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Fixed Assignment Access
• Schemes:

• Time Division Multiple Access (Time)
• Frequency Division Multiple Access (BW)
• Code Division Multiple Access (Code)

• Access to common channel is 
independent of user demand – static and 
predetermined
• Contrast to asynchronous time multiplexing
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TDM – Example2: Digital Carrier 
Systems
• Voice call is PCM 

coded 8 
b/sample 

• DS-0: PCM digitized 
voice call – R = 64 
Kb/s

• Group 24 digitized 
voice calls into one 
frame as shown in 
figure DS-1: 24 
DS-0s 

• Note channel 1 has 
all 1st bits from all 
of 24 calls; channel 
2 has all 2nd bits 
from all 24 calls; 
etc.
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TDMA
• Assume:

• M users/stations
• Channel of bit rate = R b/s
• Fixed packet size = X bits/packet
• Packet arrival = λ packet/sec

1 2 3 M 1 2 3 M 1 2 3 M

time
Frame = M slots

= MX/R sec

frame 1 frame 2 frame 3
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TDMA – Queueing Model
• Assume:

λ

buffer

λ

buffer

user/station 2

user/station M

λ

buffer

user/station 1

R/M bits/sec

R/M bits/sec

R/M bits/sec
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TDMA – Total Delay Analysis
• Total Packet (Burst) delay:

• Slot Synchronization Delay – Avg = ½ frame 
duration, plus

• Queueing Delay, plus
• Packet transmission

• Slot Synchronization = X M/(2R)
• Packet transmission = X/R

• Queueing Delay = ?
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TDMA – Packet (Burst) Queueing
Delay
• Each channel can be modeled as an 

M/D/1 queue
• Consider station/user queues individually

• Poisson arrival of packets of rate λ
• Service time – fixed (packet size is fixed and 

so is the transmission rate)
• From point of view of user queue – packet is 

transmitted at rate of R/M bits/seconds 
• Packet transmission time = X/(R/M) or MX/R 

seconds
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TDMA – Packet (Burst) Queueing
Delay – cont’d
• For M/D/1 (refer to M/G/1 slides):

ρ
E[W] = ---------- E[τ]

2 (1-ρ) 
E[τ] is the packet service time = MX/R
ρ = λ E[τ] = λ MX/R

• Therefore, the mean waiting time can be written 
as

ρ MX
E[W] = ---------- ----

2 (1-ρ)      R
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TDMA – Throughput
• Throughput: average number of useful 

(good) packets transmission per time 
unit

• Each station transmits λ X/R packets per 
time unit Station throughput = λ X/R 

• The M stations community throughput = 
M λ X/R 

• Total Throughput, S = M λ X/R 
= ρ
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TDMA – Total Delay
• Total Delay, T

X          M X              M  S           X
T = ---- + ----- +     ------------- ----

R          2 R           2(1 – S)        R

Normalizing total delay with respect to packet 
transmission time 

M              M  S          
Ť =   1    + ---- +    ----------

2           2(1 – S)    



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 11

FDMA – Total Delay
• Assume same traffic parameters (for 

comparison reasons)
• No slot synchronization time –

transmission can be always on

• Total Packet (Burst) delay:
• Queueing Delay, plus
• Packet transmission
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FDMA – Total Delay – cont’d
• Total delay, T

M X                S            M X
T =  ----- + ------------- -----

R             2(1 – S)        R
• Or

M(2 – S)
Ť = -------------

2(1 – S)
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TDMA versus FDMA – Total Delay
• Using the previous relations,

ŤFDMA = ŤTDMA + M/2 – 1

• i.e. total delay for FDMA is always greater 
than that for TDMA except for M = 2
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Performance Measures

• Throughput
• Delay (packet)

Offered LoadC

C

Throughput
Ideal Load-Throughput Relation
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Pure ALOHA

Central node

station
station station

station

Uplink carrier 413 kHz, 9.6 kb/s
Downlink carrier 407 kHz, 9.6 kb/s

New packets

old packets
channel collision

Y

N

S
G S

nodes
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ALOHA Random Access Procedure
• Assume

• Packet transmission time: P
• Total # of packet arrival (new + 

retransmission) ~ Poisson with rate λ

1 2 M
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ALOHA - Throughput
• Poisson arrival (new + retransmitted) of 

packets:
(λt)k

Prob[k arrivals in t sec] = ------ e –λt

k!
• Offered Load (G): Average number of attempted 

packet transmissions per packet transmission 
time, P

• Throughput (S): Average number of successful 
transmissions per packet transmission time, P
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Pure ALOHA – Throughput – cont’d
• Vulnerable Period

t1 t1 + P

t1 - P t1

User of interest

Other users

t1+ P

Any transmission in this 
period will lead to collision

time

time

Vulnerable Period = 2 P
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ALOHA Throughput – cont’d
• Throughput = fraction of attempted transmission that are 

successful (i.e. did not collide)

• Therefore,

S = G X Prob[ no collision in 2 P seconds]
= G  X Prob[0 packet arrivals in 2 P seconds]

(2G)0

= G X ----- e -2G

0!

Or 

S  = G e -2G packets/packet transmission time
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Slotted ALOHA
• An improvement over pure ALOHA
• Time axis is slotted
• Transmission occur only at the beginning 

of a time slot
• A packet arriving to buffer has to wait till 

the beginning of the time slot for 
transmission

• Cost: common clock signal!
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Slotted ALOHA – Throughput –
cont’d
• Vulnerable Period (note time axis is divided into slots –

transmissions can only start at the beginning of a time 
slot)

t1 t1 + P

t1 - P t1

User of interest

Other users

t1+ P

Any transmission at this 
instant will lead to collision

time

time

Vulnerable Period = 1 P
No arrivals should 

occur during this slot



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 22

Slotted ALOHA – Throughput
• Throughput = fraction of attempted transmission that are 

successful (i.e. did not collide)

• Therefore,

S = G X Prob[ no collision in 1 P seconds]
= G  X Prob[0 packet arrivals in 1 P seconds]

(G)0

= G X ----- e -1G

0!

Or 

S  = G e -1G packets/packet transmission time
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ALOHA – Throughput – cont’d
• Pure ALOHA: Max throughput, S = 0.5 e-1 or ~ 18%  at G 

= ½
• Slotted ALOHA: Max throughput, S = e-1 or ~ 36% at G = 

1

•For Pure ALOHA:
• Stable operation 

range:  0 < G < 0.5
• Unstable operation 

range: G > 0.5

•For Slotted ALOHA:
• Stable operation 

range:  0 < G < 1.0
• Unstable operation 

range: G > 1.0
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Pure ALOHA – (Approximate) Delay 
Analysis
• Average number of attempts per 

successfully transmitted packet = G/S

• From throughput relation,

G/S = e2G

• Therefore, average number unsuccessful 
attempts = G/S – 1

= e2G – 1
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Pure ALOHA – (Approximate) Delay 
Analysis – cont’d
• Cost for each collision

• Backoff time  - assume duration B on average
• Retransmission

• Therefore, total delay, T

T = P + (e2G - 1)(P + B)

• Normalizing the total delay yields, 

Ť = 1 + (e2G - 1)(1 + B/P)
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Example 1
• Problem: A centralized network providing a 

maximum of 10 Mbps and services a large set 
of user terminal with pure ALOHA protocol

a) What is the maximum throughput for network?
b) What is the offered traffic in the medium and 

how is it composed?
c) If a packet length is 64KBytes, what is the 

average packet delay? Assume average backoff
time = 1 second.
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Example 1 – cont’d
• Solution:

a) Smax = 18% 
==> Network throughput = 0.18 X 10 = 1.8 Mbps

b) At S = Smax, G = 0.5, 
Offered load = 0.5 X 10 = 5 Mbps 
Composition of load:   1.8 Mbps of delivered packets

+    3.2 Mbps of collided packets

c) Packet transmission time P = 64X1024X8 bits/10 Mb/s
= 6.6 msec

T = P + (e2G - 1)(P + B)
= 6.6 + (e1 – 1)(6.6 + 1000)
= 1736
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Notes On ALOHA Analysis
• Slotted ALOHA: a modified ALOHA 

protocol to allow stations to transmit 
only at known and fixed time instances.
• Time axis is divided into slots – stations can 

transmit only at the beginning of a time slot

• What is the vulnerable period for slotted 
ALOHA?

• Derive the throughput and delay 
relationship for this protocol? 
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Idealized Central Control
• Idealized = ZERO cost for transfer of 

channel from one state to another under 
central node
• Whenever a station has data to transmit, 

controller knows instantly and the channel 
assignment is immediate 

• Packets arriving while channel is busy are 
queued (infinite buffer) 

• If two stations have queues packets, the 
one with first arrival is chosen
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Idealized Central Control - Analysis
• Assumptions (same as before):

• Arrival at each station ~ Poisson of λ packets/sec
• Packets have constant length of X bits
• M stations
• Channel bit rate = R b/s
• Propagation and processing times ≈ 0
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Idealized Central Control – Analysis 
– cont’d
• Total input = M λ packets / second

• Since “no cost” for transfer of channel ==> 
distributed network behaves like a single queue

• Over all throughput (utilization) is given by

ρ = M λ * (X/R)

where M λ is the total arrival rate to this single 
queue, and

X/R is the service time 
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Idealized Central Control – Analysis 
– cont’d
• This single queue – M/D/1 

• Mean number of queued packets (E[Nq]) and 
mean waiting time (E[W])

ρ2                                     ρ X
Nq =  ---------,     W = --------- ----

2(1 – ρ)              2(1 – ρ)    R

• Therefore, total delay, T,  is given by

X                ρ X
T =  ----- + ---------- -----

R           2(1 – ρ)     R
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Idealized Central Control – Analysis 
– cont’d
• Since there are no collisions ==> throughput = utilization or S = 

ρ

• Hence, total delay is given by

X                S            X
T =  ----- + ---------- -----

R           2(1 – S)     R

Or
S

Ť = 1 +  ----------
2(1 – S)

(2 – S)
=  -----------

2(1 – S)
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Idealized Central Control – Analysis 
– cont’d
• Also, E[Nq] is given by

S2

E[Nq] =  ----------
2(1 – S)

• Per station throughput = S/M
• Per station nq = E[Nq] / M
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Polling Networks
• Central Control Networks: a central node 

arbitrates access to the network

• The access order is predetermined –
under the control of the central node

• Access is granted when station is polled –
Full rate of channel is used
• Stations accumulate traffic in their buffers 
• Transmit when given permission (polled)
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Operation Modes
• Two Modes:

1. Roll-Call
2. Hub polling

• For the two modes, the opportunity to 
transmit is symmetrically rotated from 
one station to another
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Operation Modes – Roll-Call
• Central node initiates polling sequence 

by sending polling message to chosen 
station

• Polled station transmits traffic (if any)
• Transmitting station informs central node 

of transmission end (field in the last 
transmitted packet)

• Central node polls next station in-line
• Process repeats
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Operation Modes – Hub polling
• Central node initiates polling sequence 

by sending polling message to chosen 
station

• Polled station transmits traffic (if any)
• Last transmitted packet contains a go-

ahead signal with the next inline station 
address

• Next inline station (which is continuously 
monitoring traffic) identifies its address 
and starts transmitting (if there is traffic 
in buffer) immediately
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Roll-Call vs Hub based
• Response time
• Complexity – Cost
• ?
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Logical Structure

Station 1
Central

node

Station 2

Station i

Station M

direction 
of poll
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Performance Analysis
• Assume:

• Arrival process is Poisson with rate λ
packets/sec

• The walk time, w, between station stations 
is constant
• Includes processing and propagation time

• Average packet length = Xavg bits/packet
• Will consider fixed and exponentially distributed 

packet sizes

• Common channel (server) rate = R b/s
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Performance Analysis – cont’d
• Cycle Time, Tc:

• Total time to poll each station and return to 
the starting station in the polling sequence

• Random variable
• Amount of data transmitted by each station is 

random 

• Other performance measures:
• Average queue length, N, in station (packets)
• Average time, W, that packets wait in the 

station buffer before being transmitted
• Average transfer delay, T, from packet entry 

into station buffer till delivery to central node
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Cycle Time
• Let Nm be the average number of packets 

stored in station buffer 
• Nm includes packets arriving to buffer while 

station is in service

• Time to empty buffer = Nm Xavg /R

• Cycle Time, Tc

Tc = M [ Nm Xavg / R   + w ]



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 44

Cycle Time – cont’d
• At steady state, Nm is given by

Nm = λ Tc

• Substituting in the previous equation yields

Mw
Tc = --------------------

1 - M λ Xavg / R
Or

Mw
Tc = ------------- seconds

1 - S

where 
throughput S = (M λ) / (R/Xavg) < 1 or (M λ) < (R/Xavg)!! 
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Delay Analysis
• Packet waiting time, W, in queue:

• Waiting time in queue, W1, while other 
stations are being served, plus

• Waiting time in queue, W2, while its station is 
being served and till packet reaches head of 
queue

service station i service station i

packet arrival

W1
W2

W

time
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Delay Analysis – cont’d
• Avg number of packets transmitted by station in a 

cycle: Nm = λ Tc
• remember we serve till buffer is empty

• Average service time for station equals to
λ Tc Xavg/R

• Define ρ as

ρ = λ Xavg / R

• Therefore, average service time per station is 
given by

ρ Tc
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Cycle for a Polling Network
• Note the cycle time Tc partitioning

time

service
station i

service
station i+1

service
station M

service
station 1

service
station i

(1-ρ)Tc

Tc

ρTc

w w
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Delay Analysis – cont’d
• (1-ρ)Tc is the (average) time station i 

waits to be served
• Packet arrive at random during (1-ρ)Tc

• Average waiting time W1 = (1-ρ)Tc/2

• Substitute the expression for Tc, yields

Mw(1 – ρ)
W1 = --------------

2(1 – M ρ) It remains to compute W2!
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Delay Analysis – cont’d
• Writing W1 in terms of S = M λ Xavg/R

Mw(1 – S/M)
W1 = -----------------

2(1 – S)

It remains to compute W2!
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Delay Analysis – cont’d
• To determine W2 – consider the following 

equivalent queueing system
• Server never goes idle (no walk time) – switches 

instantly from one buffer to the next
• All arrivals aggregated
• All buffers lumped

• This model: M/G/1

Mλ

ALL buffers lumped

ALL network
arrivals

τ = Xavg / R packets/sec
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Delay Analysis – cont’d
• For an M/G/1 with arrival rate λ and service time, τ: 

average waiting time, E[W], is given by

λE[τ2]
E[W] = ----------

2(1-ρ)
• For our hypothetical queue:

• λ Mλ
• E[τ] = Xavg/R;     E[τ2] = E[X2]/R2

• Therefore, W2 is given by

M λ E[X2]/R2

W2 = ----------------
2 ( 1 – Mρ )
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Delay Analysis – cont’d
• Writing W2 in terms of S = M λ Xavg/R

S   E[X2] 
W2 = ----------------------

2 Xavg R ( 1 – S )

Therefore, overall waiting time for the packet:

W = W1 + W2

Mw(1 – S/M)           S E[X2]
W = ----------------- + ------------------

2(1 – S)           2E[X] R (1 – S)              
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Delay Analysis – Constant Packet 
Size
• For constant packet size X

• E[X] = X
• E[X2] = X2

• Therefore, overall waiting time for the packet:

Mw(1 – S/M)         S E[X]
W = ----------------- + --------------

2(1 – S)           2R (1 – S)



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 54

Delay Analysis – Exponential 
Packet Size
• For exponentially distributed packet sizes, X

• E[X] = Xavg
• E[X2] = 2 (Xavg) 2 = 2 E[X]2

• Therefore, overall waiting time for the packet:

Mw(1 – S/M)         S E[X]
W = ----------------- + --------------

2(1 – S)             R (1 – S)
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Example 2: 
• Problem: Consider a metropolitan area network with a single 

central processor located at the headend of a broadband CATV 
system that has a tree topology. The following are specified:
• Maximum distance from headend to subscriber station = 20 km
• Access technique – roll-call polling
• Length of polling packet = 8 Bytes
• Length of go-ahead packet = 1 Bytes
• Data rate of channel = 56 kb/s
• Number of subscribers = 1000
• Packet length distribution for packets from subs to headend –

exponential
• Mean packet length = 200 Bytes
• Propagation delay = 6 µsec/km
• Modem sync time = 10 msec

A. Find the mean waiting delay for arriving packets at the stations if 
each user generates an average of one packet per minute

B. If the channel rate is reduced to 9600 b/s what is the longest 
possible mean packet length that will not overload the system?

C. For mean packet lengths of two-thirds the result of (B) 
determine the mean waiting delay
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Example 2: cont’d
• Solution: 

Mean walking time, w:
w = transmission time of go-ahead packet* + 

propagation delay from station to headend +
transmission of polling packet +
propagation delay from headend to next station +
modem sync time

One way propagation = 20 X 6 = 120 µsec
Transmission time for go-ahead packet = 1 X 8 /56 = 0.14 

msec
Transmission time for polling packet = 8 X 8 / 56 = 1.14 

msec
Therefore: w = 0.14 + 2 X 0.120 + 1.14 +10 = 11.52 msec

*This decomposition of the walk time assumes there is a separate go-ahead packet indicating end of traffic condition 
– alternatively, the last traffic packet could convey the same information by setting a flag
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Example 2: cont’d
• Solution: 

A) Mean waiting delay, W is given by

Mw(1 – S/M)         S E[X]
W = ----------------- + --------------

2(1 – S)             R (1 – S)

We need to compute S first –
S = M λ Xavg/R

= 1000 X (1/60) X 200 X 8 /56 = 0.476

Substituting in the formula for W, yields

W = 10.99 + 0.026 
= 11.02 seconds
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Example 2: cont’d
• Solution: 

B) Smax <= 1 M λ Xavgmax/R <= 1
For R = 9600 b/s

Xavgmax <= R/(M λ) = 72 Bytes

C) For Xavg = 2/3 Xavgmax
= 2/3 (72) = 48 Bytes

S = M λ Xavg/R = 0.667

The new walking time, w is given by

w = 8X8/9.6 + 1X8/9.6 + 2X0.12 +10 = 17.74 msec

Use the new values for S and w and sub in the expression for W

W = 26.62 + 0.01 = 26.63 seconds
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Average Number of Packets Per 
Station
• Using Little’s formula:

M λ w(1 – S/M)           S λ E[X2]
N = ----------------- + ------------------

2(1 – S)           2E[X] R (1 – S)              
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Average Number of Packets Per 
Station – Constant Packet Size
• For constant packet size X

• E[X] = X
• E[X2] = X2

• Therefore, overall waiting time for the packet:

M λ w(1 – S/M)           S λE[X]
N =  ------------------- +    --------------

2(1 – S)                 2R (1 – S)
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Average Number of Packets Per 
Station – Exponential Packet Size
• For exponentially distributed packet sizes, X

• E[X] = Xavg
• E[X2] = 2 (Xavg) 2 = 2 E[X]2

• Therefore, overall waiting time for the packet:

M λ w(1 – S/M)              S λE[X]
N = -------------------- +      --------------

2(1 – S)                     R (1 – S)
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Example 3:
• Problem: For the network specified in Example 2, find the average 

number of packets per station for parts (A) and (C).

• Solution:

(A) w = 11.52 msec, S = 0.476, M = 1000 – exponential packet sizes

1000X 0.01152/60(1-0.476/1000)    0.476/60X200X8
N =  ---------------------------------------- + --------------------

2 ( 1 – 0.476 )                        56000 X(1 – 0.476)

= 0.183 + 0.000432 
= 0.183 packets / station

(C) w = 17.74 msec, S = 0.667, M = 1000 – exponential packet sizes

N = 0.444 + 0.00133 
= 0.445 packets / station
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Adaptive Polling
• Using waiting time and buffer size 

equations: under light to moderate 
loading (i.e. S is small) – performance 
depends mainly on Number of stations, 
M and walking time, w

W ~ Mw/2

• Try to reduce number of polls  
Adaptive cycles
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Adaptive Polling: Pure Probing
• Nodes are organized in a tree structure

1

2

3

4

5

6

7

8

1st probe
2nd probe

3rd probe

4th probe

5th probe

6th probe

7th probe

Station with message to send

Station with no message to send

• Controller carries out 
probing procedure by 
separating stations 
into 2 groups that are 
probed one at a time 
by a signal broadcast 
to all stations in that 
group

• If a +ve response is 
received from a 
group, it is further 
divided into 2 
subgroups

• Process continues till 
station is identified

Example: M = 8
# of probes required = 7
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Adaptive Polling: Pure Probing –
cont’d
• Designed for low load conditions – i.e. a small 

fraction of terminals are transmitting
• Controller does not know that only one station 

wants to transmit

• If the number of stations = M 
• 2Xlog2(M) + 1 probes are needed to locate a 

single ready user
• Remember a standard polling requires M = 2n

polls at most (M/2 = 2n-1 on average to locate the 
single ready user)

• Example: M = 256 stations:
• Pure probing: 17 probes
• Standard polling: 256 polls
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Adaptive Polling: Pure Probing –
cont’d
• When more than one station has data –

number of probes increase

• Under heavy load (i.e. all stations have 
data to transmit) – number of probes 
becomes equal or greater than number 
of polls for standard polling
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Ring Networks
• Based on network geometry
• Characterized as a sequence of point-

to-point links between stations, closed 
on itself.

• All messages travel over a fixed route 
from station to station around the loop

• Interface unit connects station to ring
• Regenerate messages and identifies 

addresses
• Does not store messages
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Ring Networks
• Station latency – few bit times for all 

traffic passing through message 
(processing time)

1

2

3

4

station

Ring interface 
unit

• Typically – ring = high 
speed directional bus

• Propagation delay ~ 0
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Ring Networks - Advantages
• Simple implementation
• No routing is required
• Only a small latency added
• Can cover large distances (metropolitan 

area networks) – signal/message 
regeneration

• Efficiency does not degrade rapidly with 
load
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Ring Networks - Disadvantages
• Single point failure – if a single station 

interface fails …
• Not so easy to expand/modify – ring 

must be broken
• Propagation delay is proportional to 

number of stations
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Types of Ring Networks
• Three Basic Types:

1. Token Rings: control access to ring 
through passing of ring from station to 
station – almost same as hub polling

2. Slotted Rings: a small number of fixed-
sized slots are circulated; when empty 
they are available for use by any station

3. Register Insertion Rings: two shift 
registers for each station node as switches 
to control traffic into and out of the ring –
long packets can be served
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Token Ring Networks
• Access to ring is controlled by a token
• Token states: busy or idle
• When ring is first activate – a master 

station circulates an idle token
• To transmit data, a station must:

• Capture token
• Set token to busy
• Transmit data
• Set token to idle

See http://www.datacottage.com/nch/troperation.htm for a basic introduction
and animated operation or better check http://www.macs.hw.ac.uk/~pjbk/commbook/lans/



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 73

Token Ring Networks
• Same basic structure for all rings

1

2

3

4
station

Ring interface 
unit

line
driver controller line

receiver

Transmitter Receiver

transmit
buffer

Receive
buffer

Attached Device

ring inputring output

delay

listen mode

ring
output

ring
input

node out node in

delay

transmit mode

ring
output

ring
input

node out node in

Note: textbook has 
typos in this figure
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Token Pattern
• Token:

• A dedicated pattern of several bits, or 
• A single bit transmitted in a format different that 

that used for data bits

• Example: IEEE802 – token = several bytes 
long

• Bit stuffing is used to prevent occurrence of 
similar patterns

• Usually, one bit in this pattern is used to 
indicate whether the token is busy or free
• To set the token bit – station latency = 1 bit time

• Can be used to add priority functionality
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Service Discipline
• Exhaustive

• Station retains use of ring until it has transmitted all 
the data stored in transmit buffer

• Non-exhaustive
• Station is allowed to transmit only a specified 

number of bits each time it captures the token

• Two disciples provide same performance for 
light-medium loads

• The analysis in this package assumes 
exhaustive
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Idle Operation
• Synchronization

• Use of Manchester encoding

• All stations in listen mode

• Token circulates around the ring
• Ring Latency = propagation time + sum of 

station latencies
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Normal Operation
• One station captures token
• Station transmits data
• Station produces a modified token (or a 

control field in the header of the data 
packet) to indicate to other stations that 
ring is not free (i.e. token is part of 
packet)

• Transmitting station is responsible for:
• removing its packet from the ring, and
• generating a new token
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Normal Operation – cont’d
• When the new token is generated –

leads to three different modes of 
operation
• Multiple token,
• Single token, and
• Single packet operation
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Multiple Token Operation
• The transmitting station generates a 

new FREE token and places it on the ring 
immediately following the last bit of 
transmitted data

• This permits several busy tokens on the 
ring!!
• What are the packet times in relation to 

ring latency required to achieve this?

• But only one free token exists!!
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Single Token Operation
• The transmitting station generates a new FREE 

token and places it on the ring immediately 
ONLY after it removes its BUSY token

• Two Cases arise:
• Packet time > ring latency: station will receive (and 

erase) its busy token before it has finished 
transmitting its packet – new FREE token generated 
after packet is completed – looks the same as 
multiple token operation

• Packet time < ring latency: station will finish 
transmission of packet – must wait till it receives 
(and erase) busy token – new FREE is then 
generated

• Only a single token exits on the ring at any 
time
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Single Packet Operation
• The transmitting station does not issue a 

new FREE token until after it has 
circulated completely around the ring 
and erased all of its transmitted packet 
• Same as single token operation except here 

also the packet has to be removed before 
the new token is generated

• Only a single token exits on the ring at 
any time

• Very conservative behavior – no two 
simultaneous transmissions on the ring
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Example 4: Four-Station Token Ring
• Example:

• Only stations 1 and 4 have 
traffic to send

• Station 1 has 6 bits to tx
• Station 4 has 3 bits to tx
• Station 1 captures the 

token first, and then 4

1

2

3

4

Out #4

Out #2

Out #3

Out #1In #1
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Ring Networks – Token Ring
Multiple Token Single Token Single Packet time
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Token Ring - Delay Analysis 
• Assumptions

• All stations are identical load-wise
• Arrival process ~ Poisson with λ packets / 

second / station
• There are M stations
• The average distance between stations ≈

one-half the distance around the ring
• Propagation delay between consecutive 

stations = τ/M – where τ is the total ring 
propagation time

• Packet size: random (uniform or exp) –
average packet size = Xavg bits / packet

• Exhaustive service time
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Token Ring - Delay Analysis 
• Assumptions – cont’d

• Channel bit rate, R bits / second
• Latency per station B bits
• Round trip propagation = τ seconds
• Ring Latency = τ’

• Required: Determine the transfer delay 
for token passing rings (multiple token, 
single token, and single packet)
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Token Rings  vs Hub polling 
• Difference:

• Token ring has no central 
station/controller

• Similarities:
• Walk time in hub polling equivalent to time 

from packet transmission finish till instant 
when next station receives free token

• Therefore  we will adapt the hub polling 
performance equations to our case here
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Review: Hub polling Performance
• It was shown previously, the packet waiting time for a 

polling network is given by

Mw(1 – S/M)           S E[X2]
W = ----------------- + ------------------

2(1 – S)           2E[X] R (1 – S)              

Where S – is the network throughput

• The average Transfer delay (i.e. Waiting plus service 
time) is given by

T = Xavg/R + τavg + W

Where τavg is the average propagation delay from station to 
the central computer in the polling network
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Token Ring Performance
• Ring Latency: 

τ’ = total propagation time + sum station 
latencies (refer to slide 76)

τ’ = τ + M  B/R

• One average a transmission will face τ’/2 of 
latency before being received

• Therefore, for token ring, transfer delay T is 
given by

T = Xavg/R + τ’/2 + W
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Token Ring Performance – cont’d 2
• To compute W for token ring, we need to find:

• The equivalent walk time
• The network throughput
• The moments for service time: E[X]/R, and 

E[X2]/R2

• Walk time, 
w = propagation delay from station to the 

next + station latency
= τ/M + B/R
= τ’/M 
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Token Ring Performance – cont’d 3
• Define “effective throughput”, S’ to be

S’ = Mλ E[EST]

(remember throughput for the polling network is defined as 
S = Mλ Xavg/R                                )

where E[EST] is the average effective service time 
for a terminal on the ring

E[EST] = total time consumed by the ring to 
process one packet and become free to 
process the next packet



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 91

Token Ring Performance – cont’d 4
• Therefore, total transfer delay, T is 

given by

T = Xavg/R + τ’/2 + W

and W is given by

τ’(1 – S’/M)             S’ E[EST2]
W = ----------------- + ------------------

2(1 – S’)             2E[EST] (1 – S’)

OUR MAIN RESULTS for 
RING NETWORKS
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Token Ring Performance – Multiple 
Token Operation
• For multiple token operation, a free token is generated 

immediately after the last data bit is transmitted

E[ESTmultiple_token]  = ESTavg = Xavg/R
E[ESTmultiple_token

2] = E[X2]/R2

• Therefore, the total transfer delay, T is given by

Tmultiple_token = Xavg/R + τ’/2 + Wmultiple_token

where

τ’(1 – S/M)           S E[X2]
Wmultiple_token = ----------------- + ------------------

2(1 – S)           2E[X] R (1 – S) 

We all know by now how to evaluate E[X2] and E[X] for constant/uniform/ 
exponentially distributed packet sizes – refer to slides 53-54.
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Token Ring Performance – Single 
Token Operation
• For single token operation, a free token is 

generated when the busy token has circulated 
the ring completely!

• To evaluate E[ESTsignle_token] let us define the 
normalized ring latency parameter a’

a’ = τ’ / (Xavg / R)
= propagation time/ (Xavg/R) +

(M B /R) / (Xavg / R)
= a    + M B / Xavg

a is the normalized ring propagation time (i.e. 
Tprop / Tframe)
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Token Ring Performance – Single 
Token Operation – cont’d
• The two cases that arise:

• a’ < 1 busy token will be received before packet 
transmission is completed

• a’ > 1 packet transmission time finishes before 
start of packet circulates the ring

• This is related to the packet size X
• X can be constant
• X can be exponentially distributed

• Each of these cases will be considered 
separately
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Token Ring Performance – Single 
Token Operation – Constant Packet 
Size and a’ < 1
• Packet size = X = constant Xavg = X

• Single token operation is the same as 
multiple token operation

• Transfer delay, Tsingle_token is the same as 
that for Tmultiple_token
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Token Ring Performance – Single 
Token Operation – Constant Packet 
Size and a’ > 1
• Packet size = X = constant Xavg = X
• Single token operation is different than 

the operation of multiple token

• Effective Service Time (EST) = τ’
which is the time for the busy token to 
circulate the ring
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Token Ring Performance – Single 
Token Operation – Constant Packet 
Size and a’ < 1 – cont’d
• Therefore, 

S’ = Mλ E[EST]
= Mλ τ’
= Mλ (Xavg/R) a’
= S a’

• Hence, transfer delay, Tsingle_token, is given by

Tsingle_token = Xavg/R + τ’/2 + Wsingle_token

where

τ’(1 – Sa’/M)              Sa’τ’
Wsingle_token = ----------------- + --------------

2(1 – Sa’)          2 (1 – Sa’) 

Maximum achievable 
throughput          = 1       if a’ < 1

1/a’ if a’ > 1
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Token Ring Performance – Single 
Token Operation – Exponential 
Packet Size
• The packet size is random with 

exponential distribution
• i.e. For some packets a’ > 1, and for others 

a’ < 1
• Therefore, we will use the pdf of the 

packet size to find the pdf (or cdf) of EST 
and then the E[EST] and E[EST2] 
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Token Ring Performance – Single 
Token Operation – Exponential 
Packet Size – cont’d
• Packet size X is 

exponentially distributed 

Or  

Where E[X] = Xavg = 
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Token Ring Performance – Single 
Token Operation – Exponential 
Packet Size – cont’d 2
• Service time = X/R 

Or  

Where E[X/R] = Xavg/R = 
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Token Ring Performance – Single 
Token Operation – Exponential 
Packet Size – cont’d 3
• Effective Service time, EST

Or  
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Token Ring Performance – Single 
Token Operation – Exponential 
Packet Size – cont’d 4
• Hence, transfer delay, Tsingle_token, is given by

Tsingle_token = Xavg/R + τ’/2 + Wsingle_token

where

τ’[1 – S(e-a’ + a’)/M]
Wsingle_token = ------------------------- +

2[1 – S(e-a’ + a’)]

Xavg S[(a’)2 + 2(1+a’)e-a’]
------ -------------------------

R         2 [1 – S(e-a’ + a’)] 

Maximum achievable 
throughput       = 1/(e-a’+a’)
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Token Ring Performance – Single 
Packet Operation
• For single packet operation, a free token is not 

generated until the sending station has 
received and erased all of the packet it has 
transmitted

• Therefore, ESTsignle_packet is always equal to X/R 
+ τ’

• Hence,

E[ESTsignle_packet] = Xavg / R + τ’

E[ESTsignle_packet
2] = E[(X/R)2] +2 τ’ E[X]/R + (τ’ )2
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Token Ring Performance – Single 
Packet Operation – cont’d
• Hence, transfer delay, Tsingle_packet, is given by

Tsingle_packet = Xavg/R + τ’/2 + Wsingle_packet

where

τ’[1 – (1 + a’)S/M]
Wsingle_packet = ------------------------- +

2[1 – (1 + a’)S]

Xavg S (1+a’) 2
------ ----------------------

R        2 [1 – (1 + a’)S] 

Maximum achievable 
throughput       = 1/(1+a’)
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Token Ring Performance –
Summary

Ring 
Parameters:

τ = total round trip propagation time 
(seconds)
τ’ (ring latency) = τ + MB/R (seconds)
w (equivalent walk time) = τ’/M
a’ (normalized ring latency ) = τ’/(Xavg/R) 

M = number of stations
B = token size (bits)
R = channel bit rate (b/s)
EST – effective service time

Single Packet EST = X/R + τ’ E[EST] = (Xavg/R) + τ’ ,  E[EST2] = (τ’)2 + 2τ’(Xavg/R) + E[X2]/R2

S’ S(1+a’)

Performance: T = Xavg / R + τ’/2 + W

τ’ (1-S’/M)           S’ E[EST2]
W = --------------- + --------------------

2(1-S’)           2 E[EST] (1-S’)

Multiple Tokens EST = X/R E[EST] = Xavg/R;  E[ESR2] = E[X2]/R2

S’ S

Single Token –
Constant X

If X/R > τ’ same as multiple tokens
If X/R < τ’ EST = τ’, E[EST] = τ’ and E[EST2] = τ’2

S’ Sa’

Single Token –
Exponential X

EST = τ’ if X/R < τ’
X/R  if X/R > τ’

E[EST] = (Xavg/R) e–a’ + τ’ ,  E[EST2] = (τ’)2 + 2(Xavg/R)2 e-a’ (1+a’)
S’ S(e-a’ + a’)
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Summary of Results
• Multiple Token:

• Fixed packet length

a’ a’(1 – S/M)               S         
Ť =   1   + --- +  ------------- +   -----------

2          2(1 – S)             2(1 – S)

• Exponential packet length

a’ a’(1 – S/M)            S         
Ť =   1   + --- +  ------------- +   --------

2          2(1 – S)             1 – S

• Single Packet:
• Fixed packet length

a’ a’[1 – (1+a’)S/M]              S(1+a’)2

Ť =   1   + --- +    -------------------- +   --------------
2           2[1 - (1+a’) S]           2[1 - (1+a’) S]

• Exponential packet length

a’ a’[1 – (1+a’)S/M]              S[(1+a’)2 + 1]
Ť =   1   + --- +    -------------------- +   -------------------

2           2[1 - (1+a’) S]               2[1 - (1+a’) S]
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Summary of Results – cont’d
• Single Token:

• Fixed packet length
• a’ ≤ 1 same as Multiple Token
• a’ > 1:

a’ a’(1 – Sa’/M)           S(a’)2

Ť =   1   + --- +  ------------- +    -----------
2          2(1 – Sa’)          2(1 – Sa’)

• Exponential packet length

a’ a’[1 – S(e-a’+a’)/M]        S[(a’)2 + 2(1+a’)e-a’]
Ť =   1   + --- +  ---------------------- +    ------------------------

2           2[1 - S(e-a’+a’) ]              2[1 - S(e-a’+a’) ]
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Performance Figures (Figure 8.7)
• Figure shows average 

normalized transfer delay 
versus throughput for 
different operation modes 
and different numbers of 
stations

• Observations:
• Number of stations has 

negligible effect on the 
average delay (provided 
the per station load is 
adjusted to keep S fixed)

• Curves for a’ = 0 
performance DOES NOT 
depend on the mode of 
operation
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Performance Figures (Figure 8.8)
• Figure shows average 

normalized transfer delay 
versus throughput for 
different operation modes 
and fixed length packets

• Observations:
• Single packet is the most 

conservative – provides 
poorest performance

• Single token can be as 
good as multiple token 
provided a’ is small

• When a’ is > 1 – multiple 
token provides the best 
performance



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 110

Performance Figures (Figure 8.9)
• Figure shows average 

normalized transfer 
delay versus 
throughput for different 
operation modes and 
exponentially 
distributed packet 
lengths

• Observations:
• Same observations as 

for Figure 8.8
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Performance Figures (Figure 8.10)
• Figure shows average 

normalized transfer 
delay versus 
throughput for fixed 
and  exponentially 
distributed packet 
lengths

• Observations:
• For a’ <<1 – FP and EP 

are roughly the same
• For moderate a’ ~ 1 - FP 

produces lower delay 
compared to EP

• For a’>> 1 – FP are 
roughly the same!
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Performance Figures (Figure 8.11)
• Figure shows average normalized transfer delay 

versus normalized ring latency for different 
network loads

• Observations:
•The ring 
operates ideally 
as long as a’ is 
much less than 
1

•Performance 
degrades 
rapidly when a’
= 0.5 ~ 5 
depending on 
the network 
load
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Example 5:
Problem: For both constant and exponential packets, 

evaluate the mean transfer delay for a single-token ring, 
that has the following parameters:
• Ring length of 1 km
• Bit rate of 4 Mb/s
• Mean packet length of 1000 bits
• M = 40 stations
• Poisson arrival process to each station with 10 

packets/second arrival rate; and
• Station latency of 1 bit

Repeat this calculation for a ring in which the latency is 10 
bits.

If the number of stations on the ring is increased from 40 to 
120 with the same ring length, evaluate the mean 
transfer delay for cases of 1- and 10-bit station latency; 
All other network parameters are unchanged
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Example 5: cont’d
B = 1 bit, M = 40
τ = 5 µsec/km
τ’ = τ + MB/R

= 5 + 40X1/4 = 15 µsec
Xavg/R = 1000/4 = 250 µsec
a’ = τ’/(Xavg/R)

= 15/(1000/4) = 0.06 < 1 multiple token op
S’ = S

S = MλXavg/R
= 40X10X1000/(4X106) = 0.1

E[EST] = Xavg/R
E[ESR2] = E[X2]/R2

T = Xavg/R + τ’/2 + W_single_token_constant
Constant packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = (1000/4)2 = 62.5X10-9 sec2

T = 250 + 15/2 + 8.29 + 13.89 
= 279.68 µsec

Exponential packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = 2(1000/4)2 = 125X10-9 sec2

T = 250 + 15/2 + 8.31 + 27.78 
= 293.59 µsec

B = 10 bits, M = 40
τ = 5 µsec/km
τ’ = τ + MB/R

= 5 + 40X10/4 = 105 µsec
Xavg/R = 1000/4 = 250 µsec
a’ = τ’/(Xavg/R)

= 105/(1000/4) = 0.42 < 1 multiple token op
S’ = S

S = MλXavg/R
= 40X10X1000/(4X106) = 0.1

E[EST] = Xavg/R
E[ESR2] = E[X2]/R2

T = Xavg/R + τ’/2 + W_single_token_constant
Constant packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = (1000/4)2 = 62.5X10-9 sec2

T = 250 + 105/2 + 58.19 + 13.89 
= 374.58 µsec

Exponential packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = 2(1000/4)2 = 125X10-9 sec2

T = 250 + 15/2 + 58.72 + 28.61 
= 389.83 µsec

τ’(1 – S’/M)             S’ E[EST2]
W = ----------------- + ------------------

2(1 – S’)             2E[EST] (1 – S’)
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Example 5: cont’d
B = 1 bit, M = 120
τ = 5 µsec/km
τ’ = τ + MB/R

= 5 + 120X1/4 = 35 µsec
Xavg/R = 1000/4 = 250 µsec
a’ = τ’/(Xavg/R)

= 35/(1000/4) = 0.14 < 1 multiple token op
S’ = S

S = MλXavg/R
= 120X10X1000/(4X106) = 0.3

E[EST] = Xavg/R
E[ESR2] = E[X2]/R2

T = Xavg/R + τ’/2 + W_single_token_constant
Constant packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = (1000/4)2 = 62.5X10-9 sec2

T = 250 + 35/2 + 24.94 + 53.57 
= 346.01 µsec

Exponential packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = 2(1000/4)2 = 125X10-9 sec2

T = 250 + 35/2 + 25.04 + 107.67 
= 400.21 µsec

B = 10 bits, M = 120
τ = 5 µsec/km
τ’ = τ + MB/R

= 5 + 120X10/4 = 305 µsec
Xavg/R = 1000/4 = 250 µsec
a’ = τ’/(Xavg/R)

= 305/(1000/4) = 1.22 > 1 NOT multiple token op
S’ = Sa’

S = MλXavg/R
= 120X10X1000/(4X106) = 0.3

E[EST] = Xavg/R
E[ESR2] = E[X2]/R2

T = Xavg/R + τ’/2 + W_single_token_constant
Constant packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = (1000/4)2 = 62.5X10-9 sec2

T = 250 + 305/2 + 239.80 + 88.04 
= 730.34 µsec

Exponential packet size:
E[EST] = Xavg/R = 1000/4 = 250 µsec
E[ESR2] = E[X2]/R2 = 2(1000/4)2 = 125X10-9 sec2

T = 250 + 305/2 + 278.54 + 192.45 
= 873.49 µsec

τ’(1 – S’/M)             S’ E[EST2]
W = ----------------- + ------------------

2(1 – S’)             2E[EST] (1 – S’)
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Slotted Rings
• Bits are transferred in serial fashion in one 

direction from one station to station around the 
ring

• Constant number of bit positions grouped into 
fixed-lengths slots – circulate continuously 
around the ring
• i.e ring latency measure in bits ≥ total number of bit 

positions circulating the ring

• Bit spaces are grouped into mini packets
• Each minipacket contains a bit in the header – bit = 1 

occupied; bit = 0 free

• If the slot is empty, it is available for use by a 
station with data to transmit
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Slotted Rings – Example 6
• Assume: 

• Ring speed (R) = 10 Mb/s (or bit time = 0.1 µsec)
• M = 50 stations
• B = 1 bit
• 2 km ring

• Propagation delay = 5 µsec / km total round 
trip 10 µsec

• Ring latency (t’) = 10 + MB/R  = 15 µsec
= 150 bit times

Therefore, ring can support: 3 X 50 bit slots, or
4 X 35 bit slots (with 

10 bit gap), or
etc.
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Slotted Rings – Characteristics
• Designed to transmit relatively few bits 

at a time from each station!!

• Minimum access delay



10/29/2007 Dr. Ashraf S. Hasan Mahmoud 119

Cambridge Slotted
• Ring sections coupled 

with repeaters
• Data rate ~ 10 Mb/s
• Voice grade twisted pairs 

cable – max section 
length = 100 meters

• Can use coaxial or fiber
• Monitor station – setup 

and maintain ring framing 
– ring manager

• Station unit –
independent transmit and 
receive modules

• Access box – interface 
logic to host
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Cambridge Slotted – cont’d
• Receive module

• Continuously reading signal from repeater 
• When a minipacket is addressed to station, 

minipacket is saved in receive register
• Minipacket maybe marked to indicate “station is 

busy” if station did not copy into receive register –
i.e. was busy

• Transmit module
• Shift register in station unit coupled in parallel to the 

access box
• Data and destination bytes are written in parallel to 

register – source & control bits added automatically
• A signal from access box sends the content of 

register onto the ring to fill the first empty slot
• Transmit register retains a copy of the transmitted 

minipacket
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Cambridge Slotted – Minipacket
Format

• Total length = 38 bits – 16 bits of data
• Four slots + a short gap (several digits)
• Frame circuit in station – synchronizes with the gap and leading 

1 of each minipacket
• Destination – 1 byte
• Source – 1 byte
• Data – 1 byte (for each data field)
• M – monitor
• F – Full/empty bit
• R – Response bits (dest absent, packet accepted, dest deaf, or 

dest busy) – read by transmitting station before it decided to 
discard its copy of minipacket – no need to ANK/NAK packets

• P – Parity bit

Destination Source Data DataMF1 PRR
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Fairness Requirement

• The full/empty indicator must be 
changed to empty after the minipacket
has made a complete circulation of the 
ring
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Slotted Ring Operation Example 7

• Two conditions:
• One station has large data packet to transmit
• Two stations have large data packet to transmit

• M = 4
• B = 1 – 1 bit station latency
• Propagation delay is ignored
• One slot on the ring
• 1st bit of the 4 bit slot is used the full/empty 

indicator
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Slotted Ring Operation Example 7
Only #1 is transmitting #1 and #3 transmitting

d1

free token

busy token

data bit from 
#1

data bit from 
#3
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slot

d1

d3

Full slot

In #1 Out #1 Out #2 Out #3 Out #4
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d1

d3
d3

d3

d1
d1
d1

d1 d1 d1 d3 d3 d3
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d3
d3
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Performance of Slotted Ring
• Assumptions

• All stations are identical load-wise
• Arrival process ~ Poisson with λ packets / second / 

station
• There are M stations
• Channel bit rate, R bits / second
• Station latency = B bits
• τ is the total ring propagation time
• τ’ is the total ring latency = τ + MB/R
• Packet size: exponential  – average packet size = 

Xavg bits / packet
• The minipacket length is much less than the packet 

size
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Distributed M/M/1 Queue

• Since the time for a slot to circulate the 
ring (opportunity to transmit) is very 
small compared to the packet 
transmission time modeled as a 
distributed M/M/1 queue
• Arrival rate = Mλ
• Service time = Xavg/R
• From station perspective: effective channel 

rate = R/2 – caused by the strategy to 
prevent ring hogging

• R is used to compute overall throughput
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Distributed M/M/1 Queue – cont’d
• Network throughput, S is given by

S = Mλ Xavg/R

• For slotted ring:
• ρ S
• R R/2
• T T + τ’/2

• Therefore, for slotted ring, transfer delay, T is given by

2       Xavg τ’
T = --------- ----- + ----

1 – S      R            2

• Result valid for arbitrary packet length distribution

Remember:
Average transfer delay for M/M/1 (total delay) is given by

E[service time]      Xavg/R
T = --------------------- = -------------

1 – ρ 1 – ρ

where ρ is the utilization of the queueing system
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Refined Results
• The previous model does not account for the 

huge overhead in each minipacket!!

• Let the minipacket or slot size be Lh (overhead 
bits) + Ld (data bits)
• Define h = Lh / Ld
• Using the above definitions, one can write

τ’ = m(Lh + Ld)/R + g = τ + MB/R
where m is the number of slots on the ring and g is the 

gap in seconds
• Therefore: 

X (1 + h) X  
S (1 + h) S
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Refined Results – cont’d
• Substituting in the previous result, yields

2(1+h)      Xavg τ’
T = ------------- ------ + ----

1 – S(1+h)      R            2

• Now – maximum throughput = 1/(1+h) 
or Ld/(Lh + Ld) – which is the correct 
result
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Example 8:
• Problem: A slotted ring is 1 kilometer long, has 50 

stations attached and has a bit rate of 10 Mb/s. Each slot 
contains 3 bytes of data, a source byte, a destination byte, 
and another byte that includes the monitor and indicator 
bits. It may be assumed that each station latency is 1 bit

A) How many slots this ring hold without adding any artificial 
delays? What is the gap time? If packets of length 1200 
bits are to be transmitted on this ring, find the mean 
transfer delay when packets arrive at each station at a 
rate of (i) 1 packet / second (ii) 40 packets / second

B) Increase the number of station on the network to 100. (i) 
How many slots can the ring now hold without adding 
artificial delays? (ii) What is the gap time? Again, evaluate 
the mean transfer delay for the same arrival rates and 
same packet length.
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Example 8: solution
A) For M = 50 stations
Propagation delay, τ = 5 µsec
Ring latency, τ’ = τ + MB/R 

= 5 + 50X1/10 = 10 µsec
Slot length,  = 6 bytes or 48 bits 
Since τ’ = m(48)/10 + g = 10
Therefore, m ≤ 2 – if m = 2, then g = 0.4 µsec
h = Lh/Ld = 24/24 = 1
Xavg / R = 1200 / 10 = 120 µsec
(i) S = MλXavg/R = 50X1X120X10-6 = 0.006

2(1+h)      Xavg τ’
T = ------------- ------ + ---

1 – S(1+h)     R            2

2 X 2
= ---------------- 120    + 10/2  = 490.8 µsec

1 – 0.006 X 2

(ii) S = MλXavg/R = 50X40X120X10-6 = 0.24
T = 928.1 µsec
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Example 8: solution – cont’d
B) For M = 100 stations
Propagation delay, τ = 5 µsec
Ring latency, τ’ = τ + MB/R 

= 5 + 100X1/10 = 15 µsec
Slot length,  = 6 bytes or 48 bits 
Since τ’ = m(48)/10 + g = 15
Therefore, m ≤ 3 – if m = 3, then g = 0.6 µsec
h = Lh/Ld = 24/24 = 1
Xavg / R = 1200 / 10 = 120 µsec
(i) S = MλXavg/R = 100X1X120X10-6 = 0.012

2(1+h)      Xavg τ’
T = ------------- ------ + ---

1 – S(1+h)     R            2

2 X 2
= ---------------- 120    + 15/2  = 499.3 µsec

1 – 0.012 X 2

(ii) S = MλXavg/R = 100X40X120X10-6 = 0.48
T = 12007.5 µsec
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