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Integer Representation
Introduction to Digital Logic
Integer Arithmetic & Adder
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Representing Numbers: Review
• 32-bit binary representation of (unsigned) number:

– b31 × 231+ b30 × 230 + ⋅⋅⋅ + b2 × 22 + b1 × 21 + b0 × 20

– One billion (1,000,000,00010 ) in binary is

0011 1011 1001 1010 1100 1010 0000 00002

228       224      220      216      212       28        24         20

= 1×229 + 1×228 + 1×227 + 1×225 + 1×224 + 1×223 + 1×220 + 1×219 + 1×217 + 1×215 

+ 1×214 + 1×211 + 1x29

= 536,870,912 + 268,435,456 + 134,217,728 + 33,554,432 + 16,777,216 +

8,388,608 + 1,048,576 + 524,288 + 131,072 + 32,768 + 16,384 + 2,048 +

512 = 1,000,000,000
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What If Too Big?

• Binary bit patterns are simply representations of numbers.

• Numbers really have an infinite number of digits (non-significant 
zeroes to the left).

– with almost all being zero except for a few of the rightmost digits.
– Don’t normally show leading zeros.

• If result of add (or any other arithmetic operation) cannot be 
represented by these rightmost hardware bits, overflow is said to 
have occurred.

• Up to Compiler and OS what to do.
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How to Avoid Overflow? Allow It Sometimes?

• Some languages detect overflow (Ada, Fortran), some don’t (C)

• MIPS solution is 2 kinds of arithmetic instructions to recognize 2 
choices:

– add (add), add immediate (addi), and subtract (sub) cause 
exceptions on overflow

– add unsigned (addu), add immediate unsigned (addiu), and 
subtract unsigned (subu) do not cause exceptions on overflow

• unsigned integers commonly used for address arithmetic 
where overflow ignored

• MIPS C compilers always produce addu, addiu, subu
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What If Overflow Detected?
• If "exception" (or "interrupt") occurs

– Address of the instruction that overflowed is saved in a register
– Computer jumps to predefined address to invoke appropriate 

routine for that exception
– Like an unplanned hardware function call

• Operating System decides what to do
– In some situations program continues after corrective code is 

executed

• MIPS hardware support: exception program counter (EPC) 
contains address of overflowing instruction --- (more in Chpt. 5)
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Representing Negative Numbers
Two’s Complement

• What is result for unsigned numbers if  subtract larger number 
from a smaller one?
– Would try to borrow from string of leading 0s, 

so result would have a string of leading 1s
– With no obvious better alternative, pick representation that made 

the hardware simple:
• leading 0s ⇒ positive, 
• leading 1s ⇒ negative

000000...xxx ≥ 0

111111...xxx < 0

• This representation is called two’s complement



Chapter 4.1 - Integers 7

Two’s Complement (32-bit)
0111 ... 1111  1111  1111  1111two = 2,147,483,647ten

0111 ... 1111  1111  1111  1110two = 2,147,483,646ten

0111 ... 1111  1111  1111  1101two = 2,147,483,645ten

. . .

0000 ... 0000  0000  0000  0010two = 2ten

0000 ... 0000  0000  0000  0001two = 1ten

0000 ... 0000  0000  0000  0000two = 0ten

1111 ... 1111  1111  1111  1111two = -1ten

1111 ... 1111  1111  1111  1110two = -2ten

1111 ... 1111  1111  1111  1101two = -3ten

. . . 

1000 ... 0000  0000  0000  0001two = -2,147,483,647ten

1000 ... 0000  0000  0000  0000two = -2,147,483,648ten

Indicates sign of the integer 
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Two’s Complement Formula, Example
• Recognizing role of sign bit, can represent positive and negative

numbers in terms of the bit value times a power of 2:

– d31 × -231    +   d30 × 230 + ··· + d2 × 22 + d1 × 21 + d0 × 20

• Example (given 32-bit two’s comp. number)

1111 1111 1111 1111 1111 1111 1111 11002

= 1 × -231  +  1 × 230  +  1 × 229 + ··· +  1 × 22  +  0 × 21  +  0 × 20

= -231 + 230 +  229 + ··· + 22 + 0 + 0 

= -2,147,483,64810 + 2,147,483,64410

= -410
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Ways to Represent Signed Numbers
(1) Sign and magnitude

– separate sign bit

(2) Two’s (2’s) Complement (n bit positions)

– n-bit pattern dn-1 ... d2d1d0 means:

-1 × dn-1 × 2n-1 + ⋅⋅⋅ + d2 × 22 + d1 × 21 + d0 × 20

– also, unsigned sum of n-bit number and its negation = 2n

0001 positive one +

+ 1111 negative one (2’s comp)

10000 = 24 (=zero if only 4 bits)

0001001100101 1
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Ways to Represent Signed Numbers
(3) One’s (1’s) Complement

– unsigned sum of n-bit number and its negation = 2n - 1

0001 positive one

+1110 negative one (1’s comp) 

1111 (24 - 1) 

– better than sign and magnitude but has two zeros (+0=0000 and -
0=1111)

– some scientific computers use 1’s comp.

(4) Biased notation

– add positive bias B to signed number, store as unsigned; useful 
in floating point (for the exponent).

– number = x - B
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Bias= 8
(Subtract 8)

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

-1
-2
-3
-4
-5
-6
-7
-8
7
6
5
4
3
2
1
0

0
-1
-2
-3
-4
-5
-6
-7
7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

-1
-2
-3
-4
-5
-6
-7
-8

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

b3b2b1b0

Bit-Pattern, Unsigned,   2’s Comp,  1’s Comp, Biased
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Signed Vs. Unsigned Comparisons
• Note: memory addresses naturally start at 0 and continue to the 

largest address – they are unsigned.
– That is, negative addresses make no sense.

• C makes distinction in declaration.
– integer (int) can be positive or negative.
– unsigned integers (unsigned int) only positive.

• Thus MIPS needs two styles of comparison.
– Set on less than (slt) and set on less than immediate (slti) 

work with signed integers.
– Set on less than unsigned (sltu) and set on less than immediate 

unsigned (sltiu).  (Will work with addresses).
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Signed Vs. Unsigned Comparisons

$s0 has
1111 1111 1111 1111 1111 1111 1111 11002

$s1 has
0011 1011 1001 1010 1000 1010 0000 00002

• What are $t0, $t1 after:
slt $t0, $s0, $s1 # signed compare

sltu $t1, $s0, $s1 # unsigned compare

•$t0: -4ten < 1,000,000,000ten?

•$t1: 4,294,967,292ten < 1,000,000,000ten?

Key Point: Instructions decide what binary bit-patterns mean
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Two’s Complement Shortcut: Negation
• Invert every 0 to 1 and every 1 to 0, then add 1 to the result

– Unsigned sum of number and its inverted representation must 
be 111...1112 

– 111...1112= -110

– Let x´ mean the inverted representation of x

– Then x + x´ = -1 ⇒ x + x´ + 1 = 0 ⇒ x´ + 1 = -x

• Example: -4 to +4 to -4

• x : 1111 1111 1111 1111 1111 1111 1111 11002

x´ : 0000 0000 0000 0000 0000 0000 0000 00112

+1: 0000 0000 0000 0000 0000 0000 0000 01002

( )x´: 1111 1111 1111 1111 1111 1111 1111 10112

+1: 1111 1111 1111 1111 1111 1111 1111 11002

IMPORTANT 
SLIDE
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Two’s Complement Shortcut
Using Sign extension

• Convert number represented in k bits to more than k bits
– e.g., 16-bit immediate field converted to 32 bits before adding to 32-bit 

register in addi

• Simply replicate the most significant bit (sign bit) of smaller quantity 
to fill new bits

– 2's comp. positive number has infinite 0s to left
– 2's comp. negative number has infinite 1s to left
– Finite representation hides most leading bits; sign extension restores 

those that fit in the integer variable
– 16-bit -410 to 32-bit:

1111 1111 1111 11002

1111 1111 1111 1111 1111 1111 1111 11002



Chapter 4.1 - Integers 16

Do It Yourself
• Convert the two’s complement number

1111 1111 1111 1111 1111 1010two

into decimal (base ten):
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Do It Yourself

• Convert the two’s complement number

1111 1111 1111 1111 1111 1111 1111 10102

into decimal (base ten):
• Could use conversion formula (hard)

1 x -231 + 1 x 230 + … 1 x 21 + 1 x 20

• Or, first use negation shortcut (easy)
0000 0000 0000 0000 0000 0000 0000 0101

1
0000 0000 0000 0000 0000 0000 0000 0110

= 6 (therefore, answer: -6)

+
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1-bit Binary Addition
• two 1-bit values gives four cases:

0 0 1 1
0 1 0 1

0 1 1 (1) 0

• digital logic?: half-adder circuit

+ + + +

carry-out 1-bit sum

HAa
b

sum
carry-out
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Multi-bit Addition (and Subtraction)
– 00 0111 = 710 +

00 0110 = 610

00 1101 = 1310

–

(0) (0) (1) (1) (0) 0
0 0 0 1 1 1

+ 0 0 0 1 1 0

(0) 0 (0)0 (0)1 (1)1 (1)0 (0)1

Subtract? Simply negate and add!

(carries)

HAa
b

sum
carry-out

carry-in

HAa
b

sum
carry-out

carry-in

carry-in
a
b
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Detecting Overflow in 2’s Complement?
• Adding 2 31-bit positive 2’s complement numbers 

can yield a result that needs 32 bits 

– sign bit set with value of result (1) instead of proper 
sign of result (0)

– since need just 1 extra bit, only sign bit can be wrong

Op A B Result

A + B >=0 >=0 <0
A + B <0 <0 >=0
A - B >=0 <0 <0
A - B <0 >=0 >=0

° Adding operands with different signs, (subtracting with 
same signs) overflow cannot occur
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Overflow for Unsigned Numbers?

• Adding 2 32-bit unsigned integers could yield a result 
that needs 33 bits

– can't detect from "sign" of result

• Unsigned integers are commonly used for address 
arithmetic, where overflows are ignored

• Hence, MIPS has unsigned arithmetic instructions, 
which ignore overflow:

– addu, addiu, subu

– Recall that in C, all overflows are ignored, so unsigned 

instructions are always used (different for Fortran, Ada)
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Do It Yourself

• Add 4-bit signed (2’s complement) numbers:

1111 -110
+ 1110 -210

• Did overflow occur?
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Do It Yourself
• Add 4-bit signed (2’s comp.) numbers :

1111 -110.
+ 1110 -210
11101.

• Did overflow occur?
– overflow in 2’s complement only if.

Negative + Negative → "Positive."
Positive + Positive  → "Negative."

– overflow = carry-out only if numbers considered to be 
unsigned.

• So: addition works same way for both unsigned, signed 
numbers.

• But overflow detection is different.
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Logical Operations

• Operations on less than full words
– Fields of bits or individual bits

• Think of word as 32 bits vs. 2’s comp. integers or unsigned 
integers

• Need to extract bits from a word, insert bits into a word

• Extracting via Shift instructions
– C operators: << (shift left), >> (shift right)

• Inserting via And/Or instructions
– C operators: & (bitwise AND), | (bitwise OR)
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Shift Instructions
• Move all the bits in a word to the left or right, filling the emptied bits 

with 0’s

• Before and after shift left 8 of $s0 ($16):

0000   0000   0000    0000   0000    0000   0000  1101two

0000   0000   0000    0000   0000    1101   0000   0000two

• MIPS instructions
– shift left logical (sll) and shift right logical (srl)
–sll $s0, $s0, 8 # $s0 = $s0 << 8 bits
– R Format, using shamt (shift amount)!

0 0 16 16 08
op rs rt rd functshamt
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Extracting a Field of Bits
° Extract bit field from bit 9 (left bit) to bit 2 (size = 8 bits) of 

register $s1, place in rightmost part of register $s0

012345678931

0000 00000000000000000000

$s1

$s0

• Shift field as far left as possible (31-bit no.) and then as 
far right as possible (32-size) 

$s1

$s0

$s0

00 00000000000000000000
0000 00000000000000000000

sll $s0, $s1, 22 # 8bits to left end (31-9)
srl $s0, $s0, 24 # 8bits to right end(32-8)
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And Instruction

• AND: bit-by-bit operation leaves a 1 in the result only if 
both bits of the operands are 1. For example, if registers 
$t1 and $t2

– 0000  0000  0000  0000  0000  1101  0000  00002

– 0000  0000  0000  0000  0011  1100  0000  00002

• After executing MIPS instruction
–and $t0, $t1, $t2 # $t0 = $t1 & $t2

• Value of register $t0
– 0000  0000  0000  0000  0000  1100  0000  00002

• AND can force 0s where 0 in the bit pattern
– Called a “mask” since mask “hides” bits
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Or Instruction

• OR: bit-by-bit operation leaves a 1 in the result if either bit of the 
operands is 1. For example, if registers $t1 and $t2

– 0000  0000  0000  0000  0000  1101  0000  00002

– 0000  0000  0000  0000  0011  1100  0000  00002

• After executing MIPS instruction
– or $t0, $t1, $t2 # $t0 = $t1 | $t2

• Value of register $t0

– 0000  0000  0000  0000  0011  1101  0000  00002

• OR can force 1s where 1 in the bit pattern

– If 0s in field of 1 operand, can insert new value
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Inserting a Field of Bits (Almost OK;-)
° Insert bit field into bits 9⎯2 (leftmost bit is 9; size = 8 bits) of 

register $s1 from rightmost part of register $s0 (rest is 0)

012345678931
0000 00000000000000000000

$s1

$s0

• 1. Mask out field; 2. shift left field 2; 3. OR in field 

00000000
0000 00 000000000000000000

1.  $s1

2.  $t0

3.  $s1

andi $s1, $s1, 0xfc03 # mask out $s1[2..9] = 0 
sll $t0, $s0, 2      # field left 2 $t0[2..9]
or $s1, $s1, $t0    # OR in field $s1 OR $t0
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Sign Extension of Immediates
•addi and slti: deal with signed numbers, so immediates are 

sign extended

• Branch and data transfer address fields are sign extended too

•andi and ori work with unsigned integers, so immediates 
padded with leading 0s

–andi won’t work as a mask in upper 16 bits

– Use register version instead

addiu $t1, $zero, 0xfc03 # 32b mask in $t1 
and $s1, $s1, $t1      # mask out 9-2
sll $t0, $s0, 2        # field left 2
or $s1, $s1, $t0      # OR in field
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The 5 Components of Any Computer

Personal Computer

Processor 
(CPU)

Computer

Control
("brain")

Datapath
("brawn")

Memory Devices

Input

Output

We Will
Start Here:

Arithmetic-
Logic Unit
(ALU)
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Overview: Digital Logic Design

• Topics we assume you know: 
– Combinational and Sequential Logic Blocks
– Boolean Algebra/Logic Equations
– Truth Tables
– Logic Gates

• Appendix B gives review 
– need B.1 - B.3 for Chapter 4
– will need B.4 - B.6 for Chapter 5-7
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Combinational, Sequential Logic

• Two kinds of Logic Blocks (Circuits)
– Combinational Logic Block

• described by a logic equation or truth table
X = AB + CD

• no memory: output of block depends only on the current 
inputs; no feedback loops

– Sequential Logic Block
• described by a finite state machine
• contains memory (local state); output depends on current 

inputs and stored value; permits feedback loops
– Will use combinational logic blocks first for the datapath, then 

sequential logic for the control unit (Chapter 5)
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Implementing Logic Blocks
• Logic Gates : primitives

AND OR NOT (inverter)

• Combine gates to implement more complex Boolean function:
W = X + (YZ)

• Some shorthand:

X
W

Y
Z

NOR=

= NAND
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MIPS arithmetic instruction format
31 25 20 15 5 0

R-type:
op Rs Rt Rd funct

I-Type: op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx

Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

00 50

00 51

SLT 00 52

SLTU 00 53
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Refined Requirements
(1) Functional Specification
inputs: 2 x 32-bit operands A, B, 4-bit mode
outputs: 32-bit result S, 1-bit carry, 1 bit overflow
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram          (powerview symbol, VHDL entity)

ALUALU
A B

m
ovf

S

32 32

32

4
c
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Gates, Truth Tables and Logic Equations

• Digital Electronics: Circuits that operate with only two voltages 
of interest.

• "High" and "Low" voltage, corresponding to logic values. Other 
values occur only during transitions.

• Example.
– "High" ∈ [ 5.0V, 3.5V ]; "Low" ∈ [ 0.0V, 1.5V ];

• Associate Logic 1 with High and Logic 0 with Low.
• We will talk about logic signal values, instead of voltage levels.

– Signal "asserted" ↔ 1; "de-asserted" ↔ 0.
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Combinational Circuits & Truth Tables
• Combinational logic blocks have no memory and can be fully described by truth

tables.

• Each function with n inputs → 2n entries.
• Let Z = G (A, B, C ).
• A Truth Table describes the behaviour of G.

A B C Z D E F.
0 0 0 z000 0 0 0.
0 0 1 z001 1 0 0.
0 1 0 z010 1 0 0.
0 1 1 z011 1 1 0.
1 0 0 z100 1 0 0.
1 0 1 z101 1 1 0.
1 1 0 z110 1 1 0.
1 1 1 z111 1 0 1.
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Hardware Building Blocks

AND Gate

CA
B

Symbol
A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition
OR Gate

A
B C A B C

0 0 0
0 1 1
1 0 1
1 1 1

DefinitionSymbol

CA
Symbol

Inverter

A C
0 1
1 0

Definition

C

Symbol
Multiplexor

S C
0 A
1 B

Definition

A

B

0

1

S
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Multiplexors

• AND, OR, Inverter (NOT) are the logic primitives (smallest logic 
elements)

• Multiplexors, e.g., Selector, Mux, can be constructed from 
primitives:

A

B

S

C

C

Symbol Definition

A

B

0

1

S

C = SB + S'A

M
u
x

S C
0 A
1 B
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Multiplexors

• Larger muxes: need multiple "select" inputs: interpret as binary 
number

– Can implement directly with gates, or 
– use decoder (see B.3) to enable a single input, or
– combine several 2-input muxes

C

A
B

0
1

D

M
u
x2

3

S1S2

E

S1 S2 E
0   0    A
0   1    B
1   0    C
1   1    D

Appendix B.3 
for more details
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Arithmetic Logic Unit (ALU)

• MIPS ALU is 32 bits wide

• Start with 1-bit ALU, then connect 32 1-bit ALUs to form a 32-
bit ALU in a "bit slice" manner

• Since hardware building blocks include an AND gate and an 
OR gate, and since AND and OR are two of the operations of 
the ALU, start here:

Op C
0 A and B
1 A or B

Definition
A
B C

0

1

Op
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