
COMPUTER ARCHITECURE

Multiprocessors

Parallel Computers

• Definition: “A parallel computer is a collection of
processing elements that cooperate and communicate to
solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989
• Questions about parallel computers:

– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted?
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?

Why Multiprocessors?

• Collect multiple microprocessors together
to improve performance beyond a single processor
– Collecting several more effective than designing a custom

processor
• Complexity of current microprocessors

– Do we have enough ideas to sustain 1.5X/yr?
– Can we deliver such complexity on schedule?

• Slow (but steady) improvement in parallel software (scientific
apps, databases, OS)

• Emergence of embedded and server markets driving
microprocessors in addition to desktops
– Embedded functional parallelism, producer/consumer model
– Server figure of merit is tasks per hour vs. latency

Flynn’s Tahonomy (1972)

• SISD (Single Instruction Single Data)
– uniprocessors

• MISD (Multiple Instruction Single Data)
– multiple processors on a single data stream;

• SIMD (Single Instruction Multiple Data)
– same instruction is executed by multiple processors

using different data
– Adv.: simple programming model, low overhead, flexibility,

all custom integrated circuits
– Examples: Illiac-IV, CM-2

• MIMD (Multiple Instruction Multiple Data)
– each processor fetches its own instructions and

operates on its own data
– Examples: Sun Enterprise 5000, Cray T3D, SGI Origin
– Adv.: flexible, use off-the-shelf micros
– MIMD current winner (< 128 processor MIMD machines)

MIMD

• Why is it the choice for general-purpose multiprocessors
– Flexible

• can function as single-user machines focusing on high-
performance for one application,

• multiprogrammed machine running many tasks simultaneously,
or

• some combination of these two
– Cost-effective: use off-the-shelf processors

• Major MIMD Styles
– Centralized shared memory

("Uniform Memory Access" time or "Shared Memory Processor")
– Decentralized memory (memory module with CPU)

Centralized Shared-Memory
Architecture

• Small processor counts makes it possible
– that processors share one a single centralized memory
– to interconnect the processors and memory by a bus

P0 P1

M IO

C C C

Pn
... C - Cache

M - Memory

IO - Input/Output

Distributed Memory Machines
• Nodes include processor(s), some memory, typically some

IO, and interface to an interconnection network

...

C - Cache

M - Memory

IO - Input/Output

P0

M

C

IO

Interconnection Network

P1

M

C

IO

Pn

M

C

IO

Pro: Cost effective approach to scale memory bandwidth
Pro: Reduce latency for accesses to local memory
Con: Communication complexity

Memory Architectures

• DSM (Distributed Shared Memory)
– physically separate memories can be addressed

as one logically shared address space
• the same physical address on two different processors

refers to the same location in memory
• Multicomputer

– the address space consists of multiple private address
spaces that are logically disjoint and cannot be addressed by
a remote processor

• the same physical address on two different processors
refers to two different locations in two different memories

Communication Models

• Shared Memory
– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

• Model of choice for uniprocessors, small-scale MPs
• Ease of programming
• Lower latency
• Easier to use hardware controlled caching

• Message passing
– Processors have private memories,

communicate via messages
– Advantages:

• Less hardware, easier to design
• Focuses attention on costly non-local operations

• Can support either SW model on either HW base

Performance Metrics:
Latency and Bandwidth

• Bandwidth
– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Challenge is link speed of network interface vs.

bisection bandwidth of network
• Latency

– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to

overlap communication and computation
– Overhead to communicate is a problem in many machines

• Latency Hiding
– How can a mechanism help hide latency?
– Increases programming system burden
– Examples: overlap message send with computation,

prefetch data, switch to other tasks

Shared Address Model Summary

• Each processor can name
every physical location in the machine

• Each process can name
all data it shares with other processes

• Data transfer via load and store
• Data size: byte, word, ... or cache blocks
• Uses virtual memory to map

virtual to local or remote physical
• Memory hierarchy model applies:

now communication moves data to local processor cache (as load
moves data from memory to cache)
– Latency, BW, scalability when communicate?

Shared Address/Memory
Multiprocessor Model

• Communicate via Load and Store
– Oldest and most popular model

• Based on timesharing: processes on multiple processors
vs. sharing single processor

• Process: a virtual address space
and ~ 1 thread of control
– Multiple processes can overlap (share),

but ALL threads share a process address space
• Writes to shared address space by one thread are visible to

reads of other threads
– Usual model: share code, private stack,

some shared heap, some private heap

SMP Interconnect

• Processors to Memory AND to I/O
• Bus based: all memory locations equal access time so SMP

= “Symmetric MP”
– Sharing limited BW as add processors, I/O

Message Passing Model

• Whole computers (CPU, memory, I/O devices) communicate as
explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory system

• Send specifies local buffer + receiving process on remote
computer

• Receive specifies sending process on remote computer + local
buffer to place data
– Usually send includes process tag

and receive has rule on tag: match 1, match any
– Synch: when send completes, when buffer free, when request

accepted, receive wait for send
• Send+receive => memory-memory copy, where each each

supplies local address,
AND does pairwise sychronization!

Advantages of Shared-Memory
Communication Model

• Compatibility with SMP hardware
• Ease of programming when communication patterns are complex

or vary dynamically during execution
• Ability to develop apps using familiar SMP model,

attention only on performance critical accesses
• Lower communication overhead, better use of BW for small items,

due to implicit communication and memory mapping to implement
protection in hardware, rather than through I/O system

• HW-controlled caching to reduce remote comm.
by caching of all data, both shared and private

Advantages of Message-passing
Communication Model

• The hardware can be simpler (esp. vs. NUMA)
• Communication explicit => simpler to understand; in shared

memory it can be hard to know when communicating and when
not, and how costly it is

• Explicit communication focuses attention on costly aspect of
parallel computation, sometimes leading to improved structure in
multiprocessor program

• Synchronization is naturally associated with sending messages,
reducing the possibility for errors introduced by incorrect
synchronization

• Easier to use sender-initiated communication,
which may have some advantages in performance

Amdahl’s Law and Parallel
Computers

• Amdahl’s Law (FracX: original % to be speed up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

• A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

• Ex. What fraction sequential to get 80X speedup from 100
processors? Assume either 1 processor or 100 fully used

• 80 = 1 / [(FracX/100 + (1-FracX)]
• 0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
• FracX = (80-1)/79.2 = 0.9975
• Only 0.25% sequential!

Small-Scale—Shared Memory

• Caches serve to:
– Increase bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared data

• What about cache consistency?

Time Event $A $B X (memory)

0

1

1

1 CPU A: R x 1

1

1

2 CPU B: R x 1 1

3 CPU A: W x,0 0 0

What Does Coherency Mean?

• Informally:
– “Any read of a data item must return the most recently written

value”
– this definition includes both coherence and consistency

• coherence: what values can be returned by a read
• consistency: when a written value will be returned by a read

• Memory system is coherent if
– a read(X) by P1 that follows a write(X) by P1, with no writes of X by

another processor occurring between these two events, always
returns the value written by P1

– a read(X) by P1 that follows a write(X) by another processor,
returns the written value if the read and write are sufficiently
separated and no other writes occur between

– writes to the same location are serialized: two writes to the same
location by any two CPUs are seen in the same order by all CPUs

Potential HW Coherence Solutions

• Snooping Solution (Snoopy Bus):
– every cache that has a copy of the data also has a copy of the

sharing status of the block
– Processors snoop to see if they have a copy and respond

accordingly
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes (discuss later)
– Keep track of what is being shared in 1 centralized place (logically)
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network
– Scales better than Snooping
– Actually existed BEFORE Snooping-based schemes

Basic Snoopy Protocols

• Write Invalidate Protocol
– A CPU has exclusive access to a data item before it writes that item
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copy

• Write Update Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and

update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration

Write Invalidate versus Update

• Multiple writes to the same word with no intervening reads
– Update: multiple broadcasts

• For multiword cache blocks
– Update: each word written in a cache block requires a write

broadcast
– Invalidate: only the first write to any word in the block

requires an invalidation
• Update has lower latency between write and read

Snooping Cache Variations

Berkeley
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic
Protocol

Exclusive
Shared
Invalid

Illinois
Protocol
Private Dirty
Private Clean

Shared
Invalid

MESI
Protocol

Modfied (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy,

its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses

Snoopy-Cache State Machine-I

State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on busCPU read hit

CPU write hit

Snoopy-Cache State Machine-II

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

State machine
for bus requests
for each
cache block

Place read miss
on bus

State machine
for CPU requests
for each
cache block and
for bus requests
for each

cache block

Snoopy-Cache State Machine-III

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

Example
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Processor 1 Processor 2 Bus Memory

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

Example: Step 1
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.
Active arrow = Remote

Write
Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

Example: Step 2
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

Example: Step 3
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

A1
A1

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2.

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

A1
A1
A1

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

A1
A1
A1

Remote
Write

Write Back

Remote Write

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 != A2

CPU Write Miss
Write Back

CPU Read Miss

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

• Otherwise, another processor may get bus first,
and then write the same cache block!

– Two step process:
• Arbitrate for bus
• Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart

– Split transaction bus:
• Bus transaction is not atomic:

can have multiple outstanding transactions for a block
• Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
• Must track and prevent multiple misses for one block

• Must support interventions and invalidations

Implementing Snooping Caches

• Multiple processors must be on bus,
access to both addresses and data

• Add a few new commands to perform coherency,
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags,
could interfere with CPU just to check:
– solution 1: duplicate set of tags for L1 caches just to allow checks in

parallel with CPU
– solution 2: L2 cache already duplicate,

provided L2 obeys inclusion with L1 cache
• block size, associativity of L2 affects L1

Implementing Snooping Caches

• Bus serializes writes, getting bus ensures
no one else can perform memory operation

• On a miss in a write back cache, may have the desired copy
and its dirty, so must reply

• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)

MESI: CPU Requests

Invalid Exclusive

Modified
(read/write)

CPU Read
BusRd / NoSh

CPU Write
/BusRdEx

CPU Read hit

CPU read miss
BusWB, BusRd / NoSh

CPU Read miss
BusRd / NoSh

CPU Write Miss
BusRdEx
CPU Write Hit
BusInv

CPU read hit
CPU write hit

Shared

CPU read miss
BusWB, BusRd / Sh

CPU Read hit

CPU write hit /-

CPU read miss
BusWB, BusRd / NoSh

CPU read miss
BusWB, BusRd / Sh

MESI: Bus Requests

Invalid Exclusive

Modified
(read/write)

Shared
BusRd / =>BusWB

BusRd / => Sh

BusRdEx

BusRdEx / =>BusWB

BusRdEx

Fundamental Issues

• 3 Issues to characterize parallel machines
– 1) Naming
– 2) Synchronization
– 3) Performance: Latency and Bandwidth

(covered earlier)

Fundamental Issue #1: Naming

• Naming: how to solve large problem fast
– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a compiler; via
load where just remember address or keep track of
processor number and local virtual address for msg.
passing

• Choice of naming affects replication of data; via load in
cache memory hierarchy or via SW replication and
consistency

Fundamental Issue #1: Naming

• Global physical address space:
any processor can generate,
address and access it in a single operation
– memory can be anywhere:

virtual addr. translation handles it
• Global virtual address space: if the address space of each

process can be configured to contain all shared data of the
parallel program

• Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel program

Fundamental Issue #2:
Synchronization

• To cooperate, processes must coordinate
• Message passing is implicit coordination with transmission

or arrival of data
• Shared address

=> additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread,
interrupt a processor

Summary: Parallel Framework

• Layers:
– Programming Model:

• Multiprogramming :
lots of jobs, no communication

• Shared address space:
communicate via memory

• Message passing: send and receive messages
• Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Programming Model
Communication
Abstraction
Interconnection
SW/OS
Interconnection HW

Distributed Directory MPs

...

C - Cache

M - Memory

IO - Input/Output

P0

M

C

IO

Interconnection Network

P1

M

C

IO

Pn

M

C

IO

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-date
• In addition to cache state, must track which processors have data

when in the shared state
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received

and acted upon in order sent

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block, whether exclusive or shared
• Example messages on next slide:

P = processor number, A = address

Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write missLocal cache Home directory P, A
Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

State Transition Diagram for an
Individual Cache Block in a

Directory Based System
• States identical to snoopy case; transactions very similar
• Transitions caused by read misses, write misses, invalidates, data

fetch requests
• Generates read miss & write miss msg to home directory
• Write misses that were broadcast on the bus for snooping =>

explicit invalidate & data fetch requests
• Note: on a write, a cache block is bigger,

so need to read the full cache block

CPU -Cache State Machine

• State machine
for CPU requests
for each
memory block

• Invalid state
if in
memory

Fetch/Invalidate
send Data Write Back message

to home directory

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

Invalidate
Invalid

Shared
(read/only)

Exclusive
(read/writ)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU read miss: send Data Write
Back message and read miss to
home directory

State Transition Diagram for the
Directory

• Same states & structure as the transition diagram for an individual
cache

• 2 actions: update of directory state & send msgs to statisfy
requests

• Tracks all copies of memory block.
• Also indicates an action that updates the sharing set, Sharers, as

well as sending a message.

Directory State Machine

• State machine
for Directory
requests for each
memory block

• Uncached state
if in memoryData Write Back:

Sharers = {}
(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/writ)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

	COMPUTER ARCHITECURE
	Parallel Computers
	Why Multiprocessors?
	Flynn’s Tahonomy (1972)
	MIMD
	Centralized Shared-Memory Architecture
	Distributed Memory Machines
	Memory Architectures
	Communication Models
	Performance Metrics: Latency and Bandwidth
	Shared Address Model Summary
	Shared Address/Memory Multiprocessor Model
	SMP Interconnect
	Message Passing Model
	Advantages of Shared-Memory Communication Model
	Advantages of Message-passing Communication Model
	Amdahl’s Law and Parallel Computers
	Small-Scale—Shared Memory
	What Does Coherency Mean?
	Potential HW Coherence Solutions
	Basic Snoopy Protocols
	Write Invalidate versus Update
	Snooping Cache Variations
	An Example Snoopy Protocol
	Snoopy-Cache State Machine-I
	Snoopy-Cache State Machine-II
	Snoopy-Cache State Machine-III
	Example
	Example: Step 1
	Example: Step 2
	Example: Step 3
	Example: Step 4
	Example: Step 5
	Implementation Complications
	Implementing Snooping Caches
	Implementing Snooping Caches
	MESI: CPU Requests
	MESI: Bus Requests
	Fundamental Issues
	Fundamental Issue #1: Naming
	Fundamental Issue #1: Naming
	Fundamental Issue #2: Synchronization
	Summary: Parallel Framework
	Distributed Directory MPs
	Directory Protocol
	Directory Protocol
	Directory Protocol Messages
	State Transition Diagram for an Individual Cache Block in a Directory Based System
	CPU -Cache State Machine
	State Transition Diagram for the Directory
	Directory State Machine

