Introduction To Pipelining Il

Chapter 6.2 - Pipelining2

~ n 9 —

ﬁ(‘DQ_ﬁO

Recap: Sequential Laundry

6 PM 7 8 9 10 11 Midnight

|
. >
| Time

30| 40 |20| 30| 40 |20| 30| 40 |20| 30| 40 |20|

|©

& [Tl

T o
© sty
+ =T

« Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take?

Chapter 6.2 - Pipelining2

~ 0 9 —

ﬁ(DC)_ﬁO

Recap: Pipelining Lessons

6 PM

9

Time

40 40 40 40 20

% (e

7

©
(D)

® iy

TIpAr

=2

Pipelining doesn’t help
of single task, it helps
of entire workload

Pipeline rate limited by
pipeline stage

tasks operating
simultaneously using
different resources

Potential speedup =

Unbalanced lengths of pipe
stages reduces speedup

Time to “fill” pipeline and
time to “ " it reduces
speedup

» Sta IIf r De endences

Chapte re.2 |peI| ng2 3

The Big Picture: Where are We Now?

Processor
Input
Control
Memory
Datapath Output

 The Five Classic Components of a Computer

Chapter 6.2 - Pipelining2

Pipelining the Load Instruction

| Cycle1iCycle2 | Cycle 3} Cycle4 | Cycle5 i Cycle 6 { Cycle 7 ;

Clock_|_

1st lw

Ifetch IReg/Decll Exec I Meml Wr

2nd w

Ifetch IReg/Decll Exec I Meml Wr

3rd lw

Ifetch IReg/Decll Exec I Meml Wr

 The five independent functional units in the pipeline datapath

are:

— Instruction Memory for the Ifetch stage

— Register File’s Read ports (bus A and busB) for the Reg/Dec
stage

— ALU for the Exec stage
— Data Memory for the Mem stage
— Reqister File’s Write port (bus W) for the Wr stage

Chapter 6.2 - Pipelining2

The Four Stages of R-type

: Cycle 1} Cycle2 | Cycle 3 Cycle 4

R-type| Ifetch IReg/Decll Exec I Wr

Ifetch: Instruction Fetch

— Fetch the instruction from the Instruction Memory
Reg/Dec: Registers Fetch and Instruction Decode

Exec:

— ALU operates on the two register operands

— Update PC

Wr: Write the ALU output back to the register file

Chapter 6.2 - Pipelining2

Pipelining the R-type and Load Instruction

| Cycle1iCycle2 | Cycle3i Cycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle8 i Cycle 9 §

Clock_|

R-type

Ifetch IReg/Decll Exec I Wr

 We have pipeline conflict or structural hazard:

R-type

Ifetch IReg/Decll Exec I Wr

Ops! \éVe have aiproblem®

Load

Ifetch IReg/Decll Exec I Mem

Wr

R-type

Ifetch IReg/Decll Exec I\Wr

R-type

Ifetch IReg/Decll Exec I Wr

— Two instructions try to write to the register file at the same time!

— Only one write port

» Solution — always use all 5 stages of the pipeline!

Chapter 6.2 - Pipelining2

The Four Stages of Store

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Store | Ifetch IReg/Decll Exec I Meml Wr

Ifetch: Instruction Fetch

— Fetch the instruction from the Instruction Memory
Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Write the data into the Data Memory

Chapter 6.2 - Pipelining2

The Three Stages of Beq

: Cycle 1} Cycle2 | Cycle 3 Cycle 4

Beq| Ifetch IReg/Decll Exec I Meml Wr

e |fetch: Instruction Fetch

— Fetch the instruction from the Instruction Memory

* Reg/Dec:

— Registers Fetch and Instruction Decode

e EXxec:

— compares the two register operand,
— select correct branch target address

— latch into PC

Chapter 6.2 - Pipelining2

Recap: Control Diagram

IR <- Mem[PC]; PC < PC+4;

File

A <- R[rs]; B<— R]rt]
S<-A+B; S <-AorZX; S<—-A + SX; S<—-A + SX; If Cond PC
< PC+SX;
M<-S M<—S M <— Mem[S] Mem[S] <- B
R[rd] <= S; R[rt] <- S; R[rd] <— M; ‘_g
o
r e :
(@)
O = o vl | @
+ 8 2 o > LL l \ 2
) -
Z < 5

Chapter 6.2 - Pipelinin

10

But recall use of “Data Stationary Control”

« The Main Control generates the control signals during Reg/Dec

— Control signals for Exec (ExtOp, ALUSTrc, ...) are used 1 cycle
later

— Control signals for Mem (MemWr Branch) are used 2 cycles later
— Control signals for Wr (MemtoReg MemWr) are used 3 cycles

| later | | |
I Reg/Dec 15 Exec 15 Mem g3 Wr
1 o o o g
s R Y s
ALUSIc ALUSIc
g > m
_ ALUOp |[=| ALUOp X <
= Main RegDst : rgn RegDst ‘ % S
o Control gk 3 g
23 MemWr & Memwr 13| Memwr 5
Q "l o > X
72} Branch 73 Branch » | Branch Q
MemtoReg , MemtoReg . MemtoReg |- MemtoReg
RegWr , RegWr , RegWr R RegWr R

Chapter 6.2 - Pipelining2 11

Datapath + Data Stationary Control

IR v v v
- fun R W
(D)
) - y®) wb
—>

=N i § me
Z’ — o) ex —»l l
= L

rsurt [n_ lll

v v
[Next PC J

Chapter 6.2 - Pipelining2 12

Let’'s Try it Out

10 lw rl, r2(35)

14 addl r2,r2,3

20 sub r3,r4,r5

24 beq r6,r7,100

30 or| 8, r9, 17 these addresses are octal
34 add rl10,rl11,rl2

100 and rl13,r14, 15

Chapter 6.2 - Pipelining2 13

Inst. Mem

Start: Fetch 10

LN

rl, r2(35)

Chapter 6.2 - Pipehkaing

.100 and

r2,r2, 3

r3, r4, r5

e, r7, 100
8, r9, 17
rio, r11, r12

ri3, ri4, 15
L4

Inst. Mem

Fetch 14, Decode 10

LN

PC

rl, r2(35)

r2,r2,3

Chapter 6.2 - Pipekttg

34 add

.100 and

r3, r4, r5

e, r7, 100
r8, r9, 17
rio, r11, r12

ri3, ri4, 15
LI

Fetch 20, Decode 14, Exec 10

=\ < ,_l AN VR

[- S >

1= 8 | ¢ T we

7l = o E Mem

fEle =2~) (] Ien
JERE /I
D o 8.%
T T o i
l 10 Iw rl, r2(35)
— 14 addl r2,r2,3
E_) > IE|| 20 sub r3,r4,r5
X N 24 beq r6,r7,100
\E/ 30 ori r8,r9,17

add r10,rl11,r12

PC
w
N

100 and r13,r14, 15
~ 10

Chapter 6.2 - Pipehkaing

Fetch 24, Decode 20, Exec 14, Mem 10

™ i T
£ | < & ™
(«b) L_‘ o -
+— —_— (D) —
NEJEINCRE
IR ll
o L
¥ LL
rl, r2(35)
—— r2,r2, 3
8 r3, r4, r5
> 6. 17, 100
< (8,19, 17
r1o, r11, r12
. 1.100 and r13,r14, 15
Chapter 6.2 - Pipe m-ngﬁ-gf -+

Fetch 30, Dcd 24, Ex 20, Mem 14, WB 10

)
& >
= s +
= = ST wa
| 2 E Mem | = Ctrl
- _Ctrl ——

[l

M[r2+35]

@
< GE)WB 10 Iw rl,r2(35)
0=\
N A 14 addl r2,r2,3
8 | 20 sub r3,r4,r5
- |
s &) 24 beq 6,17, 100
= IF{|30 ori r8,r9, 17
QO 34 add ri10,rl11,ri12
o
Note Delayed Branch: always execute ori after beq
. |.100 and r13,r14, 15
Chapter 6.2 - Pipekathrg2 ;xe)

Fetch 100, Dcd 30, Ex 24,

Inst. Mem

orir8,r9 17

IR

|

&—| Decode

Mem 20, WB 14
H—
> . > N
a g_'WB
c?) © \Ctrlj

Reg
File

100

PC

M[r2+35]

rl

10 Iw rl, r2(35)

14 addl r2,r2, 3

- -

120 sub _r3.r4, 15
24 hpq ra r7 100

30 ori 8,19, 17
34 add r10,r11,rl12

Chapter 6.2 - Pilpf

F[].100 and r13,r14, 15
z 19

Fetch 104, Dcd 100, Ex 30, Mem 24, WB 20

=

&
&
=
15
=

10 Iw rl, r2(35)
14 addl r2,r2,3
WBI([20 sub r3,r4,r5

o

_> U
puill S 1"
q*>"<) Ml 24 beq 16,7, 100
=

30 ori 8.r19, 17
34 add r10,r11,rl12

PC

Fill it in yourself!

ID
100 and rl13,r14, 15
Chapter 6.2 - PipeH nognd risr

Fetch 110, Dcd 104, Ex 100, Mem 30, WB 24

&
&
=
15
=

&—| Decode

(@)
)
o

File

10 Iw rl, r2(35)
14 addl r2,r2,3

)

E_) 20 sub r3,14,r5
— D>

5 WBI| 24 beq 16, 17, 100
\E/ M 30 __ori 8, 19, 17

34 add r10,r11,rl12

PC

Fill it in yourself!

=4].100 and rl13,r14, 15
Chapter 6.2 - Plpe....P..gfl 7T

Fetch 114, Dcd 110, Ex 104, Mem 100, WB 30

)
: . » .
= g ? T we
+ (b}
7] e — Mem
< ll _Ctrl \Ctrl)

Reg
File

10 Iw rl, r2(35)
14 addl r2,r2, 3
20 sub r3,r4,r5

|

WBI3O ori 18,19, 17

M

O

% > 24 beq r6,r7,100
<

)

Z

"/

34 add r10,r11,rl12

PC

I |
Fill it in yourself! \ 100 and r13,r14, 15

Chapter 6.2 - Pipelining2 22

Data Hazards Handling

 Avoid some “by design”:
—eliminate WAR by always fetching operands early (decode) in pipe
—eliminate WAW by doing all WBs in order (last stage, static).

* Detect and resolve remaining ones
— stall the pipeline,
—or, forward (if possible).

DCD

EX

Mem IVﬂB/

RAW Data Hazard

1=

pco| Ex [Mem [we
= DCE} EX Mem| WB‘/ WAW Data Hazard
I= DCD OFI EX I Mem
IF DCD| OF IEx I RS AR Data Hazard

Chapter 6.2 - Pipelining2 23

Hazard Detection

e Suppose instructioni is about to be issued and a predecessor instruction j
IS in the instruction pipeline.

New Inst —> Inst |
- B Window on execution:
Instruction nst J _ ((:);ul); é)(;:](gienpgﬁ(i)nns;ructions can
Movement:;
v _

« A RAW hazard exists on registerrifr e Rregs()N Wregs(j)

— Keep a record of pending writes (for instructions in the pipe) and compare with
operand registers of current instruction.

— When instruction issues, reserve its result register.
— When on operation completes, remove its write reservation.

« A WAW hazard exists on registerrifr e Wregs(I)N Wregs(j)

* A WAR hazard exists on registerrifre W (i) "R (])

Chapter 6.2 - Pipelining2 24

Pipeline Hazards Again

I-Fet ch DCD /J\/IemOpFetch OpFetch | Exec | Store
IFetch DCD| °°°
Structural =
Hazard
I-Fet ch DCD| OpkFetch Jump‘ Control Hazard
IFetch DCD| °°°
IF DCD| EX Meml_\Ly,B/ RAW (read after write) Data Hazard
IF DCDl EX I Mem I/WB WAW Data Hazard
= DCE? EX Meni WB/ (Write after Write)
IF DCD / OFI EX I Menr
4
IF DCD| OF IEx I RS | WAR Data Hazard

(write after read)

Chapter 6.2 - Pipelining2

25

Data Hazards

Avoid some “by design”
— eliminate WAR by always fetching operands early (DCD) in

pipe

— eleminate WAW by doing all WBs in order (last stage, static)
Detect and resolve remaining ones
— stall or forward (if possible)

= DCD| EX Mem IVMB/ RAW Data Hazard
IF DCD| EX [Mem | ws
= DCE} = Meni WB"/ WAW Data Hazard
IF DCD V. OFl EXx I Merr
IF DCD| OF IEx I R W Data Hazard

Chapter 6.2 - Pipelining2 26

Hazard Detection

« Supposeinstruction i is about to be issued and a predecessor instruction
j i1sin the instruction pipeline.
« A RAW hazard exists on register pif p € Rregs(i) nWregs(j)
— Keep a record of pending writes (for inst's in the pipe) and compare
with operand regs of current instruction.
— When instruction issues, reserve its result register.

— When on operation completes, remove its write reservation.

« A WAW hazard exists on register p if p € Wregs(i) nWregs(j)
« A WAR hazard exists on register pif p e Wregs(i) nRregs(j)

Chapter 6.2 - Pipelining2 27

Record of Pending Writes

> |AU

A

e Current operand
registers

e Pending writes
e hazard <=

((rs ==rwg,, & regW,)
OR

((I’S == erem) & reg\Nme)
OR

((rs == FWop) & regWw,,)
OR

(rt==rwg,, & regW,,)
OR

((I’t == erem) & reg\Nme)
OR

((rt == rwgb) & rengﬂg

Chapter 6.2 - Pipelining

Resolve RAW by forwarding

|AU

)

Regs
T T

Forward)

muxXx

A

-\
>

e Detect nearest valid
write op operand

register and forward
Into op latches,
bypassing remainder

of the pipe

Increase muxes to add

paths from pipeline

NAL

registers

e Data Forwarding =

Data Bypassing

NAL

I’\I\II

Chapter 6.2 - Pipelining2 29

What about memory operations?

°If instructions are initiated in order and
operations always occur in the same
stage, there can be no hazards between
memory operations!

° What does delaying WB on arithmetic
operations cost?
—cycles ?
— hardware ?

° What about data dependence on loads?
R1<-R4 +R5
R2 <- Mem[R2 + |]
R3<-R2 +R1
=>
"Delayed Loads"

op Rd Ra Rb
—
U
op Rd Ra Rb A R
| | \//l
Rd o)
__ M
\ 4 | —
Rd
to reg
file

Chapter 6.2 - Pipelining2

30

Compiler Avoiding Load Stalls:

- scheduled - unscheduled

gcc

spice

tex 65%

25%

0% 20% 40% 60% 80%

% loads stalling pipeline

Chapter 6.2 - Pipelining2

What about Interrupts, Traps, Faults?

« External Interrupts:
— Allow pipeline to drain,

— Load PC with interupt address
 Faults (within instruction, restartable)

— Force trap instruction into IF
— disable writes till trap hits WB
— must save multiple PCs or PC + state

Refer to MIPS solution

Chapter 6.2 - Pipelining2

32

Exception Handling

|AU

A

detect bad instruction address

Il detect bad instruction

Qb NAL

detect overflow

detect bad data address

Allow exception to take effect

Chapter 6.2 - Pipelining2 33

Exception Problem

 Exceptions/Interrupts: 5 instructions executing in 5 stage pipeline
— How to stop the pipeline?

— Restart?
— Who caused the interrupt?
Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory
access; memory-protection violation
ID Undefined or illegal opcode
EXArithmetic exception
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation; memory error
 Load with data page fault, Add with instruction page fault?
e Solution 1: interrupt vector/instruction , check last stage
o Solution 2: interrupt ASAP, restart everything incomplete

Chapter 6.2 - Pipelining2

34

Resolution: Freeze above & Bubble Below

|AU I

v

freeze

bUDDIe5%
y

A

B A m an I‘\Il\l

S np r\/\/I
()
D mem|
m \ 4 \ 4 \ 4
np I‘\I\II
\ 4
[Regs]

Chapter 6.2 - Pipelining2 35

FYI. MIPS R3000 clocking discipline

phil

phi2

« 2-phase non-overlapping clocks
 Pipeline stage is two (level sensitive) latches

OOt TOHO4

phil phi2 phil
Edge-triggered

Chapter 6.2 - Pipelining2

36

Issues In Pipelined Design

Method
° Pipelining

° Super-pipeline
- Issue one instruction per (fast) cycle
- ALU takes multiple cycles

° Super-scalar
- Issue multiple scalar
instructions per cycle

°VLIW (“EPIC")
- Each instruction specifies

multiple scalar operations
- Compiler determines parallelism

° Vector operations
- Each instruction specifies
series of identical operations

Lieloled ml wl

IEILD

Ex

AL

=

D

Ex

AL

1=

D

ExJL ML AL

Liel oled mlwl

Liel o lexd ml wl
Ll olexd ml wi

Liel oled mlwl

Liel oled mlwl

Liel olexd ml wl

Liel olexd ml wl

Lel oled ml wl
[edlmllud

EMEVIEY

Liel oled mlwl

VIRV

N EVIEYY

Limitation

Issue rate, FU stalls, FU depth

Clock skew, FU stalls, FU depth

Hazard resolution

Packing

Applicability

Chapter 6.2 - Pipelining2 37

Is CPI = 1 for our pipeline?

« Remember that CPl is an “Average # cycles/inst

IFetch|Dcd Exec |Mem | WB
IFetch| Dcd Exec |Mem | WB
IFetch| Dcd Exec |Mem | WB
IFetch| Dcd Exec |Mem | WB

« CPl hereis 1, since the average throughputis 1 instruction

every cycle.
 What if there are stalls or multi-cycle execution?

e Usually CPI>1. How close can we get to 1?7

Chapter 6.2 - Pipelining2

38

Computation of CPIl when

Pipeline Stalls are Present
CPI=CPI,, CPI

CPI..,=STALL

 Start with Base CPI
 Add stalls

stall

xfreq, ., + STALL, ., xTreq,.

stall

typel type2

e Suppose:
— CI:)Ibase_ 1
— 1:reqbranch 20%, 1:reqload 30% ;
— Suppose branches always cause 1 cycle stall;
— Loads cause a 100 cycle stall 1% of time;
— Then: CPI=1+(1x0.20) + (100x0.30x0.01)=1.5

 Multicycle? Could treat as:
— CPl,,= (CYCLES - CPI,_..) x freq;

Chapter 6.2 - Pipelining2 39

FP Loop: Where Are the Hazards?

Loop: LD FO, O(R1)
ADDD F4, FO, F2
SD O(R1), F4
SuBl R1, R1, 8
BNEZ R1, Loop

;FO = vector element

;add scalar from F2

;store result

;decrement pointer 8B (DW)
:branch R1 = zero

NOP ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALV op Store double 2
Load double FP ALU op 1
Load double Store double 0]

Integer op Integer op 0]

Where are the stalls?

Chapter 6.2 - Pipelining2

40

FP Loop Showing Stalls

1 Loop: LD FO, O(R1) ;FO=vector element

2 stall

3 ADDD F4, FO, F2 j;add scalar in F2

4 stall

) stall

6 SD O(R1), F4 ;store result

7 SUBI R1, R1, 8 ;decrement pointer 8B (DW)
8 BNEZ R1, Loop -branch R1l!=zero

9 stall ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALV op Store double 2

Load double FP ALU op 1

e Oclocks: Rewrite code to minimize stalls?

Chapter 6.2 - Pipelining2 41

Revised FP Loop Minimizing Stalls

Loop: LD FO,0(R1)

1

2

3 ADDD F4,FO0,F2

4 suBl R1,R1,8

5 BNEZ R1,Loop ;delayed branch

6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD

Instruction Instruction Latency in
producing result using result clock cycles
FP ALV op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALV op 1

6 clocks: Unroll loop 4 times code to make faster?

Chapter 6.2 - Pipelining2 42

Unroll Loop Four Times

(straightforward way) .
Rewrite loop to
4/1 cycle stall minimize stalls?

1 Loop:LD FO,O0(R1

2 P ADDD F4,F(§ F%A/ 2 cycles stall

3 SD 0(R1),F4 -drop SUBI & BNEZ
4 LD F6,-8(R1)

5 ADDD F8,F6,F2

6 SD _8(R1),F8 -drop SUBI & BNEZ
7 LD F10,-16(R1)

8 ADDD F12,F10,F2

9 SD _16(R1),F12 :drop SUBI & BNEZ
10 LD F14,-24(R1)

11 ADDD F16,F14,F2

12 SD _24(R1),F16

13 SUBI R1,R1,#32 -alter to 4*8

14 BNEZ R1,LOOP

15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration

Assumes R1 is multiple of 4
Chapter 6.2 - Pipelining2 43

Unrolled Loop That Minimizes Stalls

1 Loop:LD
2 LD
3 LD
4 LD
) ADDD
6 ADDD
7 ADDD
8 ADDD
9 SD
10 SD
11 SD
12 SUBI
13 BNEZ
14 SD

FO, O(R1)
F6, -8(R1)
F10, -16(R1)
F14, -24(R1)
F4, FO, F2
F8, F6, F2
F12, F10, F2
F16, Fl14, F2
0(R1), F4
-8(R1), F8
~16(R1), F12
R1, R1, #32
R1, LOOP
8(R1), F16

« What assumptions made
when moved code?

— OK to move store past
SUBI even though
changes register

— OK to move loads
before stores: get right
data?

— When is it safe for
compiler to do such
changes?

; 8-32 = -24

14 clock cycles, or 3.5 per iteration
When safe to move instructions?

Chapter 6.2 - Pipelining2

Getting CPI < 1: Issuing Multiple
Instructions/Cycle

Two main variations: Superscalar and VLIW
Superscalar: varying no. instructions/cycle (1 to 6)
— Parallelism and dependencies determined/resolved by HW;
— IBM PowerPC 604, Sun UltraSparc, DEC Alpha 21164, HP 7100.

Very Long Instruction Words (VLIW): fixed number of instructions
(16); parallelism determined by compiler:

— pipeline is exposed,;
— compiler must schedule delays to get right resuilt.
Explicit Parallel Instruction Computer (EPIC) [Intel]
— 128 bit packets containing 3 instructions (can execute sequentially);
— Can link 128 bit packets together to allow more parallelism;
— Compiler determines parallelism,
— HW checks dependencies and forwards/stalls.

Chapter 6.2 - Pipelining2 45

Getting CPI < 1: Issuing Multiple
Instructions/Cycle — I

Superscalar DLX: 2 instructions, 1 FP & 1 anything else
— Fetch 64-bits/clock cycle; Int on left, FP on right
— Can only issue 2nd instruction if 1st instruction issues

— More ports for FP registers to do FP load & FP op in a pair

Type
Int.
instruction

FP..instruction
Int..instruction
FP..instruction

Int.
instruction

FP instruction

Stages

1=
1=

MEM
MEM
EX
EX

ID
ID

1 cycle load delay expands to 3 instructions in SS

— Instruction in right half can’t use it, nor instructions in next slot

Chapter 6.2 - Pipelining2

wWB
WB
MEM
MEM

EX
EX

WB
WB
MEM WB
MEM WB

46

Loop Unrolling in Superscalar

Integer instruction EP instruction Clock cycle
Loop: LD FO, 1
LD F6, -8(R1) 2
LD F10,-16(R1) ADDD F4, FO, F2 3
LD F14,-24(R1) DD F8, F6, F2 4
LD F18, -32(R ADDD F12, F10, F2)
SD O0(R1), F4 ADDD F16, F14, F2 6
SD -8(R1), F8 ADDD F20, F18, F2 7
SD -16(R1), F12 8
SD -24(R1), F16 9
SUBI R1, R1, #40 10
BNEZ R1, LOOP 11
SD -32(R1), F20 12

 Unrolled 5 times to avoid delays (+1 due to SS)
12 clocks, or 2.4 clocks per iteration

Chapter 6.2 - Pipelining2

47

Limits of Superscalar

While Integer/FP split is simple for the HW, get CPI of 0.5 only for
programs with:

— Exactly 50% FP operations;
— No hazards.

If more instructions issue at same time, greater difficulty of decode
and issue.

— Even 2-scalar = examine 2 opcodes, 6 register specifiers, and decide if
1 or 2 instructions can issue.

VLIW: tradeoff instruction space for simple decoding:
— The long instruction word has room for many operations;

— By definition, all the operations the compiler puts in the long instruction
word can execute in parallel;

— e.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch.
e 16 to 24 bits per field = 7x16 or 112 bits to 7x24 or 168 bits wide.
— Need compiling technique that schedules across several branches.

Chapter 6.2 - Pipelining2 48

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock

reference 1 reference 2 operation 1 op. 2 branch
LD F6,-8(R1)
LD F10,-16(R1) LD F14,-24(R1)
LD F18,-32(R1) LD F22,-40(R1) ADDD F8,F6,F2

LD F26,-48(R1) A , F10, F2 ADDD F16,F14,F2

ADDD F20, F18, F2 ADDD F24,F22,F2

SD 0(R1) a D -8(R1),F8 ADDD F28, F26, F2

SD -16(R1),F12 SD -24(R1),F16

SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48
SD -0(R1),F28 BNEZ R1,LOOP

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration

Need more registers in VLIW(EPIC => 128int + 128FP)

Chapter 6.2 - Pipelining2

© 00 N O O A W N P

49

Summary

What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard? HAZARDS!
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

Pipelines pass control information down the pipe just as data
moves down pipe

Forwarding/Stalls handled by local control
Exceptions stop the pipeline

Chapter 6.2 - Pipelining2

50

Summary

Pipelines pass control information down the pipe just
as data moves down pipe

Forwarding/Stalls handled by local control
Exceptions stop the pipeline

MIPS | instruction set architecture made pipeline
visible (delayed branch, delayed load)

More performance from deeper pipelines, parallelism

Chapter 6.2 - Pipelining2

51

Summary

Hazards limit performance

— Structural: need more HW resources

— Data: need forwarding, compiler scheduling

— Control: early evaluation & PC, delayed branch, prediction
Data hazards must be handled carefully:

— RAW data hazards handled by forwarding

— WAW and WAR hazards don’t exist in 5-stage pipeline

MIPS | instruction set architecture made pipeline visible (delayed
branch, delayed load)

Exceptions in 5-stage pipeline recorded when they
occur, but acted on only at WB (end of MEM) stage

— Must flush all previous instructions
More performance from deeper pipelines, parallelism

Chapter 6.2 - Pipelining2

52

	
	Recap: Sequential Laundry
	Recap: Pipelining Lessons
	The Big Picture: Where are We Now?
	Pipelining the Load Instruction
	The Four Stages of R-type
	Pipelining the R-type and Load Instruction
	The Four Stages of Store
	The Three Stages of Beq
	Recap: Control Diagram
	But recall use of “Data Stationary Control”
	Datapath + Data Stationary Control
	Let’s Try it Out
	Start: Fetch 10
	Fetch 14, Decode 10
	Fetch 20, Decode 14, Exec 10
	Fetch 24, Decode 20, Exec 14, Mem 10
	Fetch 30, Dcd 24, Ex 20, Mem 14, WB 10
	Fetch 100, Dcd 30, Ex 24, Mem 20, WB 14
	Fetch 104, Dcd 100, Ex 30, Mem 24, WB 20
	Fetch 110, Dcd 104, Ex 100, Mem 30, WB 24
	Fetch 114, Dcd 110, Ex 104, Mem 100, WB 30
	Data Hazards Handling
	Hazard Detection
	Pipeline Hazards Again
	Data Hazards
	Hazard Detection
	Record of Pending Writes
	Resolve RAW by forwarding
	What about memory operations?
	Compiler Avoiding Load Stalls:
	What about Interrupts, Traps, Faults?
	Exception Handling
	Exception Problem
	Resolution: Freeze above & Bubble Below
	FYI: MIPS R3000 clocking discipline
	Issues in Pipelined Design
	Is CPI = 1 for our pipeline?
	Computation of CPI when Pipeline Stalls are Present
	FP Loop: Where Are the Hazards?
	FP Loop Showing Stalls
	Revised FP Loop Minimizing Stalls
	Unroll Loop Four Times (straightforward way)
	Unrolled Loop That Minimizes Stalls
	Getting CPI < 1: Issuing Multiple Instructions/Cycle
	Getting CPI < 1: Issuing Multiple Instructions/Cycle – II
	Loop Unrolling in Superscalar
	Limits of Superscalar
	Loop Unrolling in VLIW
	Summary
	Summary
	Summary

