
Chapter 6.1 - Pipelining1 1

Introduction To Pipelining

Chapter 6.1 - Pipelining1 2

Moore’s Law

Moore’s Law says that the number of processors on a chip doubles
about every 18 months.

Given the data on the following two slides, is this true?

Chapter 6.1 - Pipelining1 3

Chapter 6.1 - Pipelining1 4

Chapter 6.1 - Pipelining1 5

Intel Architecture

Chapter 6.1 - Pipelining1 6

Intel Architecture

Chapter 6.1 - Pipelining1 7

Intel Architecture

Chapter 6.1 - Pipelining1 8

Pipelining is Natural!

A B C D

• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

Chapter 6.1 - Pipelining1 9

Sequential Laundry
6 PM Midnight7 8 9 1110

Time

30 40 20 30

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

40 20 30 40 20 30 40 20
T
a
s
k

O
r
d
e
r

Chapter 6.1 - Pipelining1 10

Pipelined Laundry: Start work ASAP
6 PM Midnight7 8 9 1110

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

Time

30 40 40 40 40 20
T
a
s
k

O
r
d
e
r

Chapter 6.1 - Pipelining1 11

Pipelining Lessons

• Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously using
different resources

• Potential speedup = Number
pipe stages

• Unbalanced lengths of pipe
stages reduces speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

• Stall for Dependences

A

B

C

D

6 PM 7 8 9
Time

30 40 40 40 40 20
T
a
s
k

O
r
d
e
r

Chapter 6.1 - Pipelining1 12

The Five Stages of An Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem Wrlw

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file

Chapter 6.1 - Pipelining1 13

Pipelining

Instruction�
fetch Reg ALU Data�

access Reg

8 ns Instruction�
fetch Reg ALU Data�

access Reg

8 ns
Instruction�

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program�
execution�
order�
(in instructions)

Instruction�
fetch Reg ALU Data�

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction�

fetch Reg ALU Data�
access Reg

2 ns
Instruction�

fetch Reg ALU Data�
access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

�

Program�
execution�
order�
(in instructions)

• Improve performance by increasing throughput
• Ideal speedup is number of stages in the pipeline.

Do we achieve this?

Chapter 6.1 - Pipelining1 14

Basic Idea

• Single-Cycle Datapath; Colored lines show flow of data backwards.
• What do we need to add to split the datapath into stages?

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

Instruction

M�
u�
x

0

1

Add

PC

0Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
dataAddress

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/�
register file read

EX: Execute/�
address calculation

MEM: Memory access WB: Write back

Chapter 6.1 - Pipelining1 15

Pipelined (Single-Cycle) Datapath

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M�
u�
x

0

1

Add

PC

0Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

1

ALU�
result

M�
u�
x

ALU
Zero

ID/EX

Data�
memory

Address

64 bits 128 bits 97 bits 64bits

• Pipeline registers (colored), separate the datapath stages.
• Must be wide enough to store data, control and conditions as they flow

downstream.

Chapter 6.1 - Pipelining1 16

Why Pipeline?
One Instruction Completes Each Cycle!

Time (clock cycles)

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

I
n
s
t
r.

O
r
d
e
r

Inst 0

Inst 1

Inst 2
Inst 3

Inst 4

Can pipelining get us into trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource two different ways
at the same time

• e.g., combined washer/dryer would be a structural hazard or folder
busy doing something else (watching TV)

– control hazards: attempt to make a decision before condition is evaluated
• e.g., washing football uniforms and need to get proper detergent

level; need to see after dryer before next load in
• branch instructions

– data hazards: attempt to use item before it is ready
• e.g., one sock of pair in dryer and one in washer; can’t fold until get

sock from washer through dryer
• instruction depends on result of prior instruction still in the pipeline

• Can always resolve hazards by waiting
– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards

Chapter 6.1 - Pipelining1 17

Chapter 6.1 - Pipelining1 18

Single Memory Is a Structural Hazard

Mem

Time (clock cycles)

Instr 3

Instr 4

I
n
s
t
r.

O
r
d
e
r

Load

Instr 1

Instr 2

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

L
UReg Mem Reg

A
L

UMem Reg Mem Reg

Detection is easy in this case! (right half highlight means read, left half write)

lw needs memory here

Instruction fetch
needs memory here

Chapter 6.1 - Pipelining1 19

Structural Hazards Limit Performance

• Example: if 1.3 memory accesses per instruction and
only one memory access per cycle then.

– average CPI ≥ 1.3 ;
– otherwise, resource is more than 100% utilized .

Chapter 6.1 - Pipelining1 20

Control Hazard Solution #1: Stall
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

L
UReg Mem RegMem

Lost
potential

• Stall: wait until decision is clear (conditional branching).
• Impact: 2 lost cycles (i.e., 3 clock cycles per branch

instruction) => slow.
• Move decision to end of decode.

– save 1 cycle per branch.

Chapter 6.1 - Pipelining1 21

Control Hazard Solution #2: Predict
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

• Predict: guess one direction then back up if wrong
• Impact: 0 lost cycles per branch instruction if right, 1 if wrong

(right - 50% of time)
– Need to “Squash” and restart following instruction if wrong
– Produce CPI on branch of (1 × .5 + 2 × .5) = 1.5
– Total CPI might then be: 1.5 × .2 + 1 × .8 = 1.1 (20% branch)

• More dynamic scheme: history of 1 branch (- 90%)

Chapter 6.1 - Pipelining1 22

Control Hazard Solution #3: Delayed Branch

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

Next instruction
always fetched.

• Delayed Branch: Redefine branch behavior (takes place after next
instruction)

• Impact: 0 clock cycles per branch instruction if can find instruction
to put in “slot” (- 50% of time)

• As launch more instruction per clock cycle, less useful

Chapter 6.1 - Pipelining1 23

Data Hazard on R1

add r1, r2, r3

sub r4, r1, r3

and r6, r1, r7

or r8, r1, r9

xor r10, r1, r11

Chapter 6.1 - Pipelining1 24

Data Hazard on R1:
• Dependencies “backwards” in time are hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Chapter 6.1 - Pipelining1 25

Data Hazard Solution:
Forwarding (or Bypassing)

• “Forward” result from one stage to another

• “or” OK if define read/write of register-file properly

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Chapter 6.1 - Pipelining1 26

Forwarding (or Bypassing):
What About Loads?

Reg

• Dependencies “backwards” in time are hazards

• Can’t solve with forwarding.
• Must delay/stall instruction dependent on loads

Time (clock cycles)

lw r1, 0(r2)

sub r4, r1, r3

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm

A
L

UIm Reg Dm Reg

Chapter 6.1 - Pipelining1 27

Forwarding (or Bypassing
What About Loads

Reg

• Dependencies backwards in time are hazards

• Can’t solve with forwarding:
• Must delay/stall instruction which dependent on loads
• Then directly forward data to resource requesting it (ALU)

Time (clock cycles)

lw r1, 0(r2)

sub r4, r1, r3

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm
A

L
UIm Reg Dm RegStall

Chapter 6.1 - Pipelining1 28

Summary: Pipelining
• Reduce CPI by overlapping many instructions.

– Average throughput of approximately 1 CPI with fast clock.

• What makes it easy:
– all instructions are the same length;
– just a few instruction formats;
– memory operands appear only in loads and stores.

.
• What makes it hard?

– structural hazards: suppose we had only one memory;
– control hazards: need to worry about branch instructions;
– data hazards: an instruction depends on a previous instruction.

.

Chapter 6.1 - Pipelining1 29

Summary
• Microprogramming is a fundamental concept

– implement an instruction set by building a very simple processor and
interpreting the instructions

– essential for very complex instructions and when few register transfers
are possible

– Control design reduces to Microprogramming

	Moore’s Law
	Pipelining is Natural!
	Sequential Laundry
	Pipelined Laundry: Start work ASAP
	Pipelining Lessons
	The Five Stages of An Instruction
	Pipelining
	Basic Idea
	Pipelined (Single-Cycle) Datapath
	Why Pipeline? One Instruction Completes Each Cycle!
	Can pipelining get us into trouble?
	Single Memory Is a Structural Hazard
	Structural Hazards Limit Performance
	Control Hazard Solution #1: Stall
	Control Hazard Solution #2: Predict
	Control Hazard Solution #3: Delayed Branch
	Data Hazard on R1
	Data Hazard on R1:
	Data Hazard Solution: Forwarding (or Bypassing)
	Forwarding (or Bypassing): What About Loads?
	Forwarding (or BypassingWhat About Loads
	Summary: Pipelining
	Summary

