Introduction To Pipelining

Chapter 6.1 - Pipeliningl

Moore’s Law

Moore’s Law says that the number of processors on a chip doubles
about every 18 months.

Given the data on the following two slides, is this true?

Chapter 6.1 - Pipeliningl 2

Table 2-2. Key Features of Previous Generations of |1A-32 Processors

Intel Processor Date | Max.Clock | Transis | Register | Ext. Max. Caches
Intro- | Frequency -tors Sizes' Data | Extern.
duced at Intro- per Die Bus Addr.
duction Size? | Space
8086 1978 8 MHz 29 K 16 GP 16 1 MB None
Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB | Note 3
Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3
Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP 32 4 GB L1: KB
80 FPU
Pentium Processor 1993 60 MHz 31 M 32 GP 64 4 GB L1:16KB
80 FPU
Pentium Pro Processor 1995 200 MHz 55 M 32 GP 64 64 GB | L1: 16KB
80 FPU LZ2: 256KB
or 512KB
Pentium 1l Processor 1997 266 MHz M 32 GP 64 64 GB | L1: 32KB
80 FPU L2: 256KB
64 MMX or 512KB
Pentium Il Processor 1999 500 MHz 82 M 32 GP 64 64 GB | L1: 32KB
80 FPU L2: 512KB
64 MMX
128
XXMM
NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose
(GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors

2. Internal data paths that are 2 to 4 times wider than the external data bus for each processor.

Table 2-1. Key Features of Most Recent |A-32 Processors

Intel Date Micro- Clock Transis- | Register |System| Max. On-Die
Processor | Intro- | Architecture | Frequency | tors Per Sizes! Bus |Extern.| Caches?
duced at Intro- Die Band- | Addr.
duction width | Space
Pentium I 1999 |P6 700 MHz 28M GF: 32 Upto | 64 GB |32-KB L1;
and FPU: 80 1.06 256-KB L2
Pentium I MMX: 64 GBls
Xeon XMM: 128
Processors™
Pentium 4 2000 |Intel NetBurst | 1.50 GHz 42 M GP: 32 3.2 64 GB [12K pop
Processor Micro- FPU: 80 GBls Execution
architecture MIX: B4 Trace
XMM: 128 Cache;
8KEB L1;
256-KB L2
Intel Xeon 2001 |Intel NetBurst | 1.70 GHz 42 M GF: 32 3.2 64 GB [12K pop
Processor Micro- FPU: 80 GBls Trace
architecture MMX: 64 Cache;
XMM: 128 8-KB L1;
256-KB L2
Intel Xeon 2002 |Intel NetBurst | 2.20 GHz 5 M GP: 32 3.2 64 GB [12K pop
Processor? Micro- FPU: 80 GB/s Trace
architecture; MK 64 Cache;
Hyper- XMM: 128 8-KB L1,
Threading 512-KB L2
Technology
Intel™ 2002 |Intel NetBurst | 1.60 GHz 108 M GP: 32 3.2 64 GB [12K pop
Xeon™ Micro- FPU: 80 GBls Trace
Processor architecture; MMX: G4 Cache;
Mp* Hyper- XMM: 128 8-KB L1;
Threading 256-KB LZ;
Technology 1-MB L3
NOTES

1. The register size and external data bus size are given in bits.

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2

3. Intel Pentium |1l and Pentium |1l Xeon processors, with advanced transfer cache and built on 0.18 micron
process technology, were introduced in October 1999,

4. Hyper-Threading technology is implemented with two logical processors.

Intel Architecture

System Bus

Bus Unit

¥

2nd Level Cache

=l Frequently used paths

Less frequently used
paths

1st Level Cache
4-way, low latency

On-die, 8-Way E !
i
H Front End
&
Execution
Fetch/Decode =-=-1 Instruction Cache
Microcode ROM
T

: §

BTBs/Branch Prediction

¢

- Execution e Retirement

Out-Of-Order Core

Branch History Update

Figure 2-1. The P6 Processor Micro-Architecture with Advanced Transfer
Cache Enhancement

Chapter 6.1 - Pipeliningl

Intel Architecture

System Bus

Freguently usaed paths
==l L@ss fregquantly used paths
Bus Unit
- |
| 3rd Level Cache I
| Optional, Server Product Only |
- f _______ J
2nd Level Cache .- 15t Level Cache
H-Way 4-way
Front End ¢
v
I Trace Cache Execution -
Fetch/Decode Bl e o e i Retirement
i 3

BTBs/Branch FPrediction

Branch History Update

Figure 2-2. The Intel NetBurst Micro-Architecture

Chapter 6.1 - Pipeliningl

Intel Architecture

|A-32 Processor With Traditional Multiple Processor (MP) System
Hyper- Threading Technology

Logical ASt AS AS AS
Processor
Processor Core Processor Core Processor Core
I1A-32 |A-32
The physical processor Processor Processor | Each processoris a
consists of two logical separate physical
processors that share a processor.
single processor core.
- - | -
System Bus System Bus

T AS—IA-32 Architectural State

Figure 2-3. Comparison of an I1A-32 Processor with Hyper-Threading Technology and a
Traditional Dual Processor System.

Chapter 6.1 - Pipeliningl

Pipelining Is Natural!

Laundry Example

Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

Washer takes 30 minutes
Dryer takes 40 minutes

“Folder” takes 20 minutes

WEOD

Chapter 6.1 - Pipeliningl

~ un 9 —

ﬁ(‘DQ_ﬁO

Sequential Laundry
6 PM 7 8 9 10 11 Midnight

>

| Time

30| 40 |20| 30| 40 |20| 30| 40 |20| 30| 40 |20|

|©

— ®
B (M504,
2 ®
b7
= [
© Hiepar
— .V [
' (D SPh7
» Sequential laundry takes 6 hours for 4 loads
» If they learned pipelining, how long would laundry take?

Chapter 6.1 - Pipeliningl

CSIGANCAN

ﬁ(‘DQﬁO

Pipelined Laundry: Start work ASAP

6 PM

v

38

9

10 11 Midnight

30

=

fr—4

(-

?’

Time

=

(-

17

40 40 40 40 20

gl

(-

G

>

* Pipelined laundry takes 3.5 hours for 4 loads

Chapter 6.1 - Pipeliningl

10

~ 0 9 —

ﬁ(DC)_ﬁO

6 PM

Pipelining Lessons

9

Time

40 40 40 40 20

% (e

7

©
(D)

e

il

TIpAr

=

Chapter 6.1 - Pipeliningl

Pipelining doesn’t help
of single task, it helps
of entire workload

Pipeline rate limited by
pipeline stage

tasks operating
simultaneously using
different resources

Potential speedup =
Unbalanced lengths of pipe
stages reduces speedup
Timeto “

time to “
speedup

" pipeline and
" it reduces

Stall for Dependences

11

The Five Stages of An Instruction

Cycle 1 ECycIeZ

w

Cycle 3 ECycIe4 ECycIeS

Ifetch || Reg/Dec || Exec || Mem || Wr

Ifetch: Instruction Fetch

— Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Read the data from the Data Memory
Wr: Write the data back to the register file

Chapter 6.1 - Pipeliningl 12

Program[J
execution
orderd

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

Y

Program(]
executionl]
order[]

(in instructions)

Iw $1, 100($0)

Time

lw $2, 200($0)

Iw $3, 300($0)

v

Pipelining

2 12 14 16 18
T T T T T T T T T >
Instruction Datal
fetch Reg ALU access Reg
< > Instruction(]] Datal]
8 ns fetch Reg ALU access Reg
< 3 >l Instruction
ns fetch
4__ 'Rl __>
8 ns
2 4 6 8 10 12 14
T T T I I T T >
Instruction Datal]
fetch Reg ALU acgess Reg
Instruction(Datal]
2 ns fetch Reg ALU access Reg
<+—¥|nstruction] Datall
2 ns fetch Reg ALU access Reg

«— P Pt P e »
2 ns 2ns 2ns 2 ns 2 ns

* Improve performance by increasing throughput

« ldeal speedup is number of stages in the pipeline.
Do we achieve this?

Chapter 6.1 - Pipeliningl 13

Basic Idea

IF: Instruction fetch ID: Instruction decode/[EX: Execute/O]
register file read address calculation

MEM: Memory access | WB: Write back

Add \E
Add
4 Add result
Shift
left 2

Read0
PC Address register 1 Readl
data 1 "

Readl
register 2 Zero
Instruction ~Registers Read ALU aALup
Write[l data 2 0 result Address %Z?g 1
Instruction] register w Datal] M
" u
memory N \éVrlteD X memory X
ata p—>| 1 0
Write

data
16 . 32
\ SignO| \
| @ |

 Single-Cycle Datapath; Colored lines show flow of data backwards.
 What do we need to add to split the datapath into stages?

Chapter 6.1 - Pipeliningl 14

r

.

64 bits

Plpellned (Single-Cyc

128 bits

f

[97 bits

V

Address

InstructionO

Instruction

memory

ReadO
register 1 Read
Read data 1
register 2

Registers Readl
WriteO data 2
register
WriteO
data

EXéVEM

result
Shift!
left 2

16) 32
\ SignO

Zero
ALU ALU

e) Datapath

~ 64bits

MEM/WB

0
Address

M result

u

u /

1

| Write

data

\ @ \

Read[ll

Datall
memory

data

* Pipeline reqgisters (colored), separate the datapath stages.
 Must be wide enough to store data, control and conditions as they flow

downstream.

Chapter 6.1 - Pipeliningl

15

Why Pipeline?
One Instruction ComLJIetes Each Cycle!

Time (clock cycles)

|nStO Im IReg—%/

Dm :
N > i =
Inst 1 Im IRGQ_% Dm | Reg

Inst 2 Im I g_% :Dm | Reg
Inst 3 | .IR ;}

YInst4 1 imige L_(%
: : : F g :Dm Reg

Chapter 6.1 - Pipeliningl

>

s~ N O —

- 0 a-=0

Can pipelining get us into trouble?

 Yes: Pipeline Hazards

— structural hazards: attempt to use the same resource two different ways
at the same time

e e.g., combined washer/dryer would be a structural hazard or folder
busy doing something else (watching TV)

—control hazards: attempt to make a decision before condition is evaluated

* e.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

e Dbranch instructions
— data hazards: attempt to use item before it is ready

e e.g., one sock of pair in dryer and one in washer; can’t fold until get
sock from washer through dryer

 instruction depends on result of prior instruction still in the pipeline
e Can always resolve hazards by waiting
— pipeline control must detect the hazard
—take action (or delay action) to resolve hazards

Chapter 6.1 - Pipeliningl 17

Single Memory Is a Structural Hazard

| Iw needs memory here
Time (clock gz?cles)

>

Regé

Mem Reg
Mem-:I Reg > Reg

Instr 3 el [reg

EMem:

Instr 1

=~ N O —

\v/

il

ﬁCDQ_ﬁO

\v/

vInstr 4

Instruction fetch
needs memory here

Detection is easy in this case! (right half highlight means read, left half write)
Chapter 6.1 - Pipeliningl 18

gMem: §>§Mem§Reg

Structural Hazards Limit Performance

« Example: if 1.3 memory accesses per instruction and
only one memory access per cycle then.

—average CPl > 1.3;
— otherwise, resource is more than 100% utilized .

Chapter 6.1 - Pipeliningl

19

Control Hazard Solution #1: Stall

Time (clock cycles)

I

n

. |Add
r.
. Beq
4 |Load
e

I

\ 4

Mem

Reg>E iMem

Reg

Mem.él.' RE

i~ Lost "\
: \Jpotential :

: [Reg

Reg

« Stall: wait until decision is clear (conditional branching).

* Impact: 2 lost cycles (i.e., 3 clock cycles per branch
instruction) => slow.

e Move decision to end of decode.
—save 1 cycle per branch.

Chapter 6.1 - Pipeliningl

20

Control Hazard Solution #2: Predict

| Time (clock cycles)
n . : >
S Mem.i[Reg z
(|Add LAY
r' Beq [Merf RE fre]
0 _
(; Load Mefm :IMem Reg
e :
i
v

e Predict: guess one direction then back up if wrong
* Impact: 0 lost cycles per branch instruction if right, 1 if wrong
(right - 50% of time)
—Need to “Squash” and restart following instruction if wrong
—Produce CPlon branchof (1 x.5+2x.5)=1.5
— Total CPI might then be: 1.5 x .2+ 1 x .8 = 1.1 (20% branch)

« More dynamic scheme: history of 1 branch (- 90%)
Chapter 6.1 - Pipeliningl 21

Control Hazard Solution #3: Delayed Branch

Time (clock cycles)

|
n : :
s Memli| Reg [
o |Add TR
r. : :
Be MemE
o g
r .
4 | Misc
e
r | Load :
¥ Next instruction
always fetched.

« Delayed Branch: Redefine branch behavior (takes place after next

Instruction)

* Impact: 0 clock cycles per branch instruction if can find instruction
to put in “slot” (- 50% of time)

 As launch more instruction per clock cycle, less useful

Chapter 6.1 - Pipeliningl 22

Data Hazard on R1

add rl1, r2, r3
sub r4, ri1, r3
and r6, rl, r7
or r8, rl, r9

xor rl10, ri, rill

Chapter 6.1 - Pipeliningl

23

o~ 0 O —

ﬁCDQ_ﬁO

Data Hazard on R1:

e Dependencies “backwards” in time are hazards

Time (clock cycles)

xor rl10,
v

add r1,r2,r3

DR nE ¢

frm

.;I.'E{eg E

(=

sub r4,rl,r3
and re,rl,r7

or r8,r1,r9

ril

HIm

+ Rp9)

Im

Reg|:

D

\V/

D

4

{1m [|Rpg

\v/

Reg

N

Chapter 6.1 - Pipeliningl

L '

24

Data Hazard Solution:
Forwarding (or Bypassing)

e “Forward” result from one stage to another
Time (clock cycles) : _ _

| §|mre: E

,(add r1,r2,r3 | I f{Reof
> [subrd,rir3 "

" land r6,r1,r7 '

O

4 lor r8,r1,r9

e

"~ ixorrl0,ri,ril

“or” OK if define read/write of register-file properly
Chapter 6.1 - Pipeliningl 25

Forwarding (or Bypassing):
What About Loads?

» Dependencies “backwards” in time are hazards

Time (clock cycles)

wrl, 0(r2) [T [fRed[:

: [Reg

subr4,rl, r3 |m .1' ol

v

+ Can’t solve with forwarding.: -
» Must delay/stall instruction dependent on loads

Chapter 6.1 - Pipeliningl

Forwarding (or Bypassing
What About Loads

» Dependencies backwards in time are hazards

Time (clock cycles) : :
[IDIRi \E | _ME: W T

wrl, 0(r2) [JReo]’

VSUb r4, ﬂ, r3 Im IR:Q_%E,{ meg

e Can’t solve with for\éyvardigng: : :
* Must delay/stall instruction which dependent on loads
* Then directly forward data to resource requesting it (ALU)

Chapter 6.1 - Pipeliningl 27

Summary: Pipelining

« Reduce CPI by overlapping many instructions.
— Average throughput of approximately 1 CPI with fast clock.

« What makes it easy:
— all instructions are the same length;
—just a few instruction formats;
— memory operands appear only in loads and stores.

« What makes it hard?
— structural hazards: suppose we had only one memory;
—control hazards: need to worry about branch instructions;
—data hazards: an instruction depends on a previous instruction.

Chapter 6.1 - Pipeliningl

28

Summary

Microprogramming is a fundamental concept

—implement an instruction set by building a very simple processor and
Interpreting the instructions

—essential for very complex instructions and when few register transfers
are possible

— Control design reduces to Microprogramming

Chapter 6.1 - Pipeliningl 29

	Moore’s Law
	Pipelining is Natural!
	Sequential Laundry
	Pipelined Laundry: Start work ASAP
	Pipelining Lessons
	The Five Stages of An Instruction
	Pipelining
	Basic Idea
	Pipelined (Single-Cycle) Datapath
	Why Pipeline? One Instruction Completes Each Cycle!
	Can pipelining get us into trouble?
	Single Memory Is a Structural Hazard
	Structural Hazards Limit Performance
	Control Hazard Solution #1: Stall
	Control Hazard Solution #2: Predict
	Control Hazard Solution #3: Delayed Branch
	Data Hazard on R1
	Data Hazard on R1:
	Data Hazard Solution: Forwarding (or Bypassing)
	Forwarding (or Bypassing): What About Loads?
	Forwarding (or BypassingWhat About Loads
	Summary: Pipelining
	Summary

