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Primer on Probability Theory
• Source: Chapter 3 of:
Alberto Leon-Garcia, Probability and Random 

Processes for Electrical Engineering, 
Addison Wisely
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What is a Random Variable?
• Random Experiment
• Sample Space

• Def: A random variable X is a function that 
assigns a number of X(ζ) to each outcome ζ in the 
sample space of S of the random experiment

S

ζ
real linex

X(ζ) = x
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Bayes Rule
• Let B1, B2, …, Bn be a partition of a 

sample space S. Suppose the event A 
occurs

A

B1

B2

B3 Bn-1

Bn

A Partition of S into n disjoint sets
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Bayes Rule
• Theorem on total Probability:
P[A] = P[A/B1]P[B1] + P[A/B2]P[B2] + … +

P[A/Bn]P[Bn]

• What is the probability of the event Bj? 

P[A Λ Bj]        P[A/Bj] P[Bj]
P[Bj/A] = ----------- = ------------------------

P[A]            ∑ P[A/Bk] P[Bk]  k=1,…, n
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The Cumulative Distribution 
Function
• The cumulative distribution function (cdf) 

of a random variable X is defined as the 
probability of the event {X ≤ x}:

FX(x) = Prob{X ≤ x}    for -∞<x< ∞

i.e. it is equal to the probability the variable X 
takes on a value in the set (- ∞,x]

• A convenient way to specify the 
probability of all semi-infinite intervals
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Properties of the CDF
• 0 ≤ FX(x) ≤ 1

• Lim   FX(x) = 1  
x ∞

• Lim   FX(x) = 0  
x -∞

• FX(x) is a nondecreasing function if a < b FX(a) ≤ FX(b)

• FX(x) is continuous from the right for h > 0, 
FX(b) = lim FX(b+h) = FX(b+)

h 0

• Prob [a < X ≤ b] = FX(b)  - FX(a)

• Prob [X = b] = FX(b) - FX(b-) 
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Example 1: Exponential Random 
Variable
• Problem: The transmission time X of a 

message in a communication system obey 
the exponential probability law with 
parameter λ, that is

Prob [X > x] = e- λx x > 0

Find the CDF of X. Find Prob [T < X ≤ 2T] 
where T = 1/ λ



test

5

10/12/2003 Dr. Ashraf S. Hasan Mahmoud 9

Example 1: Exponential Random 
Variable – cont’d
• Answer: 
The CDF of X is 
FX(x) = Prob {X ≤ x} = 1 – Prob {X > x}

= 1 - e- λx x ≥ 0
= 0              x < 0

Prob {T < X ≤ 2T} = FX(2T) - FX(T)
= 1-e-2 – (1-e-1)
= 0.233
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Example 2: Use of Bayes Rule
• Problem: The waiting time W of a 

customer in a queueing system is zero if 
he finds the system idle, and an 
exponentially distributed random length of 
time if he finds the system busy. The 
probabilities that he finds the system idle 
or busy are p and 1-p, respectively. Find 
the CDF of W
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Example 2: cont’d
• Answer: 
The CDF of W is found as follows:

FX(x) = Prob{W ≤ x}

= Prob{W ≤ x/idle}p + Prob{W ≤ x/busy}(1-p)

Note Prob{W ≤ x/idle} = 1 for any x > 0 

FX(x) = 0                             x < 0
= p+(1-p)(1- e- λx)   x ≥ 0
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Types of Random Variables
• (1) Discrete Random Variables
• CDF is right continuous, staircase function of x, 

with jumps at countable set x0, x1, x2, …

x0 1 2 3

1/8

1/2

7/8
1

FX(x)

x0 1 2 3

1/8

3/8

pmfX(x)

Pmf: probability mass function
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Types of Random Variables
• (2) Continuous Random Variables
• CDF is contineous for all values of x Prob { X 

= x} = 0 (recall the CDF properties)

• Can be written as the integral of some non 
negative function

∫
∞

∞−

= dttfxFX )()(

Or

dx
xdFtf X )()( =

f(t) is referred to as the probability density function or PDF
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Types of Random Variables
• (3) Random Variables of Mixed Types

FX(x) = p F1(x) + (1-p) F2(x)
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Probability Density Function
• The PDF of X, if it exists, is define as the 

derivative of CDF FX(x):

dx
xdFxf X

x
)()( =
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Properties of the PDF
• fx(x) ≥ 0

∫=≤≤
b

a
x dxxfbxaP )(}{•

• ∫
∞−

=
x

xX dttfxF )()(

∫
∞

∞−

= dttf x )(1• A valid pdf can be formed from any nonnegative, piecewise 
continuous function g(x) that has a finite integral:

∫
∞

∞−

∞<= cdxxg )(

By letting fX(x) = g(x)/c, we obtain a function that satisfies the
normalization condition.
This is the scheme we use to generate pdfs from simulation 
results!
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Conditional PDFs and CDFs
• If some event A concerning X is given, then 

conditional CDF of X given A is defined by
P{[X ≤ x] Λ A}

FX(x/A) = ------------------- if P{A} > 0
P{A}

The conditional pdf of X given A is then defined by

d
fX(x/A) = --- FX(x/A)

dx
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Expectation of a Random Variable
• Expectation of the random variable X can 

be computed by

∫
∞

∞−

= dtttfXE x )(][

∑
∀

==
i

ii xXPxXE ][][

for discrete variables, or

for continuous variables.
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nth Expectation of a Random 
Variable
• The nth expectation of the random variable 

X can be computed by

∫
∞

∞−

= dttftXE x
nn )(][

∑
∀

==
i

ii
nn xXPxXE ][][

for discrete variables, or

for continuous variables.
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The Characteristic Function
• The characteristic function of a random 

variable X is defined by

][)( Xj
x eE ωω =Φ

• Note that ФX(ω) is simply the Fourier Transform 
of the PDF fX(x) (with a reversal in the sign of the 
exponent)

• The above is valid for continuous random 
variables only

∫
∞

∞−

= dxexf Xj
X

ω)(
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The Characteristic Function (2)
• Properties:

0

)(1][
=

Φ=
ω

ω
ω xn

n

n
n

d
d

j
XE

∫
∞

∞−

−Φ= ωω
π

ω dexf xj
xX )(

2
1)(
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The Characteristic Function (3)
• For discrete random variables, 

][)( Xj
x eE ωω =Φ

• For integer valued random variables,

∑
∀

=
k

xj
kX

kexp ω)(

∑
∞

−∞=

=Φ
k

kj
Xx ekp ωω )()(
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The Characteristic Function (4)
• Properties

∫ −Φ=
π

ω ωω
π

2

0

)(
2
1)( dekp kj

xX

for k=0, ±1, ±2, …
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Expectation of a Function of the 
Random Variable
• Let g(x) be a function of the random 

variable x, the expectation of g(x) is given 
by

∫
∞

∞−

= dttftgxgE x )()()]([

∑
∀

==
i

ii xXPxgxgE ][)()]([

for discrete variables, or

for continuous variables.
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Probability Generating Function
• A matter of convenience – compact 

representation
• The same as the z-transform
• If N is a non-negative integer-valued 

random variable, the probability 
generating function is defined as

][)( N
N zEzG =

∑
∞

=

=
0

)(
k

k
N zkp

....)2()1()0( 2 +++= zpzpp NNN
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Probability Generating Function (2)
• Properties:

• 1

• 2

• 3

0

)(
!

1)(
=

=
z

Nk

k

N zG
dz
d

k
kp

)1('][ NGNE =

[ ]2)1(')1(')1(''][ NNN GGGNVar −+=
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Probability Generating Function (3)
• For non-negative continuous  random 

variables, let us define the Laplace
transform of the PDF

0

* )()1(][
=

−=
s

n

n
nn sX
ds
dXE

∫
∞

−=
0

* )()( dxexfsX sx
X

Properties: ][ sxeE −=
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Some Important Random Variables 
– Discrete Random Variables
• Bernoulli
• Binomial
• Geometric
• Poisson  
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Bernoulli Random Variable
• Let A be an event related to the outcomes of some random 

experiment. The indicator function for A is defined as

IA(ζ) = 0     if ζ not in A
= 1     if ζ is in A

• IA is random variable since it assigns a number to each outcome in 
S

• It is discrete r.v. that takes on values from the set {0,1}
• PMF is given by

pI(0) = 1-p, pI(1) = p
where P{A} = p

• Describes the outcome of a Bernoulli trial 

• E[X] = p,    VAR[X] = p(1-p)
• Gx(z) = (1-p+pz)   
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Binomial Random Variable
• Suppose a random experiment is repeated n independent 

times; let X be the number of times a certain event A occurs 
in these n trials

X = I1 + I2 + … + In

i.e. X is the sum of Bernoulli trials (X’s range = {0, 1, 2, …, n})

• X has the following pmf

for k=0, 1, 2, …, n   

• E[X] = np,     Var[X] = np(1-p)
• GX(z)  = (1-p + pz)n

knk pp
k
n

kXP −−







== )1(][
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Geometric Random Variable
• Suppose a random experiment is repeated - We 

count the number of M of independent Bernoulli 
trials until the first occurrence of a success

• M is called geometric random variable
• Range of M = 1, 2, 3, …

• X has the following pmf

for k=1, 2, 3, …

• E[X] = 1/p,      Var[X] = (1-p)/p2

• GX(z) = pz/(1-(1-p)z))

ppkXP k 1)1(][ −−==
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Poisson Random Variable
• In many applications we are interested in counting the 

number of occurrences of an event in a certain time period

• The pmf is given by

For k=0, 1, 2, … ; α is the average number of event occurrences 
in the specified interval

• E[X] = α,     Var[X] = α
• GX(z) = eα(z-1)

• Remember: time between events is exponentially 
distributed!

• Poisson is the limiting case for Binomial as n ∞, p 0, such 
that np = α

αα −== e
k

kXP
k

!
][
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Some Important Random Variables 
– Continuous Random Variables
• Uniform
• Exponential
• Gaussian (Normal)
• Rayleigh
• Gamma
• …
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Uniform Random Variables
• Realizations of the r.v. can take values 

from the interval [a, b]

• PDF fX(x) = 1/(b-a)         a≤x≤b

• E[X] = (a+b)/2,    Var[X] = (b-a)2/12

• ФX(ω) = [ejωb – ejωa]/(jω(b-a))
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Exponential Random Variables
• The exponential r.v. X with parameter λ has pdf

• And CDF given by

• Range of X: [0, ∞)

• E[X] = 1/λ,     Var[X] = 1/λ2

• ФX(ω) = λ/(λ-jω)





≥
<

= − 0
00

)(
xe
x

xf xX λλ





≥−
<

= − 01
00

)(
xe
x

xF xX λ
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Exponential Random Variables –
cont’d
• The exponential r.v. is the only r.v. with 

the memoryless property!!

• Memoryless Property:
P[X>t+h/ X>t] = P[X>h]

i.e. the probability of having to wait h 
additional seconds given that one has 
already been waiting t second IS EXACTLY 
equal to the probability of waiting h 
seconds when one first begins to wait
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Gaussian (Normal) Random 
Variable
• Rises in situations where a random variable X is the sum of 

a large number of “small” random variables – central limit 
theorem

• PDF

For -∞<x< ∞; m and σ > 0 are real numbers 

• E[X] = m,       Var[X] = σ

•

• Under wide range of conditions X can be used to 
approximate the sum of a large number of independent 
random variables

)2/()( 22

2
1)( σ

σπ
mx

X exf −−=

2/22

)( ωσωω −=Φ jm
X e
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Rayleigh Random Variable
• Rises in modeling of mobile channels
• Range: [0, ∞)

• PDF:

• For x ≥ 0, α > 0

• E[X] = α√(π/2),    Var[X] = (2-π/2)α2

)2/(
2

22

)( α

α
x

X exxf −=
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Gamma Random Variable
• Versatile distribution ~ appears in modeling of lifetime of devices 

and systems
• Has two parameters: α > 0 and λ > 0

• PDF: 

• For 0 < x < ∞
• The quantity Г(z) is the gamma function and is specified by

• The gamma function has the following properties:
• Г(1/2) =  √π
• Г(z+1) = zГ(z)  for z>0
• Г(m+1) = m!    For m nonnegative integer

• E[X] = α/λ,     Var[X] = α/λ2

• ФX(ω) = 1/(1-jω/ λ)a

)(
)()(

1

α
λλ λα

Γ
=

−− x

X
exxf

∫
∞

−−=Γ
0

1)( dxexz xz

If α = 1 gamma r.v. 
becomes exponential
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Computer Methods for Generating 
Random Variables
(1) The transformation 

method

Procedure:
a. Obtain FX(x)
b. Generate U ~ uniform 

between 0 and 1
c. Find Z = FX

-1(U) – Z 
follows the distribution 
specified by fX(x)

0

1

FX(x)

x

U

Z = FX
-1(U)
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Computer Methods for Generating 
Random Variables – Example 3
Problem: Generating exponential random variables with parameter λ
Answer:
To generate an exponentially distributed r.v. X with parameter λ (i.e. 

its mean is 1/λ), we need to find FX(x) and invert it.

FX(x) = 1 – e-λx (see example 1)

Therefore, FX
-1(x) is equal to

X = -(1/λ) ln(1-U)

where ln(t) is the natural logarithm of t while U is a uniform r.v. 
between 0 and 1. Note that the above expression can be 
simplified to be

X = -(1/λ) ln(U)

This is because 1-U is also a uniform random r.v. between 0 and 1
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Computer Methods for Generating 
Random Variables
(2)Rejection Method

See references for details

Transformation method is sufficient for 
simulations required in this course
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