
Chapter 2:
Performance

Performance
° Purchasing perspective

• given a collection of machines, which has the
- best performance ?
- least cost ?
- best performance / cost ?

° Design perspective
• faced with design options, which has the

- best performance improvement ?
- least cost ?
- best performance / cost ?

° Both require
• basis for comparison
• metric for evaluation

° Our goal is to understand cost & performance implications of
architectural choices

Two notions of “performance”

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

Which has higher performance?
° Time to do the task (Execution Time)

– execution time, response time, latency
° Tasks per day, hour, week, sec, ns. .. (Performance)

– throughput, bandwidth
Response time and throughput often are in opposition

Definitions

° Performance is in units of things-per-second
• bigger is better

° If we are primarily concerned with response time
• performance(x) = 1

execution_time(x)

" X is n times faster than Y" means
Performance(X)

n = ----------------------
Performance(Y)

Example

• Time of Concorde vs. Boeing 747?
• Concord is 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?
• Concord is 178,200 pmph / 286,700 pmph = 0.62 “times faster”
• Boeing is 286,700 pmph / 178,200 pmph = 1.6 “times faster”

• Boeing is 1.6 times (“60%”)faster in terms of throughput
• Concord is 2.2 times (“120%”) faster in terms of flying time

We will focus primarily on execution time for a single job

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
measure
• hard to identify cause

• portable
• widely used
• improvements
useful in reality

•less representative

• easy to “fool”• easy to run, early in
design cycle

• “peak” may be a long
way from application
performance

• identify peak
capability and
potential bottlenecks

SPEC95

° Eighteen application benchmarks (with inputs) reflecting a
technical computing workload

° Eight integer
• go, m88ksim, gcc, compress, li, ijpeg, perl, vortex

° Ten floating-point intensive
• tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d,

apsi, fppp, wave5
° Must run with standard compiler flags

• eliminate special undocumented incantations that may
not even generate working code for real programs

Metrics of performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month

Useful Operations per second

Each metric has a place and a purpose, and each can be misused

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

instr. count CPI clock rate
Program

Compiler

Instr. Set Arch.

Organization

Technology

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

instr count CPI clock rate
Program X

Compiler X X

Instr. Set X X

Organization X X

Technology X

CPI

“Average cycles per instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Clock Cycles / Instruction Count

CPU time = ClockCycleTime * SUM CPI * I
i = 1

n

i i

CPI = SUM CPI * F where F = I
i = 1

n

i i i i

Instruction Count

"instruction frequency"

Invest Resources where time is Spent!

Example (RISC processor)

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%
Branch 20% 2 .4 18%

2.2

How much faster would the machine be is a better data cache
reduced the average load time to 2 cycles?

How does this compare with using branch prediction to shave a
cycle off the branch time?

What if two ALU instructions could be executed at once?

Amdahl's Law

Speedup due to enhancement E:
ExTime w/o E Performance w/ E

Speedup(E) = -------------------- = ---------------------
ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the
task

by a factor S and the remainder of the task is unaffected
then,

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = 1_____
(1-F) + F/S

Summary: Salient features of MIPS I

•32-bit fixed format inst (3 formats)
•32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

•partitioned by software convention
•3-address, reg-reg arithmetic instr.
•Single address mode for load/store: base+displacement

–no indirection, scaled
–16-bit immediate plus LUI
•Simple branch conditions

• compare against zero or two registers for =,°
• no integer condition codes

•Delayed branch
•execute instruction after the branch (or jump) even if
the branch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

Summary: Instruction set design (MIPS)
° Use general purpose registers with a load-store architecture: YES
° Provide at least 16 general purpose registers plus separate floating-

point registers: 31 GPR & 32 FPR
° Support basic addressing modes: displacement (with an address

offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register
deferred; : YES: 16 bits for immediate, displacement (disp=0 =>
register deferred)

° All addressing modes apply to all data transfer instructions : YES
° Use fixed instruction encoding if interested in performance and use

variable instruction encoding if interested in code size : Fixed
° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and

32-bit and 64-bit IEEE 754 floating point numbers: YES
° Support these simple instructions, since they will dominate the

number of instructions executed: load, store, add, subtract, move
register-register, and, shift, compare equal, compare not equal,
branch (with a PC-relative address at least 8-bits long), jump, call,
and return: YES, 16b

° Aim for a minimalist instruction set: YES

Summary: Evaluating Instruction Sets?
Design-time metrics:

° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?

Static Metrics:
° How many bytes does the program occupy in memory?

Dynamic Metrics:
° How many instructions are executed?
° How many bytes does the processor fetch to execute the
program?
° How many clocks are required per instruction?
° How "lean" a clock is practical?

Best Metric: Time to execute the program!

NOTE: this depends on instructions set, processor organization, and
compilation techniques.

CPI

Inst. Count Cycle Time

	
	Two notions of “performance”
	Definitions
	Example
	Basis of Evaluation
	SPEC95
	Metrics of performance
	Aspects of CPU Performance
	Aspects of CPU Performance
	CPI
	Example (RISC processor)
	Amdahl's Law
	Summary: Salient features of MIPS I
	Summary: Instruction set design (MIPS)
	Summary: Evaluating Instruction Sets?

