
COMPUTER ARCHITECURE

Multiprocessors



Parallel Computers

• Definition: “A parallel computer is a collection of 
processing elements that cooperate and communicate to 
solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989
• Questions about parallel computers:

– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted? 
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?



Why Multiprocessors?

• Collect multiple microprocessors together 
to improve performance beyond a single processor
– Collecting several more effective than designing a custom 

processor
• Complexity of current microprocessors

– Do we have enough ideas to sustain 1.5X/yr?
– Can we deliver such complexity on schedule?

• Slow (but steady) improvement in parallel software (scientific 
apps, databases, OS)

• Emergence of embedded and server markets driving 
microprocessors in addition to desktops
– Embedded functional parallelism, producer/consumer model
– Server figure of merit is tasks per hour vs. latency



Flynn’s Tahonomy (1972)

• SISD (Single Instruction Single Data) 
– uniprocessors

• MISD (Multiple Instruction Single Data)
– multiple processors on a single data stream; 

• SIMD (Single Instruction Multiple Data) 
– same instruction is executed by multiple processors 

using different data
– Adv.: simple programming model, low overhead, flexibility, 

all custom integrated circuits
– Examples: Illiac-IV, CM-2

• MIMD (Multiple Instruction Multiple Data)
– each processor fetches its own instructions and 

operates on its own data
– Examples: Sun Enterprise 5000, Cray T3D,  SGI Origin
– Adv.: flexible, use off-the-shelf micros
– MIMD current winner (< 128 processor MIMD machines)



MIMD 

• Why is it the choice for general-purpose multiprocessors
– Flexible

• can function as single-user machines focusing on high-
performance for one application, 

• multiprogrammed machine running many tasks simultaneously, 
or 

• some combination of these two
– Cost-effective: use off-the-shelf processors 

• Major MIMD Styles
– Centralized shared memory 

("Uniform Memory Access" time or "Shared Memory Processor")
– Decentralized memory (memory module with CPU) 



Centralized Shared-Memory 
Architecture 

• Small processor counts makes it possible
– that processors share one a single centralized memory
– to interconnect the processors and memory by a bus
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Distributed Memory Machines 
• Nodes include processor(s), some memory, typically some 

IO, and interface to an interconnection network
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Pro: Cost effective approach to scale memory bandwidth
Pro: Reduce latency for accesses to local memory
Con: Communication complexity



Memory Architectures

• DSM (Distributed Shared Memory)
– physically separate memories can be addressed 

as one logically shared address space
• the same physical address on two different processors 

refers to the same location in memory
• Multicomputer

– the address space consists of multiple private address 
spaces that are logically disjoint and cannot be addressed by 
a remote processor

• the same physical address on two different processors 
refers to two different locations in two different memories



Communication Models

• Shared Memory
– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

• Model of choice for uniprocessors, small-scale MPs
• Ease of programming
• Lower latency
• Easier to use hardware controlled caching

• Message passing
– Processors have private memories, 

communicate via messages
– Advantages:

• Less hardware, easier to design
• Focuses attention on costly non-local operations

• Can support either SW model on either HW base



Performance Metrics: 
Latency and Bandwidth

• Bandwidth
– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Challenge is link speed of network interface vs. 

bisection bandwidth of network
• Latency

– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to 

overlap communication and computation
– Overhead to communicate is a problem in many machines

• Latency Hiding
– How can a mechanism help hide latency?
– Increases programming system burden
– Examples: overlap message send with computation, 

prefetch data, switch to other tasks



Shared Address Model Summary

• Each processor can name 
every physical location in the machine

• Each process can name 
all data it shares with other processes

• Data transfer via load and store
• Data size: byte, word, ... or cache blocks
• Uses virtual memory to map 

virtual to local or remote physical
• Memory hierarchy model applies: 

now communication moves data to local processor cache (as load 
moves data from memory to cache)
– Latency, BW, scalability when communicate?



Shared Address/Memory 
Multiprocessor Model

• Communicate via Load and Store
– Oldest and most popular model

• Based on timesharing: processes on multiple processors 
vs. sharing single processor

• Process: a virtual address space 
and ~ 1 thread of control
– Multiple processes can overlap (share), 

but ALL threads share a process address space
• Writes to shared address space by one thread are visible to 

reads of other threads
– Usual model: share code, private stack, 

some shared heap, some private heap



SMP Interconnect

• Processors to Memory AND to I/O
• Bus based: all memory locations equal access time so SMP 

= “Symmetric MP”
– Sharing limited BW as add processors, I/O



Message Passing Model

• Whole computers (CPU, memory, I/O devices) communicate as 
explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory system

• Send specifies local buffer + receiving process on remote 
computer

• Receive specifies sending process on remote computer + local 
buffer to place data
– Usually send includes process tag 

and receive has rule on tag: match 1, match any
– Synch: when send completes, when buffer free, when request 

accepted, receive wait for send
• Send+receive => memory-memory copy, where each each 

supplies local address, 
AND does pairwise sychronization!



Advantages of Shared-Memory 
Communication Model

• Compatibility with SMP hardware
• Ease of programming when communication patterns are complex 

or vary dynamically during execution
• Ability to develop apps using familiar SMP model, 

attention only on performance critical accesses
• Lower communication overhead, better use of BW for small items, 

due to implicit communication and memory mapping to implement 
protection in hardware, rather than through I/O system 

• HW-controlled caching to reduce remote comm. 
by caching of all data, both shared and private



Advantages of Message-passing 
Communication Model

• The hardware can be simpler  (esp. vs. NUMA)
• Communication explicit => simpler to understand; in shared 

memory it can be hard to know when communicating and when 
not, and how costly it is

• Explicit communication focuses attention on costly aspect of 
parallel computation, sometimes leading to improved structure in
multiprocessor program

• Synchronization is naturally associated with sending messages, 
reducing the possibility for errors introduced by incorrect 
synchronization 

• Easier to use sender-initiated communication, 
which may have some advantages in performance



Amdahl’s Law and Parallel 
Computers

• Amdahl’s Law (FracX: original % to be speed up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

• A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

• Ex. What fraction sequential to get 80X speedup from 100 
processors? Assume either 1 processor or 100 fully used

• 80 = 1 / [(FracX/100 + (1-FracX)]
• 0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
• FracX = (80-1)/79.2 = 0.9975
• Only 0.25% sequential!



Small-Scale—Shared Memory

• Caches serve to:
– Increase bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared data

• What about cache consistency?

Time Event $A $B X (memory)

0

1

1

1 CPU A: R x 1

1

1

2 CPU B: R x 1 1

3 CPU A: W x,0 0 0



What Does Coherency Mean?

• Informally:
– “Any read of a data item must return the most recently written 

value”
– this definition includes both coherence and consistency

• coherence: what values can be returned by a read
• consistency: when a written value will be returned by a read

• Memory system is coherent if
– a read(X) by P1 that follows a write(X) by P1, with no writes of X by 

another processor occurring between these two events, always 
returns the value written by P1

– a read(X) by P1 that follows a write(X) by another processor, 
returns the written value if the read and write are sufficiently
separated and no other writes occur between

– writes to the same location are serialized: two writes to the same 
location by any two CPUs are seen in the same order by all CPUs



Potential HW Coherence Solutions

• Snooping Solution (Snoopy Bus):
– every cache that has a copy of the data also has a copy of the 

sharing status of the block
– Processors snoop to see if they have a copy and respond 

accordingly 
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes (discuss later)
– Keep track of what is being shared in 1 centralized place (logically)
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network
– Scales better than Snooping
– Actually existed BEFORE Snooping-based schemes



Basic Snoopy Protocols

• Write Invalidate Protocol
– A CPU has exclusive access to a data item before it writes that item 
– Write to shared data:  an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss: 

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copy

• Write Update Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and 

update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration



Write Invalidate versus Update

• Multiple writes to the same word with no intervening reads 
– Update: multiple broadcasts 

• For multiword cache blocks 
– Update: each word written in a cache block requires a write 

broadcast 
– Invalidate: only the first write to any word in the block 

requires an invalidation 
• Update has lower latency between write and read



Snooping Cache Variations

Berkeley 
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic 
Protocol

Exclusive
Shared
Invalid

Illinois 
Protocol
Private Dirty
Private Clean

Shared
Invalid

MESI 
Protocol

Modfied (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty



An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, 

its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses



Snoopy-Cache State Machine-I 

State machine
for CPU requests
for each 
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on busCPU read hit

CPU write hit



Snoopy-Cache State Machine-II

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

State machine
for bus requests
for each 
cache block



Place read miss
on bus

State machine
for CPU requests
for each 
cache block and
for bus requests
for each 

cache block

Snoopy-Cache State Machine-III 

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)



Example
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Processor 1 Processor 2 Bus Memory

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss



Example: Step 1
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2.
Active arrow  = Remote

Write
Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss



Example: Step 2
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss



Example: Step 3
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

A1
A1

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2.

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss



Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

A1
A1
A1

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss



Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

A1
A1
A1

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

CPU Write Miss
Write Back

CPU Read Miss



Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

• Otherwise, another processor may get bus first, 
and then write the same cache block!

– Two step process:
• Arbitrate for bus 
• Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart

– Split transaction bus:
• Bus transaction is not atomic: 

can have multiple outstanding transactions for a block
• Multiple misses can interleave, 

allowing two caches to grab block in the Exclusive state
• Must track and prevent multiple misses for one block

• Must support interventions and invalidations



Implementing Snooping Caches

• Multiple processors must be on bus, 
access to both addresses and data

• Add a few new commands to perform coherency, 
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 
– solution 1: duplicate set of tags for L1 caches just to allow checks in 

parallel with CPU
– solution 2: L2 cache already duplicate, 

provided L2 obeys inclusion with L1 cache
• block size, associativity of L2 affects L1



Implementing Snooping Caches

• Bus serializes writes, getting bus ensures 
no one else can perform memory operation

• On a miss in a write back cache, may have the desired copy 
and its dirty, so must reply

• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)



MESI: CPU Requests

Invalid Exclusive

Modified
(read/write)

CPU Read
BusRd / NoSh

CPU Write
/BusRdEx

CPU Read hit

CPU read miss
BusWB, BusRd / NoSh

CPU Read miss
BusRd / NoSh

CPU Write Miss
BusRdEx
CPU Write Hit
BusInv

CPU read hit
CPU write hit

Shared

CPU read miss
BusWB, BusRd / Sh

CPU Read hit

CPU write hit /-

CPU read miss
BusWB, BusRd / NoSh

CPU read miss
BusWB, BusRd / Sh



MESI: Bus Requests

Invalid Exclusive

Modified
(read/write)

Shared
BusRd / =>BusWB

BusRd / => Sh

BusRdEx

BusRdEx / =>BusWB

BusRdEx



Fundamental Issues

• 3 Issues to characterize parallel machines
– 1) Naming
– 2) Synchronization
– 3) Performance: Latency and Bandwidth 

(covered earlier)



Fundamental Issue #1: Naming

• Naming: how to solve large problem fast
– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a compiler; via 
load where just remember address or keep track of 
processor number and local virtual address for msg. 
passing

• Choice of naming affects replication of data; via load in 
cache memory hierarchy or via SW replication and 
consistency



Fundamental Issue #1: Naming

• Global physical address space: 
any processor can generate, 
address and access it in a single operation
– memory can be anywhere: 

virtual addr. translation handles it
• Global virtual address space: if the address space of each 

process can  be configured to contain all shared data of the 
parallel program

• Segmented shared address space: 
locations are named 
<process number, address> 
uniformly for all processes of the parallel program



Fundamental Issue #2: 
Synchronization

• To cooperate, processes must coordinate
• Message passing is implicit coordination with transmission 

or arrival of data
• Shared address 

=> additional operations to explicitly coordinate: 
e.g., write a flag, awaken a thread, 
interrupt a processor



Summary: Parallel Framework

• Layers:
– Programming Model:

• Multiprogramming : 
lots of jobs, no communication

• Shared address space: 
communicate via memory

• Message passing: send and receive messages
• Data Parallel: several agents operate on several data 

sets simultaneously and then exchange information 
globally and simultaneously (shared or message 
passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling) 

=> many hardware designs 1:1 programming model

Programming Model
Communication 
Abstraction
Interconnection 
SW/OS 
Interconnection HW



Distributed Directory MPs

...

C - Cache

M - Memory

IO - Input/Output

P0

M

C

IO

Interconnection Network

P1

M

C

IO

Pn

M

C

IO



Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data; 

memory out-of-date
• In addition to cache state, must track which processors have data 

when in the shared state 
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data 

=> write miss
– Processor blocks until access completes
– Assume messages received 

and acted upon in order sent



Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location 

of an address resides
– Remote node has a copy of a cache 

block, whether exclusive or shared
• Example messages on next slide: 

P = processor number, A = address



Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write missLocal cache Home directory P, A
Processor P writes data at address A; 
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; 
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)



State Transition Diagram for an 
Individual Cache Block in a 

Directory Based System
• States identical to snoopy case; transactions very similar
• Transitions caused by read misses, write misses, invalidates, data 

fetch requests
• Generates read miss & write miss msg to home directory
• Write misses that were broadcast on the bus for snooping => 

explicit invalidate & data fetch requests
• Note: on a write, a cache block is bigger, 

so need to read the full cache block



CPU -Cache State Machine

• State machine
for CPU  requests
for each 
memory block

• Invalid state
if in 
memory

Fetch/Invalidate
send Data Write Back message 

to home directory

CPU write miss:
send Data Write Back message 
and Write Miss to home 
directory

Invalidate
Invalid

Shared
(read/only)

Exclusive
(read/writ)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss 
msg to h.d.

CPU Write:Send 
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back 
message to home directory

CPU read miss:
Send Read Miss

CPU read miss: send Data Write 
Back message and read miss to 
home directory



State Transition Diagram for the 
Directory 

• Same states & structure as the transition diagram for an individual 
cache

• 2 actions: update of directory state & send msgs to statisfy
requests 

• Tracks all copies of memory block. 
• Also indicates an action that updates the sharing set, Sharers, as 

well as sending a message.



Directory State Machine

• State machine
for Directory 
requests for each 
memory block

• Uncached state
if in memoryData Write Back:

Sharers = {}
(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/writ)

Read miss:
Sharers = {P}
send Data Value 
Reply

Write Miss: 
send Invalidate 
to Sharers;
then Sharers = {P};
send Data Value 
Reply msg

Write Miss:
Sharers = {P}; 
send Data 
Value Reply
msg

Read miss:
Sharers += {P}; 
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss: 
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P}; 
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache
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