
Integer Multiplication
Integer Division

Floating Point Numbers

Overview

Multiplying Hardware & Software

Dividing Hardware & Software

Introduction to Floating Point

Doing Floating Point Arithmetic

MIPS Floating Point Instructions

The Dangers of Floating Point

MULTIPLY
• Paper and pencil example (unsigned):

1000 Multiplicand U
1001 Multiplier M
1000

0000
0000

× 1000
01001000 Product P

• Binary multiplication is easy:
– Pi == 0 ⇒ place all 0's (0 × multiplicand)
– Pi == 1 ⇒ place a copy of U (1 × multiplicand)
– Shift the multiplicand left before adding to product
– Could we multiply via add, sll?

Multiply by Power of 2 via Shift Left

• Number representation: B = b31b30 ••• b2b1b0

B = b31×231+ b30×230 + ⋅⋅⋅ + b2×22 + b1×21 + b0×20

• What if multiply B by 2?
B×2 = b31×231+1+b30×230+1 + ⋅⋅⋅ + b2×22+1+ b1×21+1 + b0×2

= b31×232 + b30×231 + ⋅⋅⋅ + b2×23+ b1×22 + b0×21

• What if shift B left by 1?
B << 2 = b30×231 + b29×230 + ⋅⋅⋅ + b2×23 + b1×22 + b0×21

• Multiply by 2i often replaced by shift left i

Multiply in MIPS

• Can multiply variable by any constant using MIPS sll and add
instructions:

i' = i * 10; /* assume i: $s0 */

sll $t0, $s0, 3 # i * 23
add $t1, $zero, $t0
sll $t0, $s0, 1 # i * 21
add $s0, $t1, $t0

• MIPS multiply instructions: mult, multu

•mult $t0, $t1
– puts 64-bit product in pair of new registers hi, lo; copy to $n by
mfhi, mflo

– 32-bit integer result in register lo

M
I
P
S

Is Shift Right Arith. ≡ Divide by 2?
• Shifting right by n bits would seem to be the same as dividing by 2n

• Problem is signed integers
– Zero fill (srl) is wrong for negative numbers

• Shift Right Arithmetic (sra); sign extends (replicates sign bit); but
does it work?

• Divide -5 by 4 via sra 2; result should be -1
1111 1111 1111 1111 1111 1111 1111 1011
1111 1111 1111 1111 1111 1111 1111 1110

• = -2, not -1; Off by 1, so doesn’t work

• Is it always off by 1??

Multiply Algorithm Version 1

1. Test
Multiplier0

32nd
repetition?

3. Shift the M’plier register right 1 bit

2. Shift the M’cand register left 1 bit

1a. Add multiplicand to product &
place the result in Product register

Done
Yes: 32 repetitions

No: < 32 repetitions

Multiplier0 = 0Multiplier0 = 10010
x 0011

00000110

Product Multiplier Multiplicand
0000 0000 0011 0000 0010
0000 0010 0001 0000 0100
0000 0110 0000 0000 1000
0000 0110

Multiply Algorithm
Version 2

3. Shift the Multiplier register right 1 bit.

Done
Yes: 32 repetitions

2. Shift the Product register right 1 bit.

No: < 32 repetitions

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to the left half of product &
place the result in the left half of Product register

32nd
repetition?

Start

0000 0000 0011 0010
1: 0010 0000 0011 0010
2: 0001 0000 0011 0010
3: 0001 0000 0001 0010
1: 0011 0000 0001 0010
2: 0001 1000 0001 0010
3: 0001 1000 0000 0010
1: 0001 1000 0000 0010
2: 0000 1100 0000 0010
3: 0000 1100 0000 0010
1: 0000 1100 0000 0010
2: 0000 0110 0000 0010
3: 0000 0110 0000 0010

0000 0110 0000 0010

Product Multiplier Multiplicand

Chapter 4.2 - Mult, Div, Float 9

MULTIPLY HARDWARE Version 2

• 32-bit Multiplicand reg, 32 -bit ALU, 64-bit
Product reg, 32-bit Multiplier reg

Product

Multiplier

Multiplicand

32-bit ALU
Shift Right

Write
Control

32 bits

32 bits

64 bits

Shift Right

Multiply Algorithm Version 3

Multiplicand Product
0010 0000 0011

Done
Yes: 32 repetitions

2. Shift the Product register right 1 bit.

No: < 32 repetitions

1. Test
Product0

Product0 = 0Product0 = 1

1a. Add multiplicand to the left half of product &
place the result in the left half of Product register

32nd
repetition?

Start

Chapter 4.2 - Mult, Div, Float 11

MULTIPLY HARDWARE Version 3
• 32-bit Multiplicand reg, 32 -bit ALU, 64-bit

Product reg, (0-bit Multiplier reg)

Product (Multiplier)

Multiplicand

32-bit ALU

Write
Control

32 bits

64 bits

Shift Right

Observations on Multiply Version 3

• 2 steps per bit because Multiplier & Product combined
• MIPS registers Hi and Lo are left and right half of Product
• Gives us MIPS instruction MultU
• How can you make it faster?
• What about signed multiplication?

– easiest solution is to make both positive & remember whether to
complement product when done (leave out the sign bit, run for 31
steps)

– apply definition of 2’s complement
• need to sign-extend partial products and subtract at the end

– Booth’s Algorithm is elegant way to multiply signed numbers
using same hardware as before and save cycles

• can handle multiple bits at a time

Chapter 4.2 - Mult, Div, Float 13

Motivation for Booth’s Algorithm
• Example 2 x 6 = 0010 x 0110:

0010
x 0110
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0100 add (1 in multiplier)
+ 0000 shift (0 in multiplier)

00001100

• ALU with add or subtract gets same result in more than one way:
6 = – 2 + 8
0110 = – 00010 + 01000 = 11110 + 01000

• For example
• 0010

x 0110
0000 shift (0 in multiplier)

– 0010 sub (first 1 in multpl.)
. 0000 shift (mid string of 1s)
. + 0010 add (prior step had last
1) 00001100

Chapter 4.2 - Mult, Div, Float 14

Booth’s Algorithm

0 1 1 1 1 0
beginning of runend of run

middle of run

Current Bit Bit to the Right Explanation Example Op
1 0 Begins run of 1s 0001111000 sub
1 1 Middle of run of 1s 0001111000 none
0 1 End of run of 1s 0001111000 add
0 0 Middle of run of 0s 0001111000 none

Originally for Speed (when shift was faster than add)
• Replace a string of 1s in multiplier with an initial subtract when

we first see a one and then later add for the bit after the last one

–1
+ 10000
01111

Chapter 4.2 - Mult, Div, Float 15

Booths Example (2 x 7)
Operation Multiplicand Product next?

0. initial value 0010 0000 0111 0 10 -> sub
1a. P = P - m 1110 + 1110

1110 0111 0 shift P (sign ext)

1b. 0010 1111 0011 1 11 -> nop, shift

2. 0010 1111 1001 1 11 -> nop, shift

3. 0010 1111 1100 1 01 -> add

4a. 0010 + 0010
0001 1100 1 shift

4b. 0010 0000 1110 0 done

Chapter 4.2 - Mult, Div, Float 16

Booths Example (2 x -3)

1a. P = P - m 1110 + 1110
1110 1101 0 shift P (sign ext)

1b. 0010 1111 0110 1 01 -> add
+ 0010

2a. 0001 0110 1 shift P

2b. 0010 0000 1011 0 10 -> sub
+ 1110

3a. 0010 1110 1011 0 shift

3b. 0010 1111 0101 1 11 -> nop
4a 1111 0101 1 shift

4b. 0010 1111 1010 1 done

Operation Multiplicand Product next?

0. initial value 0010 0000 1101 0 10 -> sub

MIPS logical instructions
• Instruction Example Meaning Comment
• and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
• or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
• xor xor $1,$2,$3 $1 = $2 ⊕ $3 3 reg. operands; Logical XOR
• nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
• and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
• or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
• xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant
• shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
• shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
• shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
• shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
• shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
• shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by

variable

Combinational Shifter from MUXes
1 0sel

A B

D

Basic Building Block

8-bit right shifter

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7

• What comes in the MSBs?

• How many levels for 32-bit shifter?

• What if we use 4-1 Muxes ?

General Shift Right Scheme using 16 bit example

S 0
(0,1)

S 1
(0, 2)

S 3
(0, 8)

S 2
(0, 4)

If added Right-to-left connections could
support Rotate (not in MIPS but found in ISAs)

Funnel Shifter
Instead Extract 32 bits of 64.

XY

R• Shift A by i bits
(sa= shift right amount)

• Logical: Y = 0, X=A, sa=i
• Arithmetic? Y = _, X=_, sa=_
• Rotate? Y = _, X=_, sa=_
• Left shifts? Y = _, X=_, sa=_

Shift Right

Shift Right

32 32

32

Y X

R

Barrel Shifter
Technology-dependent solutions: transistor per switch

D3

D2

D1

A6

A5

A4

A3 A2 A1 A0

SR0SR1SR2SR3

D0

Divide: Paper & Pencil

1001 Quotient
Divisor 1000 1001010 Dividend

–1000
10
101
1010
–1000

10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient bit on
each step

Binary => 1 * divisor or 0 * divisor
Dividend = Quotient x Divisor + Remainder

=> | Dividend | = | Quotient | + | Divisor |
3 versions of divide, successive refinement

Divide Algorithm
•Takes n+1 steps for n-bit Quotient / Rem.

Remainder Quotient Divisor

0000 0111 00000 0010 0000

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

3. Shift the Divisor register right 1 bit.

Done

Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

No: < n+1 repetitions

Chapter 4.2 - Mult, Div, Float 24

Integer Division
– ALU, Divisor, and Remainder registers: 64bit;
– Quotient register: 32 bits;
– 32 bit divisor starts in left ½ of Divisor reg. and it is shifted right 1 on

each step
– Remainder register initialized with dividend

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits

Chapter 4.2 - Mult, Div, Float 25

Divide Algorithm Example
Remainder Quotient Divisor

0000 0111 00000 0010 0000
1: 1110 0111 00000 0010 0000
2: 0000 0111 00000 0010 0000
3: 0000 0111 00000 0001 0000
1: 1111 0111 00000 0001 0000
2: 0000 0111 00000 0001 0000
3: 0000 0111 00000 0000 1000
1: 1111 1111 00000 0000 1000
2: 0000 0111 00000 0000 1000
3: 0000 0111 00000 0000 0100
1: 0000 0011 00000 0000 0100
2: 0000 0011 00001 0000 0100
3: 0000 0011 00001 0000 0010
1: 0000 0001 00001 0000 0010
2: 0000 0001 00011 0000 0010
3: 0000 0001 00011 0000 0010

Answer:
Quotient = 3
Remainder = 1

Divide Algorithm
Quotient = 0; 32 bit divisor starts in left

½ of Divisor reg. and it is shifted
right 1 on each step; Remainder =
dividend;

If Remainder < 0, we need to add Divisor
back to dividend; else 1 is generated
for Quotient;

Shift Divisor right 1 bit;
Repeat 33 times

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

3. Shift the Divisor register right 1 bit.

Done

Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

No: < n+1 repetitions

Let $s0 = Dividend,
$s1 = Divisor,
$s2 = Remainder,
$s3 = Quotient,
$s4 = Repetitions

Start:
move $s2, $s0

Loop:
sub $s2, $s2, $s1 # Step 1
bltz $s2, Label2b
sll $s3, $s3, 1 # Step 2a
ori $s3, $s3, 1
j Label3

Label2b:
add $s2, $s2, $s1 # Step 2b

sll $s3, $s3, 1
Label3:

slr $s1, $s1, 1 # Step 3
addi $s4, $s4, -1 # Reps.
Bgtz $s4, Loop

What is in a number?

• What can be represented in N bits?

• Unsigned 0 to 2N - 1

• 2s Complement - 2N-1 to 2N-1 - 1

• 1s Complement -2N-1+1 to 2N-1-1

• Excess M 2 -M to 2 N - M - 1

• (E = e + M)

• BCD 0 to 10N/4 - 1

• But, what about?
• very large numbers?

9,349,398,989,787,762,244,859,087,678
• very small number? 0.0000000000000000000000045691
• rationals 2/3
• irrationals
• transcendentals e,

2

Recall Scientific Notation

6.02 x 1023
exponent

radix (base)

Mantissa

decimal point

(sign, magnitude) (sign, magnitude)

• Normal form:
no leading 0s (digit 1 to left of decimal point)

• Alternatives to representing 1/1,000,000,000
Normalized: 1.0 × 10-9

Not normalized: 0.1 × 10-8, 10.0 × 10-10

Scientific Notation for Binary Numbers

1.0 x 2-1
exponent

radix (base)

Mantissa

binary point

(sign, magnitude) (sign, magnitude)

• Computer arithmetic that supports it called floating point, because it
represents numbers where binary point is not fixed, as it is for
integers

• Declare such a variable in C as float (double, long double)

• Normalized form: 1.xxxxxxxxxx2 × 2yyyy
2

Simplifies data exchange, increases accuracy
410 == 1.0 X 22, 810 == 1.0 X 23

Single Precision FP Representation
• Start with a single word (32-bits)

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits

° Meaning: (-1)S x Mantissa x 2E

° Can now represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

° Relationship between Mantissa and Significand bits?
Between E and Exponent?

° In C type float

Floating Point Number Representation

• What if result too large? (> 2.0x1038)
Overflow!
Overflow ⇔ Exponent larger than can be represented in

8-bit Exponent field

• What if result too small? (>0, < 2.0x10-38)
Underflow!
Underflow ⇔ Negative Exponent too small

• How to reduce chances of overflow or underflow?

Double Precision FP Representation
• Next Multiple of Word Size (64 bits)

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits
° Double Precision (vs. Single Precision)

1. C variable declared as double
2. Represent numbers almost as small as 2.0 x 10-308 to almost

as large as 2.0 x 10308

3. But primary advantage greater accuracy due to larger
significand

4. There is also long double version (16 bytes)

MIPS follows IEEE 754 F.P. Standard
• To pack more bits, make leading 1 of mantissa implicit for

normalized numbers
1 + 23 bits single, 1 + 52 bits double
0 has no leading 1, so reserve exponent value 0 just for number 0.0
Meaning: (almost correct)

(-1)S × (1 + Significand) × 2Exponent,

where 0 < Significand < 1

• If label significand bits left-to-right as s1, s2, s3, ... then value is:

(-1)S × (1+(s1×2-1) + (s2×2-2) + (s2×2-3) + ⋅⋅⋅) × 2Exponent

Representing Exponent
• Want to compare Fl. Pt. numbers as if they were integers, to help

in sorting
Sign first part of number
Exponent next, so bigger exponent ⇒ bigger number

1.1 × 1020 > 1.9 × 1010

• What About Negative Exponents?
Use 2’s comp? 1.0 × 2-1 vs. 1.0 × 2+1 (1/2 v. 2)

This notation using integer compare of
1/2 vs. 2 makes 1/2 > 2!

Doesn’t work!

0 1111 1111 000 0000 0000 0000 0000 0000
0 0000 0001 000 0000 0000 0000 0000 0000

1/2
2

Representing Exponent

1/2 0 0111 1110 000 0000 0000 0000 0000 0000
0 1000 0000 000 0000 0000 0000 0000 00002

• Instead, pick notation 0000 0000 as most negative,
and 1111 1111 as most positive

• 1.0 x × 2-1 vs. 1.0 x ×2+1 (1/2 v. 2)

° Called Biased Notation, where bias is number subtracted
to get real number
IEEE 754 uses bias of 127 for single precision
Representation (Finally, the truth!):

(-1)S × (1 + Significand) x 2(Exponent - 127)

1023 is bias for double precision

Example: Converting Decimal to FP

• Show MIPS representation of -0.75
(show exponent in decimal to simplify)

-0.75 = -3/4 = -3/22

-11two/22 = -11two × 2-2 = -0.11two × 20

Normalized to -1.1two × 2-1

(-1)S × (1 + Significand) × 2(Exponent-127)

(-1)1 × (1 + .100 0000 ... 0000) × 2(126-127)

S = 1; Exponent = 126; Significand = 100 ... 0002

1 0111 1110 100 0000 0000 0000 0000 0000

Example: Converting FP to Decimal

• Sign S = 0 ⇒ positive

• Exponent E :
0110 1000two = 104ten

Bias adjustment: 104 - 127 = -13

• Mantissa:
1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1+ (5,587,778 / 223)
= 1+ (5,587,778 / 8,388,608) = 1.0 + 0.666115

• Represents: 1.666115ten × 2-13 ~ 2.034 × 10-4

0 0110 1000 101 0101 0100 0011 0100 0010

Continuing Example: Binary to ???
• Convert 2’s Complement to Integer:

229 + 228 + 226 + 222 + 220 + 218 + 216 + 214 + 29 + 28 + 26 + 21

= 878,003,010ten

• Convert Binary to Instruction:

• Convert Binary to ASCII:

0011 0100 0101 0101 0100 0011 0100 0010

0011 0100 0101 0101 0100 0011 0100 00100011 0100 0101 0101 0100 0011 0100 0010
4 U C B

0011 0100 0101 0101 0100 0011 0100 0010
13 2 1721821

ori $s5, $v0, 17218

Principle: Type not associated with Data
• What does this bit pattern mean:

2.034*10-4? 878,003,010? "4UCB"?
ori $s5, $v0, 17218?

• Data can be anything; operation of instruction that
accesses operand determines its type!

Side-effect of stored program concept: instructions
stored as numbers

• Power/danger of unrestricted addresses/ pointers: use
ASCII as Fl. Pt., instructions as data, integers as
instructions, ...

0011 0100 0101 0101 0100 0011 0100 0010

How to Order Floating Point Fields?
• "Natural": Sign, Significand, Exponent?

Problem: If want to sort using integer operations, won’t work:
1.0 x 220 vs. 1.1 x 210 ; storing significant first makes FP
comparisons impossible to carry out correctly via integer
comparisons. Second FP looks bigger!

0 10000 10100 0 11000 01010

° Exponent, Sign, Significand?
Need to get sign first, since negative < positive

° Therefore order is Sign Exponent Significant

How To Convert Decimal to Binary

• How convert 10.4ten to binary?

• Deal with fraction & whole parts separately:

10 ¸ 2 = 5 remainder 0
5 ¸ 2 = 2 remainder 1
2 ¸ 2 = 1 remainder 0
1 ¸ 2 = 0 remainder 1

.4 x 2 = 0.8

.8 x 2 = 1.6

.6 x 2 = 1.2

.2 x 2 = 0.4

.4 x 2 = 0.8 10.4ten = 1010.0110two

Do It Yourself

• Convert 10.4ten to single precision floating point

• Recall that:

10.4ten is 1010.0110two

Do It Yourself

(1) Normalize
1010.0110two x 20 = 1.0100110 x 23

(2) Determine Sign Bit
positive, so S = 0

(3) Determine Exponent:
23 so 3 + bias (= 127) = 130 = 10000010two

(4) Determine Significand
drop leading 1 of mantissa, expand to
23 bits = 01001100110011001100110

0 10000010 01001100110011001100110
S Exponent Significand

Example: Converting FP to Decimal
1 Sign: 0 ⇒ positive

2 Exponent:
0110 10002 = 10410
Bias adjustment: 104 - 127 = -13

3 Mantissa:
1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1+ (5,587,778/223)
= 1+ (5,587,778/8,388,608) = 1.0 +
0.666115

4 Represents: 1.666115ten*2-13 ~ 2.034*10-4

0 0110 1000 101 0101 0100 0011 0100 0010

Example: Decimal F. P. Addition

• Assume 4 digit significand, 2 digit exponent

• Let’s add 9.999ten x 101 + 1.610ten x 10-1

• Exponents must match, so adjust smaller number to
match larger exponent

1.610 x 10-1 = 0.1610 x 100 = 0.01610 x 101

• Can represent only 4 digits, so must discard last two:

0.016 x 101

Example: Decimal F. P. Addition

• Now, add significands:

9.999
+ 0.016
10.015

• Thus, sum is 10.015 x 101

• Sum is not normalized, so correct it, checking for
underflow/overflow:

10.015 x 101 => 1.0015 x 102

• Cannot store all digits, must round. Final result is:
1.002 x 102

Basic Binary FP Addition Algorithm
For addition (or subtraction) of X to Y (X < Y):

1. Compute D = ExpY - ExpX (align binary points)
2. Right shift (1+SigX) D bits ⇒ (1+SigX)*2-D

3. Compute (1+SigX)*2-D + (1+SigY) ; Normalize if necessary;
continue until MS bit is 1

4. Too small (e.g., 0.001xx...) left shift result, decrement result
exponent; check for underflow

4'. Too big (e.g., 10.1xx...)
right shift result, increment result exponent; check for overflow

5. If result significand is 0, set exponent to 0

FP Subtraction
• Similar to addition

• How do we do it?
De-normalize to match exponents
Subtract significands
Keep the same exponent
Normalize (possibly changing exponent)

• Problems in implementing FP add/sub:
Managing the signs,
determining to add or sub,
swapping the operands.

• Question: How do we integrate this into the integer
arithmetic unit?

Floating Point Addition
Start

1. Compare the exponents of the two numbers. Shift the smaller number
to the right until its exponent would match the larger exponent.

2. Add the Significands.

3. Normalize the sum, either shifting right and incrementing the exponent,
or shifting left and decrementing the exponent..

4. Round the significant to the appropriate number of bits.

Overflow or
underflow?

Still
Normalized?

Exception

Doneyes

no

yes

no

Example: Decimal F. P. Multiply

• Let’s multiply:

1.110ten x 1010 x 9.200ten x 10-5

(Assume 4-digit significand, 2-digit exponent)

• First, add exponents:

10
+ -5

5

• Next, multiply significands:

1.110 x 9.200 = 10.212000

Example: Decimal F. P. Multiply

• Product is not normalized, so correct it, checking for
underflow / overflow:

10.212000 x 105 ⇒ 1.0212 x 106

• Significand exceeds 4 digits, so round:

1.021 x 106

• Check signs of original operands
same ⇒ positive
different ⇒ negative

Final result is: +1.021 x 106

Basic Binary FP Multiplication Algorithm
For multiplication of P = X × Y :

1. Compute Exponent: ExpP = (ExpY + ExpX) - Bias

2. Compute Product: (1 + SigX) × (1 + SigY)
Normalize if necessary; continue until most significant bit is 1

4. Too small (e.g., 0.001xx...) →
left shift result, decrement result exponent

4'. Too big (e.g., 10.1xx...) →
right shift result, increment result exponent

5. If (result significand is 0) then set exponent to 0

6. if (SgnX == SgnY) then
SgnP = positive (0)

else
SgnP = negative (1)

FP Multiplication Algorithm
Start

1. Add the biased exponents of the two numbers, subtracting the bias from
the sum to get the new biased exponent.

2. Multiply the Significands.

3. Normalize the product if necessary, shifting it right and incrementing the
exponent.

4. Round the significant to the appropriate number of bits.

Overflow or
underflow?

Still Normalized?

Exception

Doneyes

no

no

yes

5. Set the sign of the product to positive if the signs of the original operands
are the same. If they differ, make the sign negative.

Representation for Not a Number
• What do I get if I calculate

sqrt(-4.0)or
0/0?

• If infinity is not an error, these shouldn’t be either.

Called Not a Number (NaN)

Exponent = 255, Significand nonzero

° Why is this useful?

Hope NaNs help with debugging?

They contaminate: op(NaN, X) = NaN

What else can I put in?
• What defined so far? (Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???

1-254 anything +/- fl. pt. number
255 0 +/- infinity
255 nonzero ???

° Representing "Not a Number"; e.g., sqrt(-4); called NaN
Exp == 255, Significand nonzero
They contaminate FP ops: (NaN θ X) = NaN
Hope NaNs help with debugging?
Only valid operations are ==, !=

What else can I put in?
• What defined so far? (Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???

1-254 anything +/- fl. pt. number
255 0 +/- infinity
255 nonzero NaN

° Exp. = 0, Significand nonzero?
Can we get greater precision?

° Represent very, very small magnitude numbers
° 0 < x < smallest normalized number);
° Denormalized Numbers (text p. 300, and discussion later).

Floating Point ALU

0
10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent�
difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or�
decrement

0 10 1

Shift smaller�
number right �
�

Compare�
exponents �
�

Add

Normalize

Round

• FP ADD: Exponents
are subtracted by
small ALU; the
difference controls
the 3 MUXes;

• Shift smaller exp. to the
right until exponents match;

• Significants are added in Big
ALU;

• Normalization step shifts
result left or right, adjusts
exponents;

• Rounding and possible
nornalization

MIPS Floating Point Architecture (1/4)

• Separate floating point instructions:
–Single Precision:
add.s, sub.s, mul.s, div.s

–Double Precision:
add.d, sub.d, mul.d, div.d

• These instructions are far more complicated than their
integer counterparts, so they can take much longer to
execute.

MIPS Floating Point Architecture (2/4)

• Problems:

It’s inefficient to have different instructions take vastly
differing amounts of time.

Generally, a particular piece of data will not change from
FP to int, or vice versa, within a program. So only
one type of instruction will be used on it.

Some programs do no floating point calculations

It takes lots of hardware relative to integers to do
Floating Point fast

MIPS Floating Point Architecture (3/4)
• 1990 Solution: Make a completely separate chip that

handles only FP.

° Coprocessor 1: FP chip
1. contains 32 32-bit registers: $f0, $f1, …

2. most of the registers specified in .s and .d
instruction refer to this set

3. separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

4. Double Precision: by convention, even/odd pair
contain one DP FP number: $f0/$f1, $f2/$f3, … ,
$f30/$f31

MIPS Floating Point Architecture (4/4)
• 1990 Computer actually contains multiple separate chips:

Processor: handles all the normal stuff

Coprocessor 1: handles FP and only FP;

more coprocessors?… Yes, later

Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP
HW

• Instructions to move data between main processor and coprocessors:
mfc1 rt, rd Move floating point register rd to

CPU register rt.

mtc1 rd, rt Move CPU register rt to floating
point register rd.

mfc1.d rdest, frsrc1 Move floating point registers
frsrc1 & frsrc1 + 1 to CPU
registers rdest & rdest + 1.

• Appendix pages A-70 to A-74 contain many, many more FP operations.

Summary: MIPS F.P. Architecture
• Single Precision, Double Precision versions of add, subtract,

multiply, divide, compare
Single add.s, sub.s, mul.s, div.s, c.lt.s
Double add.d, sub.d, mul.d, div.d, c.lt.d
See pages A-70 - A74

• Registers?
– Normally integer and Floating Point operations on different data,

for performance should have separate registers.
– MIPS adds 32 32-bit FP regs: $f0, $f1, $f2 ...,
– Thus need FP data transfers:

l.d fdest, address load the floating point double at address
into register fdest.

mov.s fd, fs Move the floating point single from
register fs to register fd.

– Double Precision? Even-odd pair of registers:
$f0-$f1, $f2-$3, etc., act as 64-bit register: $f0, $f2, $f4,

Example with F.P.: Matrix Multiply
void mm (double x[][], double y[][], double z[][]){
int i, j, k;

for (i=0; i!=32; i=i+1)
for (j=0; j!=32; j=j+1)

for (k=0; k!=32; k=k+1)

x[i][j] = x[i][j] + y[i][k] * z[k][j];

}

• Starting addresses are parameters in $a0, $a1, and $a2. Integer
variables are in $t3, $t4, $t5. Arrays 32 by 32

• Use pseudoinstructions: li (load immediate), l.d / s.d (load /
store 64 bits)

MIPS code 1st piece: initialize x[][]
• Initialize Loop Variables
mm: ...

li $t1, 32 # $t1 = 32
li $t3, 0 # i = 0; 1st loop

L1: li $t4, 0 # j = 0; reset 2nd
L2: li $t5, 0 # k = 0; reset 3rd

• To fetch x[i][j], skip i rows (i*32), add j
sll $t2,$t3,5 # $t2 = i * 25

addu $t2,$t2,$t4 # $t2 = i*25 + j

• Get byte address (8 bytes), load x[i][j]
sll $t2, $t2,3 # i,j byte addr.
addu $t2, $a0,$t2# @ x[i][j]
l.d $f4, 0($t2) # $f4 = x[i][j]

MIPS code 2nd piece: z[][], y[][]
• Like before, but load z[k][j] into $f16
L3: sll $t0, $t5, 5 # $t0 = k * 25

addu $t0, $t0, $t4 # $t0 = k*25 +j
sll $t0, $t0, 3 # k,j byte addr.
addu $t0, $a2, $t0 # @ z[k][j]
l.d $f16, 0($t0) # $f16 = z[k][j]

• Like before, but load y[i][k] into $f18
sll $t0, $t3, 5 # $t0 = i * 25
addu $t0, $t0, $t5 # $t0 = i*25 +k
sll $t0, $t0, 3 # i,k byte addr.
addu $t0, $a1, $t0 # @ y[i][k]
l.d $f18, 0 ($t0) # $f18 = y[i][k]

• Summary: $f4: x[i][j], $f16: z[k][j], $f18: y[i][k]

MIPS code for last piece: add/mul, loops
• Add y*z to x

mul.d $f16,$f18,$f16 # y[][]*z[][]
add.d $f4, $f4, $f16 # x[][]+ y*z

• Increment k; if end of inner loop, store x
addiu $t5, $t5,1 # k = k + 1
bne $t5, $t1,L3 # if(k!=32) goto L3
s.d $f4, 0($t2) # x[i][j] = $f4

• Increment j; middle loop if not end of j
addiu $t4, $t4,1 # j = j + 1
bne $t4, $t1,L2 # if(j!=32) goto L2

• Increment i; if end of outer loop, return
addiu $t3,$t3,1 # i = i + 1
bne $t3,$t1,L2 # if(i!=32) goto L1
jr $ra

Floating Point gottchas: Add Associativity?
• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0

• x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0

• (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

• = (0.0) + 1.0 = 1.0

• Therefore, Floating Point addition not associative!
1.5 x 1038 is so much larger than 1.0 that 1.5 x 1038 + 1.0 is

still 1.5 x 1038

FP result approximation of real result!
• What are the conditions that make smaller arguments

“disappear” (rounded down to 0.0)?

Basic Addition Algorithm/Multiply issues
Addition (or subtraction) includes the following steps:

(1) compute Ye - Xe (getting ready to align binary point)

(2) right shift Xm that many positions to form Xm × 2 Xe - Ye

(3) compute (Xm × 2 Xe - Ye) + Ym

if representation demands normalization, then normalization step follows:

(4) left shift result, decrement result exponent (e.g., 0.001xx…)
right shift result, increment result exponent (e.g., 101.1xx…)
continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)

(5) for Multiply, doubly biased exponent must be corrected:

Xe = 7
Ye = -3
Excess 8 extra subtraction step of the bias amount

(6) if result is 0 mantissa, may need to zero exponent by special step

Good
Summary

Xe = 1111
Ye = 0101

10100

= 15
= 5

20

= 7 + 8
= -3 + 8

4 + 8 + 8

Rounding and IEEE Rounding Modes
• When we perform math on “real” numbers, we have to worry about rounding

to fit the result in the significant field.

• The FP hardware carries two extra bits of precision, and then round to get
the proper value

• Rounding also occurs when converting a double to a single precision value,
or converting a floating point number to an integer

Round towards +∞
• ALWAYS round “up”: 2.001 → 3
• -2.001 → -2

Round towards -∞
• ALWAYS round “down”: 1.999 → 1,
• -1.999 → -2

Truncate
• Just drop the last bits (round towards 0)

Round to (nearest) even
• Normal rounding, almost

Round to Even

• Round like you learned in grade school

• Except if the value is right on the borderline, in which
case we round to the nearest EVEN number

2.5 -> 2
3.5 -> 4

• Insures fairness on calculation
This way, half the time we round up on tie, the other half

time we round down
Ask statistics majors

• This is the default rounding mode

Summary: Extra Bits for Rounding
"Floating Point numbers are like piles of sand; every time you move one

you lose a little sand, but you pick up a little dirt."

How many extra bits?
IEEE: As if computed the result exactly and rounded.

Addition:
1.xxxxx 1.xxxxx 1.xxxxx

+ 1.xxxxx 0.001xxxxx 0.01xxxxx

1x.xxxxy 1.xxxxxyyy 1x.xxxxyyy

post-normalization pre-normalization pre and post

• Guard Digits: digits to the right of the first p digits of significand to guard
against loss of digits – can later be shifted left into first P places during
normalization.

• Addition: carry-out shifted in

• Subtraction: borrow digit and guard

• Multiplication: carry and guard, Division requires guard

Summary: Rounding Digits
Normalized result, but some non-zero digits to the right of the significand --> the
number should be rounded

E.g., B = 10, p = 3: 0 2 1.69

0 0 7.85

0 2 1.61

= 1.6900 * 10

= - .0785 * 10

= 1.6115 * 10

2-bias

2-bias

2-bias
-

one round digit must be carried to the right of the guard digit so that
after a normalizing left shift, the result can be rounded, according
to the value of the round digit

IEEE Standard: four rounding modes:
round to nearest even (default)
round towards plus infinity
round towards minus infinity
round towards 0

round to nearest:
round digit < B/2 then truncate

> B/2 then round up (add 1 to ULP: unit in last place)
= B/2 then round to nearest even digit

it can be shown that this strategy minimizes the mean error introduced by
rounding

Elaboration: Sticky Bit
Additional bit to the right of the round digit to better fine tune rounding

d0 . d1 d2 d3 . . . dp-1 0 0 0
0 . 0 0 X . . . X X X S

X X S
+

Sticky bit: set to 1 if any 1 bits fall off
the end of the round digit

d0 . d1 d2 d3 . . . dp-1 0 0 0
0 . 0 0 X . . . X X X 0

X X 0
-

d0 . d1 d2 d3 . . . dp-1 0 0 0
0 . 0 0 X . . . X X X 1-

generates a borrow

Rounding Summary

Radix 2 minimizes wobble in precision

Normal operations in +,-,*,/ require one carry/borrow bit + one guard digit

One round digit needed for correct rounding

Sticky bit needed when round digit is B/2 for max accuracy

Rounding to nearest has mean error = 0, if uniform distribution of digits
are assumed

C: Casting floats to ints and vice versa

•(int) floating point exp

Coerces and converts it to the nearest integer (C
uses truncation)

i = (int) (3.14159 * f);

•(float) exp

converts integer to nearest floating point
f = f + (float) i;

C: float -> int -> float
if (f == (float)((int) f)) {

printf(“true”);

}

• Will not always print “true”

• Large values of integers don’t have exact floating point
representations

• What about double?

• Small floating point numbers (<1) don’t have integer
representations

• For other numbers, rounding errors

Summary: Scientific Notation

6.02 x 10 1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P. ± 1.M x 2
e - 127

• Issues:
• Arithmetic (+, -, *, /)
• Representation, Normal form
• Range and Precision
• Rounding
• Exceptions (e.g., divide by zero, overflow, underflow)
• Errors
• Properties (negation, inversion, if A ≠ B then A - B ≠ 0)

Summary : Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

single precision
1 8 23
S E Msign

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit: 1.M

exponent:
excess 127
binary integeractual exponent is

e = E - 127

N = (-1) 2 (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0 -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

-126 127 -23)2 (1.0) (2 - 2to 2

which is approximately:
-38 38to 3.40 x 10 1.8 x 10

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!)

Things to Remember
• Floating Point numbers approximate values that we want

to use.
• IEEE 754 Floating Point Standard is most widely

accepted attempt to standardize interpretation of such
numbers

• New MIPS registers($f0-$f31), instruct.ions:
Single Precision (32 bits, 2x10-38… 2x1038): add.s,
sub.s, mul.s, div.s

Double Precision (64 bits , 2x10-308…2x10308): add.d,
sub.d, mul.d, div.d

• Type is not associated with data, bits have no meaning
unless given in context

	Overview
	MULTIPLY
	Multiply by Power of 2 via Shift Left
	Multiply in MIPS
	Is Shift Right Arith. º Divide by 2?
	Multiply Algorithm Version 1
	Multiply Algorithm Version 2
	MULTIPLY HARDWARE Version 2
	Multiply Algorithm Version 3
	MULTIPLY HARDWARE Version 3
	Observations on Multiply Version 3
	Motivation for Booth’s Algorithm
	Booth’s Algorithm
	Booths Example (2 x 7)
	Booths Example (2 x -3)
	MIPS logical instructions
	Combinational Shifter from MUXes
	General Shift Right Scheme using 16 bit example
	Funnel Shifter
	Barrel Shifter
	Divide: Paper & Pencil
	Divide Algorithm
	Integer Division
	Divide Algorithm Example
	Divide Algorithm
	What is in a number?
	Recall Scientific Notation
	Scientific Notation for Binary Numbers
	Single Precision FP Representation
	Floating Point Number Representation
	Double Precision FP Representation
	MIPS follows IEEE 754 F.P. Standard
	Representing Exponent
	Representing Exponent
	Example: Converting Decimal to FP
	Example: Converting FP to Decimal
	Continuing Example: Binary to ???
	Principle: Type not associated with Data
	How to Order Floating Point Fields?
	How To Convert Decimal to Binary
	Do It Yourself
	Do It Yourself
	Example: Converting FP to Decimal
	Example: Decimal F. P. Addition
	Example: Decimal F. P. Addition
	Basic Binary FP Addition Algorithm
	FP Subtraction
	Floating Point Addition
	Example: Decimal F. P. Multiply
	Example: Decimal F. P. Multiply
	Basic Binary FP Multiplication Algorithm
	FP Multiplication Algorithm
	Representation for Not a Number
	What else can I put in?
	What else can I put in?
	Floating Point ALU
	MIPS Floating Point Architecture (1/4)
	MIPS Floating Point Architecture (2/4)
	MIPS Floating Point Architecture (3/4)
	MIPS Floating Point Architecture (4/4)
	Summary: MIPS F.P. Architecture
	Example with F.P.: Matrix Multiply
	MIPS code 1st piece: initialize x[][]
	MIPS code 2nd piece: z[][], y[][]
	MIPS code for last piece: add/mul, loops
	Floating Point gottchas: Add Associativity?
	Basic Addition Algorithm/Multiply issues
	Rounding and IEEE Rounding Modes
	Round to Even
	Summary: Extra Bits for Rounding
	Summary: Rounding Digits
	Elaboration: Sticky Bit
	C: Casting floats to ints and vice versa
	C: float -> int -> float
	Summary: Scientific Notation
	Summary : Floating-Point Arithmetic
	Things to Remember

