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Introduction To Pipelining
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Moore’s Law

Moore’s Law says that the number of processors on a chip doubles 
about every 18 months.

Given the data on the following two slides, is this true?
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Intel Architecture
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Intel Architecture
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Intel Architecture
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Pipelining is Natural!

A B C D

• Laundry Example
• Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes
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Sequential Laundry
6 PM Midnight7 8 9 1110

Time

30 40 20 30

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would  laundry take?
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Pipelined Laundry: Start work ASAP
6 PM Midnight7 8 9 1110

• Pipelined laundry takes 3.5 hours for 4 loads 
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Pipelining Lessons

• Pipelining doesn’t help 
latency of single task, it helps 
throughput of entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously using 
different resources

• Potential speedup = Number 
pipe stages

• Unbalanced lengths of pipe 
stages reduces speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

• Stall for Dependences
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The Five Stages of An Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem Wrlw

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file
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Pipelining
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• Improve performance by increasing throughput
• Ideal speedup is number of stages in the pipeline.  

Do we achieve this? 
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Basic Idea

• Single-Cycle Datapath; Colored lines show flow of data backwards.
• What do we need to add to split the datapath into stages?
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Pipelined (Single-Cycle) Datapath
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• Pipeline registers (colored), separate the datapath stages.
• Must be wide enough to store data, control and conditions as they flow 

downstream.
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Why Pipeline? 
One Instruction Completes Each Cycle!
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Can pipelining get us into trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource two different ways 
at the same time

• e.g., combined washer/dryer would be a structural hazard or folder 
busy doing something else (watching TV)

– control hazards: attempt to make a decision before condition is evaluated
• e.g., washing football uniforms and need to get proper detergent 

level; need to see after dryer before next load in
• branch instructions

– data hazards: attempt to use item before it is ready
• e.g., one sock of pair in dryer and one in washer; can’t fold until get 

sock from washer through dryer
• instruction depends on result of prior instruction still in the pipeline

• Can always resolve hazards by waiting
– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards
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Single Memory Is a Structural Hazard

Mem
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Detection is easy in this case! (right half highlight means read, left half write)
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Structural Hazards Limit Performance

• Example: if 1.3 memory accesses per instruction and 
only one memory access per cycle then.

– average CPI ≥ 1.3 ;
– otherwise, resource is more than 100% utilized .
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Control Hazard Solution #1: Stall
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• Stall: wait until decision is clear (conditional branching).
• Impact: 2 lost cycles (i.e., 3 clock cycles per branch 

instruction) => slow.
• Move decision to end of decode.

– save 1 cycle per branch.
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Control Hazard Solution #2: Predict
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• Predict: guess one direction then back up if wrong
• Impact: 0 lost cycles per branch instruction if right, 1 if wrong 

(right - 50% of time)
– Need to “Squash” and restart following instruction if wrong
– Produce CPI on branch of (1 × .5 + 2 × .5) = 1.5
– Total CPI might then be: 1.5 × .2 + 1 × .8 = 1.1 (20% branch)

• More dynamic scheme: history of 1 branch (- 90%)
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Control Hazard Solution #3: Delayed Branch
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Next instruction 
always fetched.

• Delayed Branch: Redefine branch behavior (takes place after next 
instruction) 

• Impact: 0 clock cycles per branch instruction if can find instruction 
to put in “slot” (- 50% of time)

• As launch more instruction per clock cycle, less useful
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Data Hazard on R1

add r1, r2, r3

sub r4, r1, r3

and r6, r1, r7

or  r8, r1, r9

xor r10, r1, r11
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Data Hazard on R1:
• Dependencies “backwards” in time are hazards
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Data Hazard Solution: 
Forwarding (or Bypassing)

• “Forward” result from one stage to another

• “or” OK if define read/write of register-file properly
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Forwarding (or Bypassing): 
What About Loads?

Reg

• Dependencies “backwards” in time are hazards

• Can’t solve with forwarding.
• Must delay/stall instruction dependent on loads

Time (clock cycles)
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Forwarding (or Bypassing
What About Loads

Reg

• Dependencies backwards in time are hazards

• Can’t solve with forwarding: 
• Must delay/stall instruction which dependent on loads
• Then directly forward data to resource requesting it (ALU)
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Summary: Pipelining
• Reduce CPI by overlapping many instructions.

– Average throughput of approximately 1 CPI with fast clock.

• What makes it easy:
– all instructions are the same length;
– just a few instruction formats;
– memory operands appear only in loads and stores.

.
• What makes it hard?

– structural hazards:   suppose we had only one memory;
– control hazards:  need to worry about branch instructions;
– data hazards:  an instruction depends on a previous instruction.

.
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Summary
• Microprogramming is a fundamental concept

– implement an instruction set by building a very simple processor and 
interpreting the instructions

– essential for very complex instructions and when few register transfers 
are possible 

– Control design reduces to Microprogramming
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