
Multiprocessors SynchronizationMultiprocessors Synchronization

Review: Small-Scale—Shared Memory

Caches serve to:
– Increase bandwidth versus bus/memoryIncrease bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared datap

What about cache consistency?
Time Event $A $B X

(memory)

0 1

1 CPU A: R x 1 11 CPU A: R x 1 1
2 CPU B: R x 1 1 1
3 CPU A: W x,0 0 1 0

Snoopy-Cache State Machine-III

State machine
for CPU requests
for each SharedCPU R d

CPU Read hit
Write miss
for this block

Place read miss
on bus

cache block and
for bus requests
for each
cache block

Invalid
Shared

(read/only)CPU Read

CPU Write
Place Write
Miss on bus

CPU read miss
Write back block,

CPU Read miss
Place read miss

Write miss
for this block

Place read miss
on bus CPU Write

Place Write Miss on Bus

on bus

Cache Block

Write Back
Block; (abort
memory
access) Write Back

Exclusive
(read/write) CPU Write Miss

W it b k h bl kCPU read hit

Cache Block
State

access) Read miss
for this block

Write Back
Block; (abort
memory access)

Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

MESI: CPU Requests

CPU Read
BusRd / NoSh

CPU Read hit CPU Read miss
BusRd / NoSh

Invalid ExclusiveBusRd / NoSh

CPU read miss
CPU Write
/BusRdEx

CPU read miss
BusWB, BusRd / NoSh CPU read miss

BusWB, BusRd / NoSh

CPU read hit

CPU write hit /-

CPU read miss
BusWB, BusRd / Sh

Modified
(read/write)

CPU Write Miss

CPU read hit
CPU write hit

Shared

CPU read miss
BusWB, BusRd / Sh

,

BusRdEx
CPU Write Hit
BusInv

CPU Read hit

MESI: Bus Requests

Invalid Exclusive
BusRdEx

Invalid Exclusive

BusRd / => Sh

BusRdEx / =>BusWB

BusRdEx

Modified
(read/write)

Shared
BusRd / =>BusWB

Fundamental Issues

3 Issues to characterize parallel machines
– 1) Naming1) Naming
– 2) Synchronization
– 3) Performance: Latency and Bandwidth) y

(covered earlier)

Fundamental Issue #1: Naming

Naming: how to solve large problem fast
– what data is shared
– how it is addressed
– what operations can access data

h f t h th– how processes refer to each other
Choice of naming affects code produced by a
compiler; via load where just remembercompiler; via load where just remember
address or keep track of processor number
and local virtual address for msg. passing
Choice of naming affects replication of data;
via load in cache memory hierarchy or via SW
replication and consistencyreplication and consistency

Fundamental Issue #1: Naming

Global physical address space:
any processor can generate,
address and access it in a single operation
– memory can be anywhere:

virtual addr. translation handles it

Global virtual address space: if the address space of
each process can be configured to contain all shared
d t f th ll ldata of the parallel program
Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel program

Fundamental Issue #2: Synchronization

To cooperate, processes must coordinate
Message passing is implicit coordination withMessage passing is implicit coordination with
transmission or arrival of data
Shared addressShared address
=> additional operations to explicitly
coordinate:
e.g., write a flag, awaken a thread,
interrupt a processor

Summary: Parallel Framework

Layers:
– Programming Model:

Programming Model
Communication
Abstraction
I t tig g

• Multiprogramming :
lots of jobs, no communication

• Shared address space:

Interconnection
SW/OS
Interconnection HW

p
communicate via memory

• Message passing: send and receive messages
• Data Parallel: several agents operate on several data sets

simultaneously and then exchange information globally
and simultaneously (shared or message passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Larger MPs

Separate Memory per Processor
Local or Remote access via memory controller
One Cache Coherency solution: non-cached pages
Alternative: directory per cache that tracks state of
every block in every cacheevery block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?
PLUS I i l t l (t li d/– PLUS: In memory => simpler protocol (centralized/one
location)

– MINUS: In memory => directory is ƒ(memory size) vs.
ƒ(cache size)ƒ(cache size)

Prevent directory as bottleneck?
distribute directory entries with memory, each keeping
track of which Procs have copies of their blockstrack of which Procs have copies of their blocks

Distributed Directory MPs

P0 P1 PP0

C

P1

C

Pn

C
...M IO M IO M IO

C C h

Interconnection Network

C - Cache

M - Memory

IO - Input/Output

Directory Protocol

Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-datey

In addition to cache state, must track which
processors have data when in the shared state
(ll bit t 1 if h)(usually bit vector, 1 if processor has copy)
Keep it simple(r):
– Writes to non-exclusive dataWrites to non exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received– Assume messages received

and acted upon in order sent

Directory Protocol

No bus and don’t want to broadcast:
– interconnect no longer single arbitration pointinterconnect no longer single arbitration point
– all messages have explicit responses

Terms: typically 3 processors involvedTerms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block whether exclusive or sharedblock, whether exclusive or shared
Example messages on next slide:
P = processor number A = addressP processor number, A address

Directory Protocol Messages

Message type Source Destination Msg
Content

Read miss Local cache Home directory P, Aead ss oca cac e o e d ecto y ,
Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
Processor P writes data at address A;Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory;Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

D i b k R h H di A DData write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

State Transition Diagram for an Individual
Cache Block in a Directory Based Systemy y

States identical to snoopy case; transactions very
similar
Transitions caused by read misses, write misses,
invalidates, data fetch requests
G t d i & it i t hGenerates read miss & write miss msg to home
directory
Write misses that were broadcast on the bus forWrite misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch requests
Note: on a write, a cache block is bigger,

d t d th f ll h bl kso need to read the full cache block

CPU -Cache State Machine
C

State machine
for CPU

t
Invalidate

Shared

CPU Read hit

requests
for each
memory block

Invalid (read/only)CPU Read
Send Read Miss

message CPU read miss:
Invalid state
if in
memoryFetch/Invalidate

g
CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read miss:
Send Read Miss

Fetch/Invalidate
send Data Write Back message

to home directory

to home directory

Fetch: send Data Write Back
message to home directory

CPU read miss: send Data Write

CPU write miss:

Exclusive
(read/writ)

CPU read hit

CPU read miss: send Data Write
Back message and read miss to
home directory

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read hit
CPU write hit

State Transition Diagram for the Directory

Same states & structure as the transition diagram for
an individual cache
2 actions: update of directory state & send msgs to
statisfy requests
T k ll i f bl kTracks all copies of memory block.
Also indicates an action that updates the sharing set,
Sharers, as well as sending a message.Sharers, as well as sending a message.

Directory State Machine
Read miss:

State machine
for Directory

Read miss:
Sharers = {P}

d D t V l

Sharers += {P};
send Data Value Reply

requests for each
memory block
Uncached state

Uncached
Shared

(read only)

send Data Value
Reply

Uncached state
if in memory

Data Write Back:
Sh {}

Write Miss:
send Invalidate
to Sharers;

Write Miss:
Sharers = {P};
send Data

Sharers = {}
(Write back block)

to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Value Reply
msg

Exclusive
(read/writ)

y g
Read miss:
Sharers += {P};
send Fetch;

d D t V l R l

Write Miss:
Sharers = {P};
send Fetch/Invalidate; (read/writ) send Data Value Reply

msg to remote cache
(Write back block)

send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Example Directory Protocol

Message sent to directory causes two actions:
– Update the directory

More messages to satisfy request– More messages to satisfy request
Block is in Uncached state: the copy in memory is the current
value; only possible requests for that block are:
– Read miss: requesting processor sent data from memory &requestorRead miss: requesting processor sent data from memory &requestor

made only sharing node; state of block made Shared.
– Write miss: requesting processor is sent the value & becomes the

Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached Sharers indicates the identity of the ownervalid copy is cached. Sharers indicates the identity of the owner.

Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory

& requesting processor is added to the sharing set.q g p g
– Write miss: requesting processor is sent the value. All processors in

the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
ExclusiveExclusive.

Example Directory Protocol

Block is Exclusive: current value of the block is held in the cache
of the processor identified by the set Sharers (the owner) =>
three possible directory requests:three possible directory requests:
– Read miss: owner processor sent data fetch message, causing state

of block in owner’s cache to transition to Shared and causes owner
to send data to directory, where it is written to memory & sent back
to requesting processorto requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.
D t it b k i l i th bl k d h– Data write-back: owner processor is replacing the block and hence
must write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is
now Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory
from which it is sent to the requesting processor, which becomes the
new owner. Sharers is set to identity of new owner, and state of y ,
block is made Exclusive.

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl A1 10 DaRp P1 A1 0

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1
P2: Read A1

P2 W it 20 t A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

10
10

P2: Write 40 to A2 10

A1 and A2 map to the same cache block

Write BackWrite Back

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

A1 and A2 map to the same cache block

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0
WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

A1 and A2 map to the same cache block

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Implementing a Directory

We assume operations atomic, but they are
not; reality is much harder; must avoidnot; reality is much harder; must avoid
deadlock when run out of buffers in network
(see Appendix I) –
The devil is in the details
Optimizations:
– read miss or write miss in Exclusive: send data

directly to requestor from owner vs. 1st to memory
and then from memory to requestorand then from memory to requestor

Synchronization

Why Synchronize? Need to know when it is
safe for different processes to use shared datasafe for different processes to use shared data
Issues for Synchronization:
– Uninterruptable instruction to fetch and updateUninterruptable instruction to fetch and update

memory (atomic operation);
– User level synchronization operation using this

i itiprimitive;
– For large scale MPs, synchronization can be a

bottleneck; techniques to reduce contention andbottleneck; techniques to reduce contention and
latency of synchronization

Uninterruptable Instruction to Fetch and
Update Memoryp y

Atomic exchange: interchange a value in a register for
a value in memory
– 0 => synchronization variable is free
– 1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were
first)

1 if other processor had already claimed access1 if other processor had already claimed access
– Key is that exchange operation is indivisible

Test-and-set: tests a value and sets it if the value
passes the testpasses the test
Fetch-and-increment: it returns the value of a memory
location and atomically increments it
– 0 => synchronization variable is free

Uninterruptable Instruction to Fetch and
Update Memoryp y

Hard to have read & write in 1 instruction: use 2 instead
Load linked (or load locked) + store conditional

Load linked returns the initial value– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceeding load) and 0 otherwise
Example doing atomic swap with LL & SC:Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

Example doing fetch & increment with LL & SC:
t ll R2 0(R1) l d li k dtry: ll R2,0(R1) ; load linked
addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)beqz R2,try ; branch store fails (R2 0)

User Level Synchronization—Operation
Using this Primitiveg

Spin locks: processor continuously tries to acquire, spinning
around a loop trying to get the lock

li R2,#1li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?
What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all other
i thi t id bl b t fficopies; this generates considerable bus traffic

Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):

try: li R2 #1try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange, () ; g
bnez R2,try ;already locked?

Another MP Issue:
Memory Consistency Modelsy y

What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...
Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

Memory consistency models:
what are the rules for such cases?
Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept
in order and the accesses among different processorsin order and the accesses among different processors
were interleaved => assignments before ifs above
– SC: delay all memory accesses until all invalidates done

Parallel Program: An Example

/*
* Title: Matrix multiplication kernel
* Author: Aleksandar Milenkovic,

milenkovic@computer.org

/* Initialize the barriers and the lock */
LOCKINIT(indexLock)
BARINIT(bar_fin)

* Date: November, 1997
*
*--
* Command Line Options
* -pP: P = number of processors; must be a power of 2.

/* read/initialize data */
...
/* do matrix multiplication in parallel a=a*b

*/p p p
* -nN: N = number of columns (even integers).
* -h : Print out command line options.
*--
* */
void main(int argc, char*argv[]) {

/* Create the slave processes. */
for (i = 0; i < numProcs-1; i++)

CREATE(SlaveStart)

/* Make the master do slave work so we void main(int argc, char argv[]) {

/* Define shared matrix */
ma = (double **) G_MALLOC(N*sizeof(double *));
mb = (double **) G_MALLOC(N*sizeof(double *));

/ Make the master do slave work so we
don't waste a processor */

SlaveStart();

for(i=0; i<N; i++) {
ma[i] = (double *) G_MALLOC(N*sizeof(double));
mb[i] = (double *) G_MALLOC(N*sizeof(double));

};
/* Initialize the Index */

...

}

/ Initialize the Index /
Index = 0;

Parallel Program: An Example

/*====== SlaveStart ================*/
/* This is the routine that each processor will be

executing in parallel */

/* the main body of a thread */

for(i=begin; i<end; i++) {
void SlaveStart() {

int myIndex, i, j, k, begin, end;
double tmp;

for(j=0; j<N; j++) {
tmp=0.0;
for(k=0; k<N; k++) {

LOCK(indexLock); /* enter the critical section
*/

myIndex = Index; /* read your ID */
++Index; /* increment it, so the next

() {
tmp = tmp + ma[i][k]*mb[k][j];

}
ma[i][j] = tmp;

}
will operate on ID+1 */

UNLOCK(indexLock); /* leave the critical
section */

}
}

BARRIER(bar_fin, numProcs);

/* Initialize begin and end */
begin = (N/numProcs)*myIndex;
end = (N/numProcs)*(myIndex+1);

}

Synchronization

Why Synchronize? Need to know when it is
safe for different processes to use shared datasafe for different processes to use shared data
Issues for Synchronization:
– Uninterruptable instruction to fetch and updateUninterruptable instruction to fetch and update

memory (atomic operation);
– User level synchronization operation using this

i itiprimitive;
– For large scale MPs,

synchronization can be a bottleneck;synchronization can be a bottleneck;
techniques to reduce contention and latency of
synchronization

Uninterruptable Instruction to Fetch and
Update Memoryp y

Atomic exchange: interchange a value in a register for
a value in memory
– 0 => synchronization variable is free
– 1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were
first)

1 if other processor had already claimed access1 if other processor had already claimed access
– Key is that exchange operation is indivisible

Test-and-set: tests a value and sets it if the value
passes the testpasses the test
Fetch-and-increment: it returns the value of a memory
location and atomically increments it
– 0 => synchronization variable is free

Lock&Unlock: Test&Set

/* Test&Set */
==============

l di R2 #1loadi R2, #1
lockit: exch R2, location /* atomic operation*/

bnez R2, lockit /* test*/

unlock: store location, #0 /* free the lock (write
0) */0) */

Lock&Unlock: Test and Test&Set

/* Test and Test&Set */
=======================

lockit: load R2, location /* read lock varijable */
b R2 l kit /* h k l */bnz R2, lockit /* check value */
loadi R2, #1
exch R2, location /* atomic operation */
b l ki /* if l k i i dbnz reg, lockit /* if lock is not acquired,

repeat */

unlock: store location, #0 /* free the lock (write 0) */

Lock&Unlock: Test and Test&Set

/* Load-linked and Store-Conditional */
=======================================
lockit: ll R2, location /* load-linked read */

bnz R2, lockit /* if busy, try again */
l d R2 #1load R2, #1
sc location, R2 /* conditional store */
beqz R2, lockit /* if sc unsuccessful, try again

//

unlock: store location #0 /* store 0 */unlock: store location, #0 /* store 0 */

Uninterruptable Instruction to Fetch and
Update Memoryp y

Hard to have read & write in 1 instruction: use 2 instead
Load linked (or load locked) + store conditional

Load linked returns the initial value– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceeding load) and 0 otherwise
Example doing atomic swap with LL & SC:Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional (returns 1, if

Ok)Ok)
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

Example doing fetch & increment with LL & SC:Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional sc R ,0(R) ; store cond t onal
beqz R2,try ; branch store fails (R2 = 0)

User Level Synchronization—Operation
Using this Primitiveg

Spin locks: processor continuously tries to acquire, spinning
around a loop trying to get the lock

li R2,#1li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?
What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all other
i thi t id bl b t fficopies; this generates considerable bus traffic

Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):
try: li R2 #1try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange, () g
bnez R2,try ;already locked?

Another MP Issue:
Memory Consistency Modelsy y

What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...
Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

Memory consistency models:
what are the rules for such cases?
Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept
in order and the accesses among different processorsin order and the accesses among different processors
were interleaved => assignments before ifs above
– SC: delay all memory accesses until all invalidates done

Memory Consistency Model

Schemes faster execution to sequential consistency
Not really an issue for most programs;
they are synchronizedthey are synchronized
– A program is synchronized if all access to shared data are

ordered by synchronization operations
write (x)write (x)
...
release (s) {unlock}
...

i () {l k}acquire (s) {lock}
...
read(x)

Only those programs willing to be nondeterministic are notOnly those programs willing to be nondeterministic are not
synchronized: “data race”: outcome f(proc. speed)
Several Relaxed Models for Memory Consistency since most
programs are synchronized; characterized by their attitude p g y ; y
towards: RAR, WAR, RAW, WAW
to different addresses

