
Chapter 4.1 - Integers 1

Integer Representation
Introduction to Digital Logic
Integer Arithmetic & Adder

Chapter 4.1 - Integers 2

Representing Numbers: Review
• 32-bit binary representation of (unsigned) number:

– b31 × 231+ b30 × 230 + ⋅⋅⋅ + b2 × 22 + b1 × 21 + b0 × 20

– One billion (1,000,000,00010) in binary is

0011 1011 1001 1010 1100 1010 0000 00002

228 224 220 216 212 28 24 20

= 1×229 + 1×228 + 1×227 + 1×225 + 1×224 + 1×223 + 1×220 + 1×219 + 1×217 + 1×215

+ 1×214 + 1×211 + 1x29

= 536,870,912 + 268,435,456 + 134,217,728 + 33,554,432 + 16,777,216 +

8,388,608 + 1,048,576 + 524,288 + 131,072 + 32,768 + 16,384 + 2,048 +

512 = 1,000,000,000

Chapter 4.1 - Integers 3

What If Too Big?

• Binary bit patterns are simply representations of numbers.

• Numbers really have an infinite number of digits (non-significant
zeroes to the left).

– with almost all being zero except for a few of the rightmost digits.
– Don’t normally show leading zeros.

• If result of add (or any other arithmetic operation) cannot be
represented by these rightmost hardware bits, overflow is said to
have occurred.

• Up to Compiler and OS what to do.

Chapter 4.1 - Integers 4

How to Avoid Overflow? Allow It Sometimes?

• Some languages detect overflow (Ada, Fortran), some don’t (C)

• MIPS solution is 2 kinds of arithmetic instructions to recognize 2
choices:

– add (add), add immediate (addi), and subtract (sub) cause
exceptions on overflow

– add unsigned (addu), add immediate unsigned (addiu), and
subtract unsigned (subu) do not cause exceptions on overflow

• unsigned integers commonly used for address arithmetic
where overflow ignored

• MIPS C compilers always produce addu, addiu, subu

Chapter 4.1 - Integers 5

What If Overflow Detected?
• If "exception" (or "interrupt") occurs

– Address of the instruction that overflowed is saved in a register
– Computer jumps to predefined address to invoke appropriate

routine for that exception
– Like an unplanned hardware function call

• Operating System decides what to do
– In some situations program continues after corrective code is

executed

• MIPS hardware support: exception program counter (EPC)
contains address of overflowing instruction --- (more in Chpt. 5)

Chapter 4.1 - Integers 6

Representing Negative Numbers
Two’s Complement

• What is result for unsigned numbers if subtract larger number
from a smaller one?
– Would try to borrow from string of leading 0s,

so result would have a string of leading 1s
– With no obvious better alternative, pick representation that made

the hardware simple:
• leading 0s ⇒ positive,
• leading 1s ⇒ negative

000000...xxx ≥ 0

111111...xxx < 0

• This representation is called two’s complement

Chapter 4.1 - Integers 7

Two’s Complement (32-bit)
0111 ... 1111 1111 1111 1111two = 2,147,483,647ten

0111 ... 1111 1111 1111 1110two = 2,147,483,646ten

0111 ... 1111 1111 1111 1101two = 2,147,483,645ten

. . .

0000 ... 0000 0000 0000 0010two = 2ten

0000 ... 0000 0000 0000 0001two = 1ten

0000 ... 0000 0000 0000 0000two = 0ten

1111 ... 1111 1111 1111 1111two = -1ten

1111 ... 1111 1111 1111 1110two = -2ten

1111 ... 1111 1111 1111 1101two = -3ten

. . .

1000 ... 0000 0000 0000 0001two = -2,147,483,647ten

1000 ... 0000 0000 0000 0000two = -2,147,483,648ten

Indicates sign of the integer

Chapter 4.1 - Integers 8

Two’s Complement Formula, Example
• Recognizing role of sign bit, can represent positive and negative

numbers in terms of the bit value times a power of 2:

– d31 × -231 + d30 × 230 + ··· + d2 × 22 + d1 × 21 + d0 × 20

• Example (given 32-bit two’s comp. number)

1111 1111 1111 1111 1111 1111 1111 11002

= 1 × -231 + 1 × 230 + 1 × 229 + ··· + 1 × 22 + 0 × 21 + 0 × 20

= -231 + 230 + 229 + ··· + 22 + 0 + 0

= -2,147,483,64810 + 2,147,483,64410

= -410

Chapter 4.1 - Integers 9

Ways to Represent Signed Numbers
(1) Sign and magnitude

– separate sign bit

(2) Two’s (2’s) Complement (n bit positions)

– n-bit pattern dn-1 ... d2d1d0 means:

-1 × dn-1 × 2n-1 + ⋅⋅⋅ + d2 × 22 + d1 × 21 + d0 × 20

– also, unsigned sum of n-bit number and its negation = 2n

0001 positive one +

+ 1111 negative one (2’s comp)

10000 = 24 (=zero if only 4 bits)

0001001100101 1

Chapter 4.1 - Integers 10

Ways to Represent Signed Numbers
(3) One’s (1’s) Complement

– unsigned sum of n-bit number and its negation = 2n - 1

0001 positive one

+1110 negative one (1’s comp)

1111 (24 - 1)

– better than sign and magnitude but has two zeros (+0=0000 and -
0=1111)

– some scientific computers use 1’s comp.

(4) Biased notation

– add positive bias B to signed number, store as unsigned; useful
in floating point (for the exponent).

– number = x - B

Chapter 4.1 - Integers 11

Bias= 8
(Subtract 8)

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

-1
-2
-3
-4
-5
-6
-7
-8
7
6
5
4
3
2
1
0

0
-1
-2
-3
-4
-5
-6
-7
7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

-1
-2
-3
-4
-5
-6
-7
-8

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

b3b2b1b0

Bit-Pattern, Unsigned, 2’s Comp, 1’s Comp, Biased

Chapter 4.1 - Integers 12

Signed Vs. Unsigned Comparisons
• Note: memory addresses naturally start at 0 and continue to the

largest address – they are unsigned.
– That is, negative addresses make no sense.

• C makes distinction in declaration.
– integer (int) can be positive or negative.
– unsigned integers (unsigned int) only positive.

• Thus MIPS needs two styles of comparison.
– Set on less than (slt) and set on less than immediate (slti)

work with signed integers.
– Set on less than unsigned (sltu) and set on less than immediate

unsigned (sltiu). (Will work with addresses).

Chapter 4.1 - Integers 13

Signed Vs. Unsigned Comparisons

$s0 has
1111 1111 1111 1111 1111 1111 1111 11002

$s1 has
0011 1011 1001 1010 1000 1010 0000 00002

• What are $t0, $t1 after:
slt $t0, $s0, $s1 # signed compare

sltu $t1, $s0, $s1 # unsigned compare

•$t0: -4ten < 1,000,000,000ten?

•$t1: 4,294,967,292ten < 1,000,000,000ten?

Key Point: Instructions decide what binary bit-patterns mean

Chapter 4.1 - Integers 14

Two’s Complement Shortcut: Negation
• Invert every 0 to 1 and every 1 to 0, then add 1 to the result

– Unsigned sum of number and its inverted representation must
be 111...1112

– 111...1112= -110

– Let x´ mean the inverted representation of x

– Then x + x´ = -1 ⇒ x + x´ + 1 = 0 ⇒ x´ + 1 = -x

• Example: -4 to +4 to -4

• x : 1111 1111 1111 1111 1111 1111 1111 11002

x´ : 0000 0000 0000 0000 0000 0000 0000 00112

+1: 0000 0000 0000 0000 0000 0000 0000 01002

()x´: 1111 1111 1111 1111 1111 1111 1111 10112

+1: 1111 1111 1111 1111 1111 1111 1111 11002

IMPORTANT
SLIDE

Chapter 4.1 - Integers 15

Two’s Complement Shortcut
Using Sign extension

• Convert number represented in k bits to more than k bits
– e.g., 16-bit immediate field converted to 32 bits before adding to 32-bit

register in addi

• Simply replicate the most significant bit (sign bit) of smaller quantity
to fill new bits

– 2's comp. positive number has infinite 0s to left
– 2's comp. negative number has infinite 1s to left
– Finite representation hides most leading bits; sign extension restores

those that fit in the integer variable
– 16-bit -410 to 32-bit:

1111 1111 1111 11002

1111 1111 1111 1111 1111 1111 1111 11002

Chapter 4.1 - Integers 16

Do It Yourself
• Convert the two’s complement number

1111 1111 1111 1111 1111 1010two

into decimal (base ten):

Chapter 4.1 - Integers 17

Do It Yourself

• Convert the two’s complement number

1111 1111 1111 1111 1111 1111 1111 10102

into decimal (base ten):
• Could use conversion formula (hard)

1 x -231 + 1 x 230 + … 1 x 21 + 1 x 20

• Or, first use negation shortcut (easy)
0000 0000 0000 0000 0000 0000 0000 0101

1
0000 0000 0000 0000 0000 0000 0000 0110

= 6 (therefore, answer: -6)

+

Chapter 4.1 - Integers 18

1-bit Binary Addition
• two 1-bit values gives four cases:

0 0 1 1
0 1 0 1

0 1 1 (1) 0

• digital logic?: half-adder circuit

+ + + +

carry-out 1-bit sum

HAa
b

sum
carry-out

Chapter 4.1 - Integers 19

Multi-bit Addition (and Subtraction)
– 00 0111 = 710 +

00 0110 = 610

00 1101 = 1310

–

(0) (0) (1) (1) (0) 0
0 0 0 1 1 1

+ 0 0 0 1 1 0

(0) 0 (0)0 (0)1 (1)1 (1)0 (0)1

Subtract? Simply negate and add!

(carries)

HAa
b

sum
carry-out

carry-in

HAa
b

sum
carry-out

carry-in

carry-in
a
b

Chapter 4.1 - Integers 20

Detecting Overflow in 2’s Complement?
• Adding 2 31-bit positive 2’s complement numbers

can yield a result that needs 32 bits

– sign bit set with value of result (1) instead of proper
sign of result (0)

– since need just 1 extra bit, only sign bit can be wrong

Op A B Result

A + B >=0 >=0 <0
A + B <0 <0 >=0
A - B >=0 <0 <0
A - B <0 >=0 >=0

° Adding operands with different signs, (subtracting with
same signs) overflow cannot occur

Chapter 4.1 - Integers 21

Overflow for Unsigned Numbers?

• Adding 2 32-bit unsigned integers could yield a result
that needs 33 bits

– can't detect from "sign" of result

• Unsigned integers are commonly used for address
arithmetic, where overflows are ignored

• Hence, MIPS has unsigned arithmetic instructions,
which ignore overflow:

– addu, addiu, subu

– Recall that in C, all overflows are ignored, so unsigned

instructions are always used (different for Fortran, Ada)

Chapter 4.1 - Integers 22

Do It Yourself

• Add 4-bit signed (2’s complement) numbers:

1111 -110
+ 1110 -210

• Did overflow occur?

Chapter 4.1 - Integers 23

Do It Yourself
• Add 4-bit signed (2’s comp.) numbers :

1111 -110.
+ 1110 -210
11101.

• Did overflow occur?
– overflow in 2’s complement only if.

Negative + Negative → "Positive."
Positive + Positive → "Negative."

– overflow = carry-out only if numbers considered to be
unsigned.

• So: addition works same way for both unsigned, signed
numbers.

• But overflow detection is different.

Chapter 4.1 - Integers 24

Logical Operations

• Operations on less than full words
– Fields of bits or individual bits

• Think of word as 32 bits vs. 2’s comp. integers or unsigned
integers

• Need to extract bits from a word, insert bits into a word

• Extracting via Shift instructions
– C operators: << (shift left), >> (shift right)

• Inserting via And/Or instructions
– C operators: & (bitwise AND), | (bitwise OR)

Chapter 4.1 - Integers 25

Shift Instructions
• Move all the bits in a word to the left or right, filling the emptied bits

with 0’s

• Before and after shift left 8 of $s0 ($16):

0000 0000 0000 0000 0000 0000 0000 1101two

0000 0000 0000 0000 0000 1101 0000 0000two

• MIPS instructions
– shift left logical (sll) and shift right logical (srl)
–sll $s0, $s0, 8 # $s0 = $s0 << 8 bits
– R Format, using shamt (shift amount)!

0 0 16 16 08
op rs rt rd functshamt

Chapter 4.1 - Integers 26

Extracting a Field of Bits
° Extract bit field from bit 9 (left bit) to bit 2 (size = 8 bits) of

register $s1, place in rightmost part of register $s0

012345678931

0000 00000000000000000000

$s1

$s0

• Shift field as far left as possible (31-bit no.) and then as
far right as possible (32-size)

$s1

$s0

$s0

00 00000000000000000000
0000 00000000000000000000

sll $s0, $s1, 22 # 8bits to left end (31-9)
srl $s0, $s0, 24 # 8bits to right end(32-8)

Chapter 4.1 - Integers 27

And Instruction

• AND: bit-by-bit operation leaves a 1 in the result only if
both bits of the operands are 1. For example, if registers
$t1 and $t2

– 0000 0000 0000 0000 0000 1101 0000 00002

– 0000 0000 0000 0000 0011 1100 0000 00002

• After executing MIPS instruction
–and $t0, $t1, $t2 # $t0 = $t1 & $t2

• Value of register $t0
– 0000 0000 0000 0000 0000 1100 0000 00002

• AND can force 0s where 0 in the bit pattern
– Called a “mask” since mask “hides” bits

Chapter 4.1 - Integers 28

Or Instruction

• OR: bit-by-bit operation leaves a 1 in the result if either bit of the
operands is 1. For example, if registers $t1 and $t2

– 0000 0000 0000 0000 0000 1101 0000 00002

– 0000 0000 0000 0000 0011 1100 0000 00002

• After executing MIPS instruction
– or $t0, $t1, $t2 # $t0 = $t1 | $t2

• Value of register $t0

– 0000 0000 0000 0000 0011 1101 0000 00002

• OR can force 1s where 1 in the bit pattern

– If 0s in field of 1 operand, can insert new value

Chapter 4.1 - Integers 29

Inserting a Field of Bits (Almost OK;-)
° Insert bit field into bits 9⎯2 (leftmost bit is 9; size = 8 bits) of

register $s1 from rightmost part of register $s0 (rest is 0)

012345678931
0000 00000000000000000000

$s1

$s0

• 1. Mask out field; 2. shift left field 2; 3. OR in field

00000000
0000 00 000000000000000000

1. $s1

2. $t0

3. $s1

andi $s1, $s1, 0xfc03 # mask out $s1[2..9] = 0
sll $t0, $s0, 2 # field left 2 $t0[2..9]
or $s1, $s1, $t0 # OR in field $s1 OR $t0

Chapter 4.1 - Integers 30

Sign Extension of Immediates
•addi and slti: deal with signed numbers, so immediates are

sign extended

• Branch and data transfer address fields are sign extended too

•andi and ori work with unsigned integers, so immediates
padded with leading 0s

–andi won’t work as a mask in upper 16 bits

– Use register version instead

addiu $t1, $zero, 0xfc03 # 32b mask in $t1
and $s1, $s1, $t1 # mask out 9-2
sll $t0, $s0, 2 # field left 2
or $s1, $s1, $t0 # OR in field

Chapter 4.1 - Integers 31

The 5 Components of Any Computer

Personal Computer

Processor
(CPU)

Computer

Control
("brain")

Datapath
("brawn")

Memory Devices

Input

Output

We Will
Start Here:

Arithmetic-
Logic Unit
(ALU)

Chapter 4.1 - Integers 32

Overview: Digital Logic Design

• Topics we assume you know:
– Combinational and Sequential Logic Blocks
– Boolean Algebra/Logic Equations
– Truth Tables
– Logic Gates

• Appendix B gives review
– need B.1 - B.3 for Chapter 4
– will need B.4 - B.6 for Chapter 5-7

Chapter 4.1 - Integers 33

Combinational, Sequential Logic

• Two kinds of Logic Blocks (Circuits)
– Combinational Logic Block

• described by a logic equation or truth table
X = AB + CD

• no memory: output of block depends only on the current
inputs; no feedback loops

– Sequential Logic Block
• described by a finite state machine
• contains memory (local state); output depends on current

inputs and stored value; permits feedback loops
– Will use combinational logic blocks first for the datapath, then

sequential logic for the control unit (Chapter 5)

Chapter 4.1 - Integers 34

Implementing Logic Blocks
• Logic Gates : primitives

AND OR NOT (inverter)

• Combine gates to implement more complex Boolean function:
W = X + (YZ)

• Some shorthand:

X
W

Y
Z

NOR=

= NAND

Chapter 4.1 - Integers 35

MIPS arithmetic instruction format
31 25 20 15 5 0

R-type:
op Rs Rt Rd funct

I-Type: op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx

Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

00 50

00 51

SLT 00 52

SLTU 00 53

Chapter 4.1 - Integers 36

Refined Requirements
(1) Functional Specification
inputs: 2 x 32-bit operands A, B, 4-bit mode
outputs: 32-bit result S, 1-bit carry, 1 bit overflow
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram (powerview symbol, VHDL entity)

ALUALU
A B

m
ovf

S

32 32

32

4
c

Chapter 4.1 - Integers 37

Gates, Truth Tables and Logic Equations

• Digital Electronics: Circuits that operate with only two voltages
of interest.

• "High" and "Low" voltage, corresponding to logic values. Other
values occur only during transitions.

• Example.
– "High" ∈ [5.0V, 3.5V]; "Low" ∈ [0.0V, 1.5V];

• Associate Logic 1 with High and Logic 0 with Low.
• We will talk about logic signal values, instead of voltage levels.

– Signal "asserted" ↔ 1; "de-asserted" ↔ 0.

Chapter 4.1 - Integers 38

Combinational Circuits & Truth Tables
• Combinational logic blocks have no memory and can be fully described by truth

tables.

• Each function with n inputs → 2n entries.
• Let Z = G (A, B, C).
• A Truth Table describes the behaviour of G.

A B C Z D E F.
0 0 0 z000 0 0 0.
0 0 1 z001 1 0 0.
0 1 0 z010 1 0 0.
0 1 1 z011 1 1 0.
1 0 0 z100 1 0 0.
1 0 1 z101 1 1 0.
1 1 0 z110 1 1 0.
1 1 1 z111 1 0 1.

Chapter 4.1 - Integers 39

Hardware Building Blocks

AND Gate

CA
B

Symbol
A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition
OR Gate

A
B C A B C

0 0 0
0 1 1
1 0 1
1 1 1

DefinitionSymbol

CA
Symbol

Inverter

A C
0 1
1 0

Definition

C

Symbol
Multiplexor

S C
0 A
1 B

Definition

A

B

0

1

S

Chapter 4.1 - Integers 40

Multiplexors

• AND, OR, Inverter (NOT) are the logic primitives (smallest logic
elements)

• Multiplexors, e.g., Selector, Mux, can be constructed from
primitives:

A

B

S

C

C

Symbol Definition

A

B

0

1

S

C = SB + S'A

M
u
x

S C
0 A
1 B

Chapter 4.1 - Integers 41

Multiplexors

• Larger muxes: need multiple "select" inputs: interpret as binary
number

– Can implement directly with gates, or
– use decoder (see B.3) to enable a single input, or
– combine several 2-input muxes

C

A
B

0
1

D

M
u
x2

3

S1S2

E

S1 S2 E
0 0 A
0 1 B
1 0 C
1 1 D

Appendix B.3
for more details

Chapter 4.1 - Integers 42

Arithmetic Logic Unit (ALU)

• MIPS ALU is 32 bits wide

• Start with 1-bit ALU, then connect 32 1-bit ALUs to form a 32-
bit ALU in a "bit slice" manner

• Since hardware building blocks include an AND gate and an
OR gate, and since AND and OR are two of the operations of
the ALU, start here:

Op C
0 A and B
1 A or B

Definition
A
B C

0

1

Op

	Representing Numbers: Review
	What If Too Big?
	How to Avoid Overflow? Allow It Sometimes?
	What If Overflow Detected?
	Representing Negative Numbers
	Two’s Complement (32-bit)
	Two’s Complement Formula, Example
	Ways to Represent Signed Numbers
	Ways to Represent Signed Numbers
	Signed Vs. Unsigned Comparisons
	Signed Vs. Unsigned Comparisons
	Two’s Complement Shortcut: Negation
	Two’s Complement Shortcut
	Do It Yourself
	Do It Yourself
	1-bit Binary Addition
	Multi-bit Addition (and Subtraction)
	Detecting Overflow in 2’s Complement?
	Overflow for Unsigned Numbers?
	Do It Yourself
	Do It Yourself
	Logical Operations
	Shift Instructions
	Extracting a Field of Bits
	And Instruction
	Or Instruction
	Inserting a Field of Bits (Almost OK;-)
	Sign Extension of Immediates
	The 5 Components of Any Computer
	Overview: Digital Logic Design
	Combinational, Sequential Logic
	Implementing Logic Blocks
	MIPS arithmetic instruction format
	Refined Requirements
	Gates, Truth Tables and Logic Equations
	Combinational Circuits & Truth Tables
	Hardware Building Blocks
	Multiplexors
	Multiplexors
	Arithmetic Logic Unit (ALU)

