
Chapter 3 - ISA -Part 1 1

Part I
Introduction to MIPS

Instruction Set Architecture

Chapter 3 - ISA -Part 1 2

A Translation Hierarchy
• High Level Language (HLL)

programs first compiled
(possibly into assembly),
then linked and finally
loaded into main memory.

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: L ibrary routine (machine language)

Chapter 3 - ISA -Part 1 3

MIPS R3000 Instruction Set
Architecture (Summary)

R0 - R31

PC
HI
LO

Registers
° Machine Environment Target

° Instruction Categories
Load/Store
Computational
Jump and Branch
Floating Point (coprocessor)
Memory Management
Special

3 Instruction Formats: all 32 bits wide
OP Rs Rt rd sa funct

OP Rs Rt Immediate

OP jump target

I:
R:

J:

Chapter 3 - ISA -Part 1 4

Machine Language Instructions
° Design Goals [Burks, Coldstine, Von Neuman, 1947]:

Simplicity in resources each instruction needs,
Clarity in definition and application,
Efficient implementation by underlying h/w.

° More primitive than higher level languages.
e.g., no sophisticated control flow.

° Very restrictive
e.g., MIPS Arithmetic Instructions.

° We’ll be working with the MIPS instruction set architecture
(www.mips.org definitive site).

similar to other architectures developed since the 1980's.
used by NEC, Nintendo, Silicon Graphics, Sony.

Chapter 3 - ISA -Part 1 5

Review C Operators/operands
• Operators: +, -, *, /, % (mod); (7/4==1, 7%4==3)

• Operands:
– Variables: fahr, celsius
– Constants: 0, 1000, -17, 15.4

• In C (and most High Level Languages) variables declared and
given a type first

Example:
int fahr, celsius;
int a, b, c, d, e;

Chapter 3 - ISA -Part 1 6

C Operators/operands

• This is the Computation Model by ``State-Effects''.

Programs move from state to state by means of assignments
changing their state

• Assignment Statement:
Variable = expression, e.g.,
celsius = 5*(fahr-32)/9;
a = b+c+d-e;

Chapter 3 - ISA -Part 1 7

Assembly Operators

° Syntax of Assembly Operator
1) operation by name “Mnemonics''
2) operand getting result Register or Memory
3) 1st operand for operation
4) 2nd operand for operation

° Ex. add b to c and put the result in a: add a, b, c
Called an Assembly Language Instruction

° Equivalent assignment statement in C:
a = b + c;

Chapter 3 - ISA -Part 1 8

Assembly Operators/instructions
° How to do the following C statement?

a = b + c + d - e;

° Break into multiple instructions
add a, b, c # a = sum of b & c
add a, a, d # a = sum of b,c,d
sub a, a, e # a = b+c+d-e

° To right of sharp sign (#) is a comment terminated by end of
the line. Applies only to current line.

C comments have format /* comment */ , can span many lines

Chapter 3 - ISA -Part 1 9

Assembly Operators/instructions

° Note: Unlike C (and most other HLLs), each line of assembly
contains at most one instruction

add a,b,c add d,e,f WRONG

add a,b,c
add d,e,f RIGHT

Chapter 3 - ISA -Part 1 10

Compilation

° How to turn the notation that programmers prefer into notation
computer understands?

° Program to translate C statements into Assembly Language
instructions; called a compiler

° Example: compile by hand this C code:
a = b + c;
d = a - e;

° Easy:

add a, b, c
sub d, a, e

° Big Idea: compiler translates notation from one level of
computing abstraction to lower level

Chapter 3 - ISA -Part 1 11

Compilation 2
° Example: compile by hand this C code:

f = (g + h) - (i + j);

° First sum of g and h. Where to put result?

Add f, g, h # f contains g+h

° Now sum of i and j. Where to put result?
Cannot use f !

Compiler creates temporary variable to hold sum: t1
add t1, i, j # t1 contains i+j

° Finally produce difference
sub f, f, t1 # f = (g+h)-(i+j)

Chapter 3 - ISA -Part 1 12

Compilation -- Summary

° C statement (5 operands, 3 operators):
f = (g + h) - (i + j);

° Becomes 3 assembly instructions
(6 unique operands, 3 operators):

add f,g,h # f contains g+h

add t1,i,j # t1 contains i+j

sub f,f,t1 # f=(g+h)-(i+j)

° In general, each line of C produces many assembly instructions
One reason why people program in C vs. Assembly; fewer lines of

code
Other reasons? (many!)

Chapter 3 - ISA -Part 1 13

Assembly Design: Key Concepts

• Assembly language is essentially directly supported in
hardware, therefore ...

• It is kept very simple!

– Limit on the type of operands

– Limit on the set operations that can be done to absolute
minimum.

• if an operation can be decomposed into a simpler
operation, don’t include it.

Chapter 3 - ISA -Part 1 14

Assembly Variables: Registers (1/4)

• Unlike HLL, assembly cannot use variables

– Why not? Keep Hardware Simple

• Assembly Operands are registers

– limited number of special locations built directly into the hardware

– operations can only be performed on these!

• Benefit: Since registers are directly in hardware, they are very
fast

Chapter 3 - ISA -Part 1 15

Assembly Variables: Registers (2/4)

• Drawback: Since registers are in hardware, there are a
predetermined number of them

– Solution: MIPS code must be very carefully put together to
efficiently use registers

• 32 registers in MIPS

– Why 32? Smaller is faster

• Each MIPS register is 32 bits wide

– Groups of 32 bits called a word in MIPS

Chapter 3 - ISA -Part 1 16

Assembly Variables: Registers (3/4)

• Registers are numbered from 0 to 31

• Each register can be referred to by number or name

• Number references:

$0, $1, $2, … $30, $31

Chapter 3 - ISA -Part 1 17

Assembly Variables: Registers (4/4)
• By convention, each register also has a name to make it easier

to code

• For now:

$16 - $22 $s0 - $s7

(correspond to C variables)

$8 - $15 $t0 - $t7

(correspond to temporary variables)

• In general, use register names to make your code more
readable

Chapter 3 - ISA -Part 1 18

Assembly Instructions

• In assembly language, each statement (called an Instruction),
executes exactly one of a short list of simple commands

• Unlike in C (and most other High Level Languages), where each
line could represent multiple operations

Chapter 3 - ISA -Part 1 19

Addition and Subtraction (1/3)
• Syntax of Instructions:

1 2, 3, 4

where:

1) operation by name

2) operand getting result (destination)

3) 1st operand for operation (source1)

4) 2nd operand for operation (source2)

• Syntax is rigid:

– 1 operator, 3 operands

– Why? Keep Hardware simple via regularity

Chapter 3 - ISA -Part 1 20

Addition and Subtraction (2/3)
• Addition in Assembly

– Example (in MIPS): add $s0, $s1, $s2

– Equivalent to (in C): a = b + c

where registers $s0, $s1, $s2 are associated with variables a, b, c

• Subtraction in Assembly

– Example (in MIPS): sub $s3, $s4, $s5

– Equivalent to (in C): d = e - f

where registers $s3, $s4, $s5 are associated with variables d, e, f

Chapter 3 - ISA -Part 1 21

Addition and Subtraction (3/3)
• How to do the following C statement?

a = b + c + d - e;

• Break it into multiple instructions:
add $s0, $s1, $s2 # a = b + c

add $s0, $s0, $s3 # a = a + d

sub $s0, $s0, $s4 # a = a - e

• Notice: A single line of C may break up into several lines of
MIPS.

• Notice: Everything after the hash mark on each line is ignored.

Chapter 3 - ISA -Part 1 22

Immediates

• Immediates are numerical constants.

• They appear often in code, so there are special instructions for
them.

• ``Add immediate'':
addi $s0, $s1, 10 (in MIPS)
F = g + 10 (in C)
Where registers $s0, $s1 are associated with variables f, g

• Syntax similar to add instruction, except that last argument is a
number instead of a register.

Chapter 3 - ISA -Part 1 23

Register Zero
• One particular immediate, the number zero (0), appears very often

in code.

• So we define register zero ($0 or $zero) to always have the value 0.

• This is defined in hardware, so an instruction like.
addi $0, $0, 5.

Will not do anything.

• Use this register, it’s very handy!

Chapter 3 - ISA -Part 1 24

Assembly Operands: Memory

• C variables map onto registers; What about large data structures
like arrays?

• 1 of 5 components of a computer: memory contains such data
structures.

• But MIPS arithmetic instructions only operate on registers, never
directly on memory.

° Data transfer instructions transfer data between registers and
memory:

– Memory to register.

– Register to memory.

Chapter 3 - ISA -Part 1 25

MIPS Addressing Formats (Summary)
• How memory can be addressed in MIPS

B y te H a lfw o r d W o rd

R e g is te rs

M e m o r y

M e m o r y

W o rd

M e m o r y

W o rd

R e g is te r

R e g is te r

1 . Im m e d ia te a d d re s s in g

2 . R e g is te r a d d r e s s in g

3 . B a s e a d d r e s s in g

4 . P C -re la t iv e a d d re s s in g

5 . P s e u d o d ir e c t a d d r e s s in g

o p rs r t

o p rs r t

o p rs r t

o p

o p

rs r t

A d d r e s s

A d d r e s s

A d d re s s

rd . . . fu n c t

Im m e d ia te

P C

P C

+

+

Chapter 3 - ISA -Part 1 26

Data Transfer: Memory to Reg (1/4)
• To transfer a word of data, we need to specify two things:

– Register: specify this by number (0 - 31).

– Memory address: more difficult.

- Think of memory as a single one-dimensional array, so we
can address it simply by supplying a pointer to a memory
address.

- Other times, we want to be able to offset from this pointer.

Chapter 3 - ISA -Part 1 27

Data Transfer: Memory to Reg (2/4)
• To specify a memory address to copy from, specify two things:

– A register which contains a pointer to memory.

– A numerical offset (in bytes).

• The desired memory address is the sum of these two values.

• Example: 8($t0).

– Specifies the memory address pointed to by the value in $t0, plus
8 bytes.

Chapter 3 - ISA -Part 1 28

Data Transfer: Memory to Reg (3/4)
• Load instruction syntax:

1 2, 3(4)

– Where

1) operation (instruction) name

2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

• Instruction name:

– lw (meaning load word, so 32 bits or one word are loaded at a
time)

Chapter 3 - ISA -Part 1 29

Data Transfer: Memory to Reg (4/4)

• Example: lw $t0, 12($s0)

This instruction will take the pointer in $s0, add 12 bytes to it, and
then load the value from the memory pointed to by this calculated
sum into register $t0

• Notes:

– $S0 is called the base register

– 12 is called the offset

– Offset is generally used in accessing elements of array or structure:
base register points to beginning of array or structure

Chapter 3 - ISA -Part 1 30

Data Transfer: Reg to Memory
• Also want to store value from a register into memory

• Store instruction syntax is identical to Load instruction syntax

• Instruction Name:

sw (meaning Store Word, so 32 bits or one word are loaded at a
time)

• Example: sw $t0, 12($s0)

This instruction will take the pointer in $s0, add 12 bytes to it, and
then store the value from register $t0 into the memory address
pointed to by the calculated sum

Chapter 3 - ISA -Part 1 31

Pointers Vs. Values

° Key Concept: A register can hold any 32-bit value. That value can
be a (signed) int, an unsigned int, a pointer (memory address),
etc.

• If you write
lw $t2, 0($t0)
then, $t0 better contain a pointer

• What if you write
add $t2, $t1, $t0
then, $t0 and $t1 must contain?

Chapter 3 - ISA -Part 1 32

Addressing: Byte Vs. Word
• Every word in memory has an address, similar to an index in an array

• Early computers numbered words like C numbers elements of an
array:

– Memory[0], memory[1], memory[2], …

Called the “address” of a word

Computers needed to access 8-bit bytes as well as words
(4 bytes/word)

Today machines address memory as bytes, hence word
addresses differ by 4

Memory[0], Memory[4], Memory[8],

Chapter 3 - ISA -Part 1 33

Compilation With Memory
• What offset in lw to select A[8] in C?

• 4 x 8 = 32 to select A[8]: byte vs. Word

• Compile by hand using registers:
g = h + A[8];
– g: $s1, h: $s2, base address of A: $s3

• 1st transfer from memory to register:

lw $t0, 32($s3) # $t0 gets A[8]
– Add 32 to $s3 to select A[8], put into $t0

• Next add it to h and place in g
add $s1, $s2, $t0 # $s1 = h + A[8]

Chapter 3 - ISA -Part 1 34

Notes About Memory
• Pitfall: forgetting that sequential word addresses in machines

with byte addressing do not differ by 1.

– Many an assembly language programmer has toiled over errors
made by assuming that the address of the next word can be
found by incrementing the address in a register by 1 instead of
by the word size in bytes.

– So remember that for both lw and sw, the sum of the base
address and the offset must be a multiple of 4 (to be word
aligned).

Chapter 3 - ISA -Part 1 35

More Notes About Memory: Alignment
• MIPS requires that all words start at addresses that are multiples

of 4 bytes

0 1 2 3
Aligned

Not
Aligned

Bytes in Word

Word Location

Called Alignment: objects must fall on address that is multiple of
their size.

Chapter 3 - ISA -Part 1 36

Role of Registers Vs. Memory
• What if more variables than registers?

– Compiler tries to keep most frequently used variable in
registers

– Writing less frequently used to memory: spilling

• Why not keep all variables in memory?

– Smaller is faster:
registers are faster than memory

– Registers more versatile:

• MIPS arithmetic instructions can read 2, operate on them,
and write 1 per instruction

• MIPS data transfer only read or write 1 operand per
instruction, and no operation

Chapter 3 - ISA -Part 1 37

Summary (1/2)
• In MIPS assembly language:

– Registers replace C variables.

– One instruction (simple operation) per line.

– Simpler is better.

– Smaller is faster.

• Memory is byte-addressable, but lw and sw access one word at
a time.

• A pointer (used by lw and sw) is just a memory address, so we
can add to it or subtract from it (using offset).

Chapter 3 - ISA -Part 1 38

Summary (2/2)
• New Instructions:

add, addi,

sub

lw, sw

• New Registers:

C Variables: $s0 - $s7

Temporary Variables: $t0 - $t9

Zero: $zero

	Part IIntroduction to MIPSInstruction Set Architecture
	A Translation Hierarchy
	MIPS R3000 Instruction Set Architecture (Summary)
	Machine Language Instructions
	Review C Operators/operands
	C Operators/operands
	Assembly Operators
	Assembly Operators/instructions
	Assembly Operators/instructions
	Compilation
	Compilation 2
	Compilation -- Summary
	Assembly Design: Key Concepts
	Assembly Variables: Registers (1/4)
	Assembly Variables: Registers (2/4)
	Assembly Variables: Registers (3/4)
	Assembly Variables: Registers (4/4)
	Assembly Instructions
	Addition and Subtraction (1/3)
	Addition and Subtraction (2/3)
	Addition and Subtraction (3/3)
	Immediates
	Register Zero
	Assembly Operands: Memory
	MIPS Addressing Formats (Summary)
	Data Transfer: Memory to Reg (1/4)
	Data Transfer: Memory to Reg (2/4)
	Data Transfer: Memory to Reg (3/4)
	Data Transfer: Memory to Reg (4/4)
	Data Transfer: Reg to Memory
	Pointers Vs. Values
	Addressing: Byte Vs. Word
	Compilation With Memory
	Notes About Memory
	More Notes About Memory: Alignment
	Role of Registers Vs. Memory
	Summary (1/2)
	Summary (2/2)

