynamic Token Ring based MAC protocol (DRP) for mobile ad hoc networks, and DRP solves the intra-flow and inter-flow contention problems in MAC layer. DRP is a ring-based protocol and it is based on the token ring technique. In this technique Receivers are organized as a logical ring. Among all nodes in a cluster, only the node holding token is responsible for sending packets to the successor. This technique is dynamic, because the token ring in a cluster can be a low priority token ring or a high priority token ring. The number of nodes in the high priority ring may be different under various situations. The author uses a receiver busy tone (BT) and a token tone (TT) out of band. Out-of-band busy tone signal is widely used in many schemes to overcome the hidden terminal problem, and the exposed terminal problem. The token tone is used to request updating the token ring in a cluster. Once the node gets the token, it needs to detect the existence of the BT or TT. BT may come from other cluster members, while TT usually comes from inner members who want to join the high priority ring. BT is also used by cluster head to suppress the multiple reporting of the loss of token. In DRP, Ring Manager in the MAC layer performs token management. The main task of ring management involves: a) Ensure there exists one and only one token in a ring; b) Ensure the correct priority and the generation of a ring; c) Ensure that the related nodes are in proper order; d) Manage the joining and quitting operations. The author evaluated the performance behavior of the DRP protocol as compared to the IEEE 802.11 protocol. The analysis includes the throughput and average end to end delay. Throughput – the total data packets delivered from CBR sources to the destination nodes in a second. Average end to end delay-- the average time of data packets transmitted from source node to destination.

[image: image10.emf][image: image11.emf]
Above figures are the throughput with single flow and multi-flow respectively. The CBR arrival rate is set to 40pkts/s each flow in second figure. The overall data arrival rate should be multiplied the number of flows for inter-flow calculation. In the DRP protocol, each node can transmit data when it holds the token and there is no busy tone heard. Hence it mitigates the collisions between nodes of intraflow. In the mean time, the DRP protocol can greatly reduce the inter-flow contention through the dynamic token ring schedule process. The result shows although DRP protocol introduced some overhead on transmission scheduling, it demonstrates up to 35% improvement on throughput than IEEE 802.11 MAC under heavy offered load. The 802.11 MAC may even get worse when the number of flow increases, since the collision becomes more and more frequent.

JXTA: A Technology Facilitating Mobile Peer-To-Peer Networks

JXTA is a peer-to-peer technology that enables developers to easily create distributed computing software. This paper describes JXTA in general and focuses on its applicability for mobile-networked systems. Since mobile devices like PDAs, mobile phones, or laptop computers are much more likely to interoperate with each other in the absence of a coordinating authority such as a server, there is an obvious need for a technology above the hardware abstraction level of IrDA and Bluetooth. JXTA enables mobile devices running on various platforms not only to share data with each other, but also to use functions of their respective peers. In this paper a general overview of the JXTA specification, the corresponding protocols, and mobile peer-to-peer aspects is presented. Furthermore, the current status of an open source JXTA implementation for Java is briefly outlined. This paper analyzes to which extend mobile devices are suitable for a peer-to-peer approach and how this approach can be realized with JXTA.
Peer-to-peer computing becomes even more relevant taking into account that today’s small mobile devices have an enormous potential of computing power that can and should be utilized for a shared purpose using a peer-to-peer approach.

JXTA enables the development of networked interoperable peer-to-peer applications including the following aspects: Finding other peers on the network with dynamic discovery across firewalls. File sharing and sharing of computing resources with anyone across the network. Creation of peer groups wherein peers can find each other, across firewalls, on any device. Remote monitoring of peer activities. Secure communication with other peers on the network. JXTA defines six protocols; every peer has to implement the self required protocols only, not all of them. The protocols are shown in Figure below.

The Peer Endpoint Protocol (PEP) is the routing protocol of JXTA. It is used to find a route to another peer. A route is a sequence of nodes from one endpoint to another. This does not mean the actual routing in terms of TCP/IP or a similar transport protocol. The PEP works independently from the underlying network transport protocol. PEP ignores firewalls and the presence of logical networks built with an IP Network Address Translator (NAT).

The Peer Resolver Protocol (PRP) is the mechanism by which a peer can send a generic query to other peers. It is a query-response protocol. Each query contains a unique ID, which matches the ID in the response.

The Peer Discovery Protocol (PDP) is used to discover any published resources which are mandatory represented as advertisements. The PDP is based on the use of rendezvous peers. Rendezvous peers have all peer properties. Furthermore, they can cache advertisements needed to help peers discover resources and can forward requests for advertisements to other peers. They also interact with different rendezvous peers.
The Pipe Binding Protocol (PBP) is used to establish pipe connections between peers. With the help of the PBP peers bind the two or more endpoints of a pipe.

The Peer Information Protocol (PIP) is used to exchange status information between peers. These information include state, uptime, traffic load, and so on.

The Peer Membership Protocol (PMP) is the mechanism by which peers can organize themselves to form groups. Peers use the PMP to join or leave existing peer groups. A single peer can belong to multiple peer groups. Peer groups are discovered using the PDP.

[image: image12.emf]
JXTA Protocols

This paper discusses how JXTA is suitable to work with mobile devices as a peer-to-peer solution as well as a point-to-point protocol. Its usage has many benefits but some disadvantages. The benefits are easier software development, higher level of platform independence, standardized protocols, and built-in or prepared security features. Currently JXTA is not lightweight. It requires JDK 1.1.4 and therefore needs many hardware resources, but mobile devices usually have restricted resources. The JXTA community has addressed this problem by developing a special release based on Java 2 Micro Edition. JXTA can be used in a variety of situations such as in medicine or wherever no centralized infrastructure is available or desired. It is independent from transport protocols. Therefore it can rely on many protocols already available for mobile devices and it is open for upcoming developments. JXTA supports the efforts being made in the area of ubiquitous computing.

PROJECT OBJECTIVE
· Develop a Reliable Peer-to-Peer protocol (RPTP) for WLAN using the Stargate embedded system.
· To implement a reliable Peer-to-Peer protocol we need to create two threads (1) a communication thread (TC), and (2) a processing thread (TP).
· Develop a testbed system which allows modules to run TC and TP, in addition to the generation of broadcast request within TP.

· Increase the reliability of P2P protocol, each module is to record packet identifiers for each arriving packet as part of the TC thread in addition to the total time needed to complete a customized broadcast with potentially some acknowledgement.
· Use a customized UDP protocol or an imperative Poll-based communication (like in SNMP).
· Determine the degree of reliability of the used protocol.

IMPLEMENTATION
· We used 7 stargate Boards to implement the peer to peer protocol.

· Each node (Stargate Board) acts like a Peer.

· All the seven nodes form a Peer to Peer wireless ad-hoc network.

· We installed the Symmetric java program into each Peer using HyperTerminal.

STARGATE CONFIGURATION

Configuring HyperTerminal (for Windows hosts)
· To start HyperTerminal, choose

· Start>Programs>Accessories>Communications>HyperTerminal

· HyperTerminal window comes up, along with a dialog box for configuring a New Connection.

· Type Stargate in the Name text box and click OK.

· The Connect To dialog box will then be displayed, select the COM port you wish to use from the Connect using drop down list, then click OK.

· The COM Properties dialog box then opens up, choose the following parameters then click OK:
[image: image13.png]COM1 Properties. 2]

Por Settings

Bits o second: [115200 v
Datatis: [v
Paiiy: [None v
Stopbits: [1 v
Flow controt

Stargate WLAN configuration
We configured Stargate boards to form a WLAN network. This is accomplished by issuing the following commands on each stargate Board.

root# ifconfig wlan0 11.0.0.x

where x is any number between 1 to 8.

UBTP Protocol
[image: image14.png]Client 1
Client 7 ode)
(Node) s Client 2
Ty, (Nade)
)O?

lient 5
de) oL

Fig: UBTP Broadcast and token passing scheme

In UDP Broadcast and Token Passing (UBTP) Scheme there is one Head node and others are receiving nodes. The Head node broadcast UDP packet and the order in which the nodes must respond to all nodes in the network. Each node replies to the head node and sends a token packet to the next node which is next to it in the order. If the next node does not receive the token it will reply to the Head node after time out of T milliseconds. If the Head node does not receive ACK from any one of the nodes it will do a second broadcast to the selected nodes

Peer to Peer Auctioning using UBTP
[image: image15.png]» \
g
PASS TKNTO 5

PEER 4 PEER S

Fig: Peer to Peer Auctioning using UBTP

In Peer to Peer Auctioning using UBTP Scheme each node acts like a Peer. Any one of the Peer broadcast UDP packet and the order in which the nodes must respond to all Peer nodes in the network. Each Peer node replies to the Peer node which starts the Auction and pass a token to the next node which is next to it in order. If the next node does not receive the token it will reply to the Peer which has started Auction after time out of T milliseconds. If the Peer node which has started Auction does not receive ACK from any one of the nodes it will do a second broadcast to the selected nodes.
We installed the Symmetric java program into each Peer, and this symmetric code is divided into four class files.

· Stargate (starts the Program)

· Receiver(Receives packets, sends token)

· Processing(Controls Auction, Updates the file)

· Sender(Sends packets)

ALGORITHM
[image: image16.png]START

RECEIVER
THREAD

~

LISTEN ON PORT

IF NODE
=BCAST

YEs

EXTRACT
ORDER

YES—»{LISTEN FOR ACK|

SEND

[Ack

SEND

| TokeN

Elfe

LISTEN FOR
TOKENT
MILLISEC

PROCESSING
THREAD

UPDATE
RECORD

SEND TO

PROCESS
UPDATE

SELECTA
RANDOM NODE
AND SEND PKT

70 INTIATE NEW|

AUCTION

SEND

™ Aok
SEND.

L+ TokenTO

NXTNODE

Fig: Flow chart

The main parts of the program are:

1. Main Component

2. Receiver

3. Processing

4. Sender

The main Program initializes the program and creates two threads Receiver thread and processing thread. The function of the receiver and processing threads is shown in the above flow chart (figure).

The processing thread is used to send the auction and the receiver thread starts listening on the ports for incoming packets. Once the receiver thread receives the packet it checks for message field and decides whether it is an auction packet or acknowledgement packet. If the node receives auctions then Send Acknowledgment to auctioning node Send token to next node. If the node receives auctions then Send Acknowledgment to auctioning node Send token to next node. It also calculates the response time of each node which sent the acknowledgement.

Receiver Thread
The following are the tasks which are done by Receiver Thread
· Listen on the Port

· If the node is auctioning node then Listen for acknowledgments
· If the node receives auctions then Send Acknowledgment to auctioning node Send token to next node

· After all nodes Ack send initiation packet to a randomly selected node
· Listen for token

Process thread

· Controls the Auction

· Process the Auction Request (generate order in which peers should respond)

· Update Record method writes the auction information to the file
Sender Module
· Mostly Inactive

· Gets requests from the Processing Thread

· Sends the Auction or the replies

RESULTS
[image: image17.png]Number Of Observations

20
18
16
14
12
10

[SINIENCY

Distribution of Node 1 Auction

44 45 46 49 50 51 53 54 56 57

Time Taken by the Auction (ms)

58

59

[image: image18.png]Number Of Observations

Distribution of Node 2 Auction

25

20

15

10

44 45 46 47 48 49 50 51 52 53 54 56 58 59

Time Taken by the Auction (ms)

[image: image19.png]Number Of Observations

Distribution of Node 3 Auction

25

20

15

10

43 44 45 46 47 48 43 50 51 54 55 57 61

Time Taken by the Auction (ms)

68

[image: image20.png]Number Of Observations

25

20

15

10

Distribution of Node 4 Auction

44 45 46 47 48 49 50 51 52 54 57

Time Taken by the Auction (ms)

60

70

[image: image21.png]Number Of Observations

30
25
20
15
10

Distribution of Node 5 Auction

43 44 45 46 47 48 49 50 51 53 54 55 59 62 65

Time Taken by the Auction (ms)

[image: image22.png]Number Of Observations

25

20

15

10

Distribution of Node 6 Auction

44 45 46 47 48 49 50 51 52 53 55 56 58 60 67

Time Taken by the Auction (ms)

[image: image23.png]Number Of Observations

16
14
12

onN B O ®

Distribution of Node 7 Auction

44 45 46 47 48 49 50 51 52 53 55

Time Taken by the Auction (ms)

57

74

The distribution of completion times of Each Peer node for Peer to Peer Auctioning using UBTP is shown in the above plots. The Response time of Peer to Peer Auctioning using UBTP is almost 46ms and is little bit higher than that of UBTP protocol this is because we are running the same code in all the Peer’s and each Peer has to know to whom they have to reply back and this requires extracting the source IP from the Received packet and also data in the packet. The response time distribution is almost symmetrical in all the nodes.
[image: image24.png]Percentage of Auctions

120

100

80

60

40

20

Percentage of Auctions

H First Auctions

M Second Auctions

3 4 5 6 7

Auctioning Node

Fig : Reliability of Peer to Peer Auctioning using UBTP

As we can see from the above graph most of the Auctions are completed successfully with first Auction. Slight variations in percentage in the above graph are due to the node placements.
CONCLUSION AND FUTURE WORK
· Reliable peer to peer protocol has been developed

· Symmetric code in all nodes

· Response times are comparable to UBTP auction scheme

· Degree of reliability can be improved

· Power consumption for auctioning can be measured

· Response time and Reliability can be measured for indoor and outdoor environments

REFERENCES
[1] Mayez A. Al-Mouhamed and Umair F. Siddiqi, “Performance Evaluation of Auctions WLAN for RoboCup Multi-Robot Cooperation”.

[2] Yifeng He, Ivan Lee, Xijia Gu, and Ling Guan “Centralized Peer-to-Peer Video Streaming Over Hybrid Wireless Network”.
[3] Xuming Lu, Guangbin Fan, Ruibing Hao, “A Dynamic Token Passing MAC Protocol for Mobile Ad Hoc Networks”.
[4] Nico Maibaum, Thomas Mundt, “JXTA: A Technology Facilitating Mobile Peer-To-Peer Networks”.

APPENDIX

Source Code
/**

 * Stargate.java

 *

 *

 * Syed Naeem Firdous & Irfan Ali Khan

 * @version 1.00 2009/12/20

 */

import java.lang.*;

import java.net.*;

import java.io.*;

public class Stargate

{

 public static void main(String args[]) throws Exception

 {

 DatagramSocket ioSocket;

 int Port = 2222;

 try {

 ioSocket = new DatagramSocket(Port);

 }

 catch (Exception e)

 {

 ioSocket = new DatagramSocket(Port);

 e.printStackTrace();

 }

 try

{

 Processing ProcessThrd = new Processing(); // Start processing thread

 new Receiver(ioSocket, ProcessThrd); // Start receiver thread

 (new Thread(ProcessThrd)).start();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 System.out.println("Receiver Thread Invoked");

 }

}

/**

 * @(#)Sender.java

 *

 *

 * @Syed Naeem Firdous & Irfan Ali Khan

 * @version 1.00 2009/12/23

 */

import java.lang.*;

import java.net.*;

import java.io.*;

class Sender

{

public void SendMethod(String inpBuffer, String address, int Port) throws Exception

{

DatagramSocket ioSocket = new DatagramSocket();

byte SendBuffer[] = new byte[128];

SendBuffer = inpBuffer.getBytes();

DatagramPacket sendPacket = new DatagramPacket(SendBuffer, SendBuffer.length);

try{

sendPacket = new DatagramPacket(SendBuffer, SendBuffer.length, InetAddress.getByName(address), Port);

ioSocket.send(sendPacket);

}

catch (Exception e)

{

e.printStackTrace();

}

//System.out.println("Sending Packet");

ioSocket.close();

}

}

/**

 * @(#)Processing.java

 *

 *

 * @Syed Naeem Firdous & Irfan Ali Khan

 * @version 1.00 2009/12/23

 */

import java.lang.*;

import java.net.*;

import java.io.*;

class Processing implements Runnable

 {

 String BcastIP = "11.255.255.255";

 String inpBuffer;

 String IPaddress;

 int Port;

 FileOutputStream out; // declare a file output object

 PrintStream p; // declare a print stream object

 int iID;

 String MyID;

 String MyIP;

 double startTime = 0;

 double estimatedTime = 0;

 String nodeorder = "" ;

 int bcstID = 0;

 Processing()

 {

 }

 public void run() {

//System.out.println(" Processing Thread Started");

try

{

InetAddress Addr = InetAddress.getLocalHost(); //getting hostname and IP address

MyIP = Addr.getHostAddress().toString().substring((Addr.getHostAddress().toString().indexOf('/')) +1);//extracting host address

MyID = MyIP.substring(7,8);

//extracting the node ID from IP address

iID = Integer.parseInt(MyID);
//converting the node ID from string to integer

System.out.println("MY IP is = " + MyIP + " My ID is = " + iID);//printing IP address and node ID of the node

}

catch (Exception e) { e.printStackTrace();}

if (iID == 1 && bcstID == 0)

{

 int i = 1;

 while(i<=7)

{

if(iID == i)

{

i++;

}

else{

nodeorder = nodeorder + " " + i;

i++;

}

 }

 //
System.out.println(nodeorder + "\n");

try{

Sender SendInt = new Sender();//creating a object to sender class

startTime = System.currentTimeMillis();//capturing sytem time and storing it in the variable

//
System.out.println("Receive order" + nodeorder);

SendInt.SendMethod(nodeorder,BcastIP,2222);//passing parameters to the SendMethod of Sender class

//
System.out.println("packet Sent");

}

catch(Exception e){

e.printStackTrace();

}

}

if (iID == bcstID)

{

 int i = 1;

 while(i<=7)

{

if(iID == i)

{

i++;

}

else{

nodeorder = nodeorder + " " + i;

i++;

}

//
System.out.println(nodeorder + "\n");

}

try{

Sender SendInt = new Sender();//creating a object to sender class

startTime = System.currentTimeMillis();//capturing sytem time and storing it in the variable

//
System.out.println("Receive order" + nodeorder);

SendInt.SendMethod(nodeorder,BcastIP,2222);//passing parameters to the SendMethod of Sender class

//
System.out.println("packet Sent");

}

catch(Exception e){

e.printStackTrace();

}

}

 }

/*--Method to update record--*/

public void UpdateRec(String [] pktInfo, double[] RcTime, String fileName)

{

//update the variable and notify the process thread. (wake up the process thread)

 try{

// System.out.println(" Received Text = " + inpBuffer);

 int i = 0;

 //estimatedTime = RcTime - startTime;

 out = new FileOutputStream(fileName,true);

 p = new PrintStream(out); // Connect print stream to the output stream

 System.out.println(" Received Text");

 while(i <= 6)

 {

p.println (pktInfo[i] + " " + (RcTime[i] - startTime));

 i++;

 }

 System.out.println("\n i am here \n");

 //+ startTime + " " + RcTime + " "

 }catch (Exception e){ e.printStackTrace(); }

 }

 public void recBcstID(int bID)

 {

 this.bcstID = bID;

 }

 }

/**

 * @(#)Receiver.java

 *

 *

 * @Syed Naeem Firdous & Irfan Ali Khan

 * @version 1.00 2009/12/23

 */

 import java.lang.*;

 import java.net.*;

 import java.io.*;

 import java.util.Random;

class Receiver implements Runnable {

 /* ---Socket variables---*/

 DatagramSocket LstnSocket;

 DatagramSocket TSocket;

 int Port = 2222;

int Port2 = 3333;

byte receiveBuffer[] = new byte[256];

DatagramPacket receivePacket;

 /* ---Variables to store packet data---*/

 String srcData;

 String srcAddress;

 int srcPort;

 /* ---Process Thread---*/

 Processing ProcessThrd;

 //int temp;

 /* ---variables to pass pkt info to Process thread---*/

 double currTime = 0;

 double[] time ;

 //double newTime = 0;

 int numNodes = 6;

 int[] nodes = null;

 int nodeID = 0;

 String[] PktInfo;

 /* ---Variables to get the Device ID---*/

 String MyIP = "";

 String MyID = "";

 int iID = 0;

 String lastDgt = "";

 /* ---Filename variables---*/

 //String AcFile = "myfile.txt";

String RcFile = "Received.txt";

/* ---variables to monitor response of nodes---*/

int timeout = 30;

boolean RACK = true;

String [] SecondBcast;

int tmOut = 100;

/* ---Random number generators---*/

Random randomGenerator;

int START = 1;

 int END = 7;

/*-----------------------------------/constructor/---*/

 Receiver(DatagramSocket ioSocket, Processing Process)

{

 this.LstnSocket = ioSocket;

 this.ProcessThrd = Process;

 new Thread(this).start(); // Start thread at run()

 nodes = new int[10];

 PktInfo = new String[10];

 time = new double[8];

 SecondBcast = new String[8];

 randomGenerator = new Random();

 receivePacket = new DatagramPacket(receiveBuffer, 256);

 /*----------------------------/Fetch the Node ID/---------------------*/

 try{

InetAddress Addr = InetAddress.getLocalHost();//getting hostname and IP address

//extracting host address

MyIP = Addr.getHostAddress().toString().substring((Addr.getHostAddress().toString().indexOf('/')) +1);

//MyID = MyIP.substring(7,8);//extracting the node ID from IP address

iID = Integer.parseInt(MyIP.substring(7,8));
//converting the node ID from string to integer

nodes[iID] = iID;//storing node ID in an array at nodeID's position

//System.out.println("MY IP is = " + MyIP + " My ID is = " + iID);//printing IP address and node ID of the node

}

 catch(Exception e)

{

e.printStackTrace();

}

 try

{

 TSocket = new DatagramSocket(Port2);

}

 catch (Exception e)

 {

 e.printStackTrace();

}

 }

/*-----------------------------------/End of constructor/---*/

/*-----------------------------------/Start Receiver Thread/---*/

public void run()

{

Sender SendInt = new Sender();//creating a object to sender class

/*-----------------------------------/// Wait for datagram/------------------------*/

while(true)

 {

 RACK = true;

 try

{

System.out.println(" listening on port" + LstnSocket.getLocalPort());

receivePacket.setLength(receiveBuffer.length);

ReceiveACK();//calling ReceiveACK() method

 if(srcAddress.equals(MyIP))

{

int i;

//
this.LstnSocket.setSoTimeout(tmOut);

//
System.out.println("Listening for ACK ");

PktInfo[0] = " First Broadcast ";

/*----------Receive ACK for first Auction-------------- */

for(i = 1; i <= numNodes; i++)

{

receivePacket.setLength(receiveBuffer.length);

ReceiveACK();//calling ReceiveACK() method

PktInfo[i] = srcData + " " + srcAddress + " " + srcPort;

time[i] = currTime;

//
nodeID = Integer.parseInt(lastDgt);

nodes[Integer.parseInt(lastDgt)] = Integer.parseInt(lastDgt);

if (RACK == false)

break;

 }

 /*----------Receive ACK for first Auction-------------- */

ProcessThrd.UpdateRec(PktInfo, time, RcFile);

/*---------------------------If No ACK received---------------------------------*/

if(RACK == false)

{

int j = 0;

for(int c = 1; c <= numNodes ; c++)

{

if(nodes[c] == 0 && c != iID)

{

 System.out.println("ACK not sent by " + "11.0.0."+c);

 SecondBcast[j] = "11.0.0."+c;

 j++;

}

}

int m = 1;

double startTime = 0;

PktInfo[0] = " Second Broadcast ";

while(j >= 0)

{

 startTime = System.currentTimeMillis();

 SendInt.SendMethod("NCK", SecondBcast[j], 2222);

 receivePacket.setLength(receiveBuffer.length);

 this.LstnSocket.setSoTimeout(tmOut);

 ReceiveACK();//calling ReceiveACK() method

 PktInfo[m] = srcData + " " + srcAddress + " " + srcPort;

 time[m] = (this.currTime - startTime);

 j--;

 m++;

}

ProcessThrd.UpdateRec(PktInfo, time, RcFile);

}

/*---------------------------End of "If No ACK received"---------------------------*/

/*------------------------Send pckt to next node to bcast -----------------------*/

if (i == 6)

{

long range = (long)END - (long)START + 1;

// compute a fraction of the range, 0 <= frac < range

long fraction = (long)(range * randomGenerator.nextDouble());

int randomNumber = (int)(fraction + START);

/* Generate a random number between 1 to 7 send pckt "NEXT"

 * if random number is same as node ID and nodeID is not 7 then increment the random number

 * (because we only have 7 nodes)

 * if it is node 7 and random number is also 7 then decrement the number

 * */

if(randomNumber == iID && iID != 7)

randomNumber++;

if(randomNumber == 7 && iID == 7)

randomNumber--;

SendInt.SendMethod("next","11.0.0."+ Integer.toString(randomNumber),2222);

System.out.println(" next auction node = " + "11.0.0."+ Integer.toString(randomNumber));

}

//
this.LstnSocket.setSoTimeout(0);

}

 /*-------------------------------Send ACK---*/

if(!srcData.equals("next") && !srcData.equals("NCK") && !srcAddress.equals(MyIP) && !srcData.equals("ACK"))

{

String nxtNode= "";

int j=1;

int k=2;

//System.out.println("first node " + Integer.parseInt(srcData.substring(j,k)));

if(Integer.parseInt(srcData.substring(j,k))== iID)

 {

SendInt.SendMethod("ACK",srcAddress,2222);

//System.out.println("Sent ACK to " + srcAddress);

SendInt.SendMethod("t","11.0.0."+ srcData.substring(j+2,k+2),3333);

//System.out.println("Sent Token to" + "11.0.0."+srcData.substring(j+2,k+2));

// System.out.println("\n Time = " + (System.currentTimeMillis() - newTime));

 }

else

{

int i=1;

int t = 0;

j=j+2;

k=k+2;

while(i<6)

 {

if (Integer.parseInt(srcData.substring(j,k))== iID)

{

receivePacket.setLength(receiveBuffer.length);

TSocket.setSoTimeout(timeout + t*i); //wait for only T millisecond if no token

// is received with in T milli then send ACK to auction initiator and Token to next node

TSocket.receive(this.receivePacket);

SendInt.SendMethod("ACK",srcAddress,2222);

//
System.out.println("Sent ACK");

if(i < 5)

 {

nxtNode="11.0.0." + srcData.substring(j+2,k+2);

SendInt.SendMethod("token",nxtNode,3333);

//
System.out.println("Sent Token to" + nxtNode);

 }

break;

}

i++;

t = t+5;

j=j+2;

k=k+2;

 }

 TSocket.setSoTimeout(0);

}

}

if(srcData.equals("next"))

 {

try

{

ProcessThrd.recBcstID(iID);

(new Thread(ProcessThrd)).start();

 //System.out.println("Number of active threads = " + ProcessThrd.activeCount());

}

}

catch (Exception e)

{e.printStackTrace();}

}

if(srcData.equals("NCK"))

 {

SendInt.SendMethod("ACK",srcAddress,2222);

 }

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

 /*-------------------------------Receive Packets & extract info---*/

public void ReceiveACK()

{

 try{

 // wait for only T millisecond if no token

// is received with in T milli then send ACK auction initiator and Token to next node

this.LstnSocket.receive(this.receivePacket); // waiting for the packet to receive

this.currTime = System.currentTimeMillis(); //record the time when the packet arrived

this.srcData = new String(receivePacket.getData(),0, receivePacket.getLength());

this.srcAddress = receivePacket.getAddress().toString().substring((receivePacket.getAddress().toString().indexOf('/'))+1);

this.lastDgt = srcAddress.substring(7); //get the ID of the Auction sender

 }

 catch(InterruptedIOException e)

 {

this.RACK = false;

 //
e.printStackTrace();

 }

 catch (IOException e2)

{

 e2.printStackTrace();

}

 /*-------------------------------Receive Packets & extract info---*/

 }

 }

2

