Introduction To Pipelining II

Recap: Sequential Laundry

- Sequential laundry takes 6 hours for 4 loads
- If they learned pipelining, how long would laundry take?

Recap: Pipelining Lessons

- Pipelining doesn't help latency of single task, it helps throughput of entire workload
- Pipeline rate limited by slowest pipeline stage
- Multiple tasks operating simultaneously using different resources
- Potential speedup = Number pipe stages
- Unbalanced lengths of pipe stages reduces speedup
- Time to "fill" pipeline and time to "drain" it reduces speedup

The Big Picture: Where are We Now?

• The Five Classic Components of a Computer

Pipelining the Load Instruction

- The five independent functional units in the pipeline datapath are:
 - Instruction Memory for the Ifetch stage
 - Register File's Read ports (bus A and busB) for the Reg/Dec stage
 - ALU for the Exec stage
 - Data Memory for the Mem stage
 - Register File's Write port (bus W) for the Wr stage

The Four Stages of R-type

- Ifetch: Instruction Fetch
 - Fetch the instruction from the Instruction Memory
- Reg/Dec: Registers Fetch and Instruction Decode
- Exec:
 - ALU operates on the two register operands
 - Update PC
- Wr: Write the ALU output back to the register file

Pipelining the R-type and Load Instruction

- We have pipeline conflict or structural hazard:
 - Two instructions try to write to the register file at the same time!
 - Only one write port
- Solution always use all 5 stages of the pipeline!

The Four Stages of Store

- Ifetch: Instruction Fetch
 - Fetch the instruction from the Instruction Memory
- Reg/Dec: Registers Fetch and Instruction Decode
- Exec: Calculate the memory address
- Mem: Write the data into the Data Memory

The Three Stages of Beq

- Ifetch: Instruction Fetch
 - Fetch the instruction from the Instruction Memory
- Reg/Dec:
 - Registers Fetch and Instruction Decode
- Exec:
 - compares the two register operand,
 - select correct branch target address
 - latch into PC

Recap: Control Diagram

But recall use of "Data Stationary Control"

- The Main Control generates the control signals during Reg/Dec
 - Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
 - Control signals for Mem (MemWr Branch) are used 2 cycles later
 - Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

Datapath + Data Stationary Control

Let's Try it Out

10	lw	r1, r2(35)	
14	addl	r2, r2, 3	
20	sub	r3, r4, r5	
24	beq	r6, r7, 100	
30	ori	r8, r9, 17	these addresses are octal
34	add	r10, r11, r12	

and r13, r14, 15

100

Start: Fetch 10

Fetch 14, Decode 10

Fetch 20, Decode 14, Exec 10

Fetch 24, Decode 20, Exec 14, Mem 10

Fetch 30, Dcd 24, Ex 20, Mem 14, WB 10

Fetch 100, Dcd 30, Ex 24, Mem 20, WB 14

Fetch 104, Dcd 100, Ex 30, Mem 24, WB 20

Fetch 110, Dcd 104, Ex 100, Mem 30, WB 24

Fetch 114, Dcd 110, Ex 104, Mem 100, WB 30

Data Hazards Handling

Avoid some "by design":

- eliminate WAR by always fetching operands early (decode) in pipe
- eliminate WAW by doing all WBs in order (last stage, static).

Detect and resolve remaining ones

- stall the pipeline,
- or, forward (if possible).

Hazard Detection

Suppose instruction i is about to be issued and a predecessor instruction j is in the instruction pipeline.

- A RAW hazard exists on register r if $r \in R_{regs}(i) \cap W_{regs}(j)$
 - Keep a record of pending writes (for instructions in the pipe) and compare with operand registers of current instruction.
 - When instruction issues, reserve its result register.
 - When on operation completes, remove its write reservation.
- A WAW hazard exists on register r if $r \in W_{regs}(i) \cap W_{regs}(j)$
- A WAR hazard exists on register r if $r \in W_{regs}(i) \cap R_{regs}(j)$

Pipeline Hazards Again

Data Hazards

- Avoid some "by design"
 - eliminate WAR by always fetching operands early (DCD) in pipe
 - eleminate WAW by doing all WBs in order (last stage, static)
- Detect and resolve remaining ones
 - stall or forward (if possible)

Hazard Detection

- Suppose instruction i is about to be issued and a predecessor instruction
 j is in the instruction pipeline.
- A RAW hazard exists on register ρ if ρ ∈ Rregs(i) ∩ Wregs(j)
 - Keep a record of pending writes (for inst's in the pipe) and compare with operand regs of current instruction.
 - When instruction issues, reserve its result register.
 - When on operation completes, remove its write reservation.

- A WAW hazard exists on register ρ if ρ ∈ Wregs(i) ∩ Wregs(j)
- A WAR hazard exists on register ρ if ρ ∈ Wregs(i) ∩ Rregs(j)

Record of Pending Writes

Resolve RAW by forwarding

- Detect nearest valid write op operand register and forward into op latches, bypassing remainder of the pipe
- Increase muxes to add paths from pipeline registers
- Data Forwarding = Data Bypassing

What about memory operations?

- operations are initiated in order and operations always occur in the same stage, there can be no hazards between memory operations!
- ° What does delaying WB on arithmetic operations cost?
 - cycles?
 - hardware?
- ° What about data dependence on loads?

```
R1 < -R4 + R5
```

 $R2 \leftarrow Mem[R2 + I]$

R3 < -R2 + R1

=> "Delayed Loads"

Compiler Avoiding Load Stalls:

What about Interrupts, Traps, Faults?

- External Interrupts:
 - Allow pipeline to drain,
 - Load PC with interupt address
- Faults (within instruction, restartable)
 - Force trap instruction into IF
 - disable writes till trap hits WB
 - must save multiple PCs or PC + state

Exception Handling

Exception Problem

- Exceptions/Interrupts: 5 instructions executing in 5 stage pipeline
 - How to stop the pipeline?
 - Restart?
 - Who caused the interrupt?

Stage Problem interrupts occurring

IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation

ID Undefined or illegal opcode

EXArithmetic exception

MEM Page fault on data fetch; misaligned memory access; memory-protection violation; memory error

- Load with data page fault, Add with instruction page fault?
- Solution 1: interrupt vector/instruction, check last stage
- Solution 2: interrupt ASAP, restart everything incomplete

Resolution: Freeze above & Bubble Below

FYI: MIPS R3000 clocking discipline

- 2-phase non-overlapping clocks
- Pipeline stage is two (level sensitive) latches

Issues in Pipelined Design

Method

Limitation

° Pipelining

Issue rate, FU stalls, FU depth

- ° Super-pipeline
- Issue one instruction per (fast) cycle
- ALU takes multiple cycles

IELDIEX MLW

Clock skew, FU stalls, FU depth

- ° Super-scalar
- Issue multiple scalar instructions per cycle

IELDIEXLMIW

IELDIEXLMIW

IELDIEXLMIW

Hazard resolution

- ° VLIW ("EPIC")
- Each instruction specifies
 multiple scalar operations
- Compiler determines parallelism
- Vector operations
- Each instruction specifies series of identical operations

Packing

Applicability

Is CPI = 1 for our pipeline?

Remember that CPI is an "Average # cycles/inst

- CPI here is 1, since the average throughput is 1 instruction every cycle.
- What if there are stalls or multi-cycle execution?
- Usually CPI > 1. How close can we get to 1??

Computation of CPI when Pipeline Stalls are Present

$$CPI = CPI_{base}CPI_{stall}$$

$$CPI_{stall} = STALL_{type1} \times freq_{type1} + STALL_{type2} \times freq_{type2}$$

- Start with Base CPI
- Add stalls

Suppose:

- $CPI_{base} = 1$;
- freq_{branch} = 20%, freq_{load} = 30%;
- Suppose branches always cause 1 cycle stall;
- Loads cause a 100 cycle stall 1% of time;
- Then: CPI = $1 + (1 \times 0.20) + (100 \times 0.30 \times 0.01) = 1.5$
- Multicycle? Could treat as:
 - CPI_{stall} = (CYCLES CPI_{base}) x freq_{inst}

FP Loop: Where Are the Hazards?

```
;F0 = vector element
             F0, 0(R1)
Loop:
       LD
             F4, F0, F2
                             ;add scalar from F2
       ADDD
             0(R1), F4
                             ;store result
       SD
       SUBI
             R1, R1, 8
                             ;decrement pointer 8B (DW)
       BNEZ
             R1, Loop
                             ;branch R1 != zero
                             ;delayed branch slot
       NOP
```

Instruction producing result	Instruction using result	Latency in clock cycles
FP ALU op	Another FP ALU op	3
FP ALU op	Store double	2
Load double	FP ALU op	1
Load double	Store double	0
Integer op	Integer op	0

Where are the stalls?

FP Loop Showing Stalls

```
Loop: LD F0, O(R1); F0=vector element
       stall
2
3
       ADDD F4, F0, F2; add scalar in F2
4
       stall
5
       stall
6
       SD
             0(R1), F4 ;store result
       SUBI R1, R1, 8 ; decrement pointer 8B (DW)
8
       BNEZ R1, Loop ;branch R1!=zero
9
       stall
                         ;delayed branch slot
Instruction
               Instruction
                                 Latency in
producing result using result
                                clock cycles
FP ALU op
              Another FP ALU op
FP ALU op Store double
               FP ALU op
Load double
```

9 clocks: Rewrite code to minimize stalls?

Revised FP Loop Minimizing Stalls

```
1 Loop: LD F0,0(R1)
2 stall
3 ADDD F4,F0,F2
4 SUBI R1,R1,8
5 BNEZ R1,Loop ;delayed branch
6 SD 8(R1),F4 ;altered when move past SUBI
```

Swap BNEZ and SD by changing address of SD

```
Instruction Instruction Latency in producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1
```

6 clocks: Unroll loop 4 times code to make faster?

Unroll Loop Four Times (straightforward way)

Rewrite loop to minimize stalls?

```
___1 cycle stall
               F0,0(R1)
  Loop: LD
                             2 cycles stall
2
               F4,F0,F2
       ADDD
3
       SD
               0(R1),F4
                              ;drop SUBI & BNEZ
4
       LD
               F6, -8(R1)
5
       ADDD
               F8,F6,F2
6
       SD
               -8(R1),F8
                              ;drop SUBI & BNEZ
7
               F10, -16(R1)
       LD
8
       ADDD
               F12,F10,F2
9
               -16(R1),F12
       SD
                              ;drop SUBI & BNEZ
10
               F14,-24(R1)
       LD
11
       ADDD
               F16,F14,F2
12
               -24(R1),F16
       SD
13
       SUBI
               R1,R1,#32
                              ;alter to 4*8
14
       BNEZ
               R1,LOOP
15
       NOP
```

 $15 + 4 \times (1+2) = 27$ clock cycles, or 6.8 per iteration Assumes R1 is multiple of 4

Unrolled Loop That Minimizes Stalls

```
1 Loop:LD
               F0, 0(R1)

    What assumptions made

2
               F6, -8(R1)
       LD
                                          when moved code?
3
               F10, -16(R1)
       LD

    OK to move store past

4
               F14, -24(R1)
       LD
                                             SUBI even though
5
       ADDD F4, F0, F2
                                             changes register
6
       ADDD F8, F6, F2

    OK to move loads

7
       ADDD F12, F10, F2
                                             before stores: get right
8
               F16, F14, F2
       ADDD
                                             data?
9
        SD
               0(R1), F4

    When is it safe for

10
               -8(R1), F8
        SD
                                             compiler to do such
11
               -16(R1), F12
        SD
                                             changes?
12
       SUBI R1, R1, #32
13
       BNEZ
             R1, LOOP
14
               8(R1), F16 ; 8-32 = -24
        SD
```

14 clock cycles, or 3.5 per iteration When safe to move instructions?

Getting CPI < 1: Issuing Multiple Instructions/Cycle

- Two main variations: Superscalar and VLIW
- Superscalar: varying no. instructions/cycle (1 to 6)
 - Parallelism and dependencies determined/resolved by HW;
 - IBM PowerPC 604, Sun UltraSparc, DEC Alpha 21164, HP 7100.
- Very Long Instruction Words (VLIW): fixed number of instructions (16); parallelism determined by compiler:
 - pipeline is exposed;
 - compiler must schedule delays to get right result.
- Explicit Parallel Instruction Computer (EPIC) [Intel]
 - 128 bit packets containing 3 instructions (can execute sequentially);
 - Can link 128 bit packets together to allow more parallelism;
 - Compiler determines parallelism;
 - HW checks dependencies and forwards/stalls.

Getting CPI < 1: Issuing Multiple Instructions/Cycle – II

- Superscalar DLX: 2 instructions, 1 FP & 1 anything else
- Fetch 64-bits/clock cycle; Int on left, FP on right
- Can only issue 2nd instruction if 1st instruction issues
- More ports for FP registers to do FP load & FP op in a pair

Type	Pipe	Stage	S					
Int. instruction		IF	ID	EX	MEM	WB		
FPinstruction	1	IF	ID	EX	MEM	WB		
Intinstruction	1		IF	ID	EX	MEM	WB	
FPinstruction	n		IF	ID	EX	MEM	WB	
Int. instruction				IF	ID	EX	MEM	WB
FP instruction				IF	ID	EX	MEM	WB

- 1 cycle load delay expands to 3 instructions in SS
 - instruction in right half can't use it, nor instructions in next slot

Loop Unrolling in Superscalar

	<u>Inte</u>	ger instruction	FP instruction	Clock cycle
Loop:	LD	F0, 9(R1)		1
	LD	F6, -8(R1)		2
	LD	F10, -16(R1)	ADDD F4, F0, F2	3
	LD	F14, -24(R1)	ADDD F8, F6, F2	4
	LD	F18, -32(R1)	ADDD F12, F10, F2	5
	SD	0(R1), F4	ADDD F16, F14, F2	6
	SD	-8(R1), F8	ADDD F20, F18, F2	7
	SD	-16(R1), F12		8
	SD	-24(R1), F16		9
	SUE	BI R1, R1, #40		10
	BNE	Z R1, LOOP		11
	SD	-32(R1), F20		12

- Unrolled 5 times to avoid delays (+1 due to SS)
- 12 clocks, or 2.4 clocks per iteration

Limits of Superscalar

- While Integer/FP split is simple for the HW, get CPI of 0.5 only for programs with:
 - Exactly 50% FP operations;
 - No hazards
- If more instructions issue at same time, greater difficulty of decode and issue.
 - Even 2-scalar ⇒ examine 2 opcodes, 6 register specifiers, and decide if
 1 or 2 instructions can issue.
- VLIW: tradeoff instruction space for simple decoding:
 - The long instruction word has room for many operations;
 - By definition, all the operations the compiler puts in the long instruction word can execute in parallel;
 - e.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch.
 - 16 to 24 bits per field \Rightarrow 7×16 or 112 bits to 7×24 or 168 bits wide.
 - Need compiling technique that schedules across several branches.

Loop Unrolling in VLIW

Memory	Memory	FP	FP	Int. op/	Clock
reference 1	reference 2	operation 1	op. 2	branch	
LD F0,0(R1)	LD F6,-8(R1)				1
LD F10,-16(R1)	LD F14,-24(R1)				2
LD F18,-32(R1)	LD F22,-40(R1)	ADDD F4, F0, F2	ADDD F8,F6	,F2	3
LD F26,-48(R1)		ADDD F12, F10, F2	ADDD F16,F	14,F2	4
		ADDD F20, F18, F2	ADDD F24,F	22,F2	5
SD 0(R1),F4	SD -8(R1),F8	ADDD F28, F26, F2			6
SD -16(R1),F12	SD -24(R1),F16				7
SD -32(R1),F20	SD -40(R1),F24			SUBI R1,R1,#48	8
SD -0(R1),F28				BNEZ R1,LOOP	9

Unrolled 7 times to avoid delays 7 results in 9 clocks, or 1.3 clocks per iteration

Need more registers in VLIW(EPIC => 128int + 128FP)

Summary

- What makes it easy
 - all instructions are the same length
 - just a few instruction formats
 - memory operands appear only in loads and stores
- What makes it hard? HAZARDS!
 - structural hazards: suppose we had only one memory
 - control hazards: need to worry about branch instructions
 - data hazards: an instruction depends on a previous instruction
- Pipelines pass control information down the pipe just as data moves down pipe
- Forwarding/Stalls handled by local control
- Exceptions stop the pipeline

Summary

- Pipelines pass control information down the pipe just as data moves down pipe
- Forwarding/Stalls handled by local control
- Exceptions stop the pipeline
- MIPS I instruction set architecture made pipeline visible (delayed branch, delayed load)
- More performance from deeper pipelines, parallelism

Summary

- Hazards limit performance
 - Structural: need more HW resources
 - Data: need forwarding, compiler scheduling
 - Control: early evaluation & PC, delayed branch, prediction
- Data hazards must be handled carefully:
 - RAW data hazards handled by forwarding
 - WAW and WAR hazards don't exist in 5-stage pipeline
- MIPS I instruction set architecture made pipeline visible (delayed branch, delayed load)
- Exceptions in 5-stage pipeline recorded when they occur, but acted on only at WB (end of MEM) stage
 - Must flush all previous instructions
- More performance from deeper pipelines, parallelism