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Parallel Computers

 Definition: “A parallel computer is a collection 
of processing elements that cooperate and p g p
communicate to solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989

 Questions about parallel computers: Questions about parallel computers:
– How large a collection?
– How powerful are processing elements?p p g
– How do they cooperate and communicate?
– How are data transmitted? 

Wh f i i ?– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?Does it translate into performance?
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Why Multiprocessors?

 Collect multiple microprocessors together 
to improve performance beyond a single processor
– Collecting several more effective than designing a custom 

processor

 Complexity of current microprocessors Complexity of current microprocessors
– Do we have enough ideas to sustain 1.5X/yr?
– Can we deliver such complexity on schedule?

 Slow (but steady) improvement in parallel software 
(scientific apps, databases, OS)

 Emergence of embedded and server markets driving Emergence of embedded and server markets driving 
microprocessors in addition to desktops
– Embedded functional parallelism, producer/consumer model
– Server figure of merit is tasks per hour vs. latency
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Flynn’s Tahonomy (1972)

 SISD (Single Instruction Single Data) 
– uniprocessors

MISD (M ltiple Instr ction Single Data) MISD (Multiple Instruction Single Data)
– multiple processors on a single data stream; 

 SIMD (Single Instruction Multiple Data) 
same instruction is executed by multiple processors– same instruction is executed by multiple processors 
using different data

– Adv.: simple programming model, low overhead, flexibility, 
all custom integrated circuits

– Examples: Illiac-IV, CM-2
 MIMD (Multiple Instruction Multiple Data)

– each processor fetches its own instructions and 
t it d toperates on its own data

– Examples: Sun Enterprise 5000, Cray T3D,  SGI Origin
– Adv.: flexible, use off-the-shelf micros
– MIMD current winner (< 128 processor MIMD machines)MIMD current winner (< 128 processor MIMD machines)
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MIMD 

 Why is it the choice for general-purpose 
multiprocessors
– Flexible

• can function as single-user machines focusing on high-
performance for one application, 

• multiprogrammed machine running many tasks simultaneously, 
or 

• some combination of these two
– Cost-effective: use off-the-shelf processors 

 Major MIMD Styles
– Centralized shared memory– Centralized shared memory 

("Uniform Memory Access" time or "Shared Memory 
Processor")

– Decentralized memory (memory module with CPU)– Decentralized memory (memory module with CPU) 
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Centralized Shared-Memory Architecture 

 Small processor counts makes it possible
– that processors share one a single centralizedthat processors share one a single centralized 

memory
– to interconnect the processors and memory by a 

bus
P0 P1

C C C

Pn
C - Cache

C C C...
M - Memory

IO - Input/Output

M IO
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Distributed Memory Machines 

 Nodes include processor(s), some memory, 
typically some IO, and interface to antypically some IO, and interface to an 
interconnection network

C - Cache
P0 P1 Pn

...

M - Memory

IO - Input/Output

P0

M

C

IO

P1

M

C

IO

Pn

M

C

IO...M IO

I t ti N t k

M IO M IO

Interconnection Network

Pro: Cost effective approach to scale memory bandwidth
Pro: Reduce latency for accesses to local memoryPro: Reduce latency for accesses to local memory
Con: Communication complexity
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Memory Architectures

 DSM (Distributed Shared Memory)
– physically separate memories can be addressedphysically separate memories can be addressed 

as one logically shared address space
• the same physical address on two different processors 

refers to the same location in memoryrefers to the same location in memory

 Multicomputer
– the address space consists of multiple private– the address space consists of multiple private 

address spaces that are logically disjoint and 
cannot be addressed by a remote processor

• the same physical address on two different processors 
refers to two different locations in two different memories
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Communication Models

 Shared Memory
– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

• Model of choice for uniprocessors, small-scale MPs
E f i• Ease of programming

• Lower latency
• Easier to use hardware controlled caching

M i Message passing
– Processors have private memories, 

communicate via messages
Ad t– Advantages:

• Less hardware, easier to design
• Focuses attention on costly non-local operations

C t ith SW d l ith HW b Can support either SW model on either HW base
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Performance Metrics: 
Latency and Bandwidthy
 Bandwidth

– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Challenge is link speed of network interface vs. 

bisection bandwidth of network
 Latency

– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to 

overlap communication and computation
– Overhead to communicate is a problem in many machines

 Latency Hidingy g
– How can a mechanism help hide latency?
– Increases programming system burden
– Examples: overlap message send with computation, p p g p ,

prefetch data, switch to other tasks
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Shared Address Model Summary

 Each processor can name 
every physical location in the machine

 Each process can name 
all data it shares with other processes
D t t f i l d d t Data transfer via load and store

 Data size: byte, word, ... or cache blocks
 Uses virtual memory to map Uses virtual memory to map 

virtual to local or remote physical
 Memory hierarchy model applies: 

now communication moves data to local processor 
cache (as load moves data from memory to cache)
– Latency BW scalability when communicate?Latency, BW, scalability when communicate?
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Shared Address/Memory 
Multiprocessor Modelp
 Communicate via Load and Store

– Oldest and most popular modelp p
 Based on timesharing: processes on multiple 

processors vs. sharing single processor
 Process: a virtual address space 

and ~ 1 thread of control
Multiple processes can overlap (share)– Multiple processes can overlap (share), 
but ALL threads share a process address space

 Writes to shared address space by one thread p y
are visible to reads of other threads
– Usual model: share code, private stack, 

some shared heap some private heapsome shared heap, some private heap
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SMP Interconnect

 Processors to Memory AND to I/O
 Bus based: all memory locations equal access Bus based: all memory locations equal access 

time so SMP = “Symmetric MP”
– Sharing limited BW as add processors, I/OSharing limited BW as add processors, I/O
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Message Passing Model

 Whole computers (CPU, memory, I/O devices) 
communicate as explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory 

system
 Send specifies local buffer + receiving process on 

t tremote computer
 Receive specifies sending process on remote 

computer + local buffer to place datap p
– Usually send includes process tag 

and receive has rule on tag: match 1, match any
– Synch: when send completes, when buffer free, when request 

accepted, receive wait for send
 Send+receive => memory-memory copy, where each 

each supplies local address, pp
AND does pairwise sychronization!
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Advantages of Shared-Memory 
Communication Model
 Compatibility with SMP hardware
 Ease of programming when communication patterns p g g p

are complex or vary dynamically during execution
 Ability to develop apps using familiar SMP model, 

tt ti l f iti lattention only on performance critical accesses
 Lower communication overhead, better use of BW for 

small items, due to implicit communication andsmall items, due to implicit communication and 
memory mapping to implement protection in 
hardware, rather than through I/O system 
HW t ll d hi t d t HW-controlled caching to reduce remote comm. 
by caching of all data, both shared and private
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Advantages of Message-passing 
Communication Model
 The hardware can be simpler  (esp. vs. NUMA)
 Communication explicit => simpler to understand; in p p ;

shared memory it can be hard to know when 
communicating and when not, and how costly it is
E li it i ti f tt ti tl Explicit communication focuses attention on costly 
aspect of parallel computation, sometimes leading to 
improved structure in multiprocessor program

 Synchronization is naturally associated with sending 
messages, reducing the possibility for errors 
introduced by incorrect synchronizationintroduced by incorrect synchronization 

 Easier to use sender-initiated communication, 
which may have some advantages in performancey g p
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Amdahl’s Law and Parallel Computers

 Amdahl’s Law (FracX: original % to be speed up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

 A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

E Wh t f ti ti l t t 80X d f Ex. What fraction sequential to get 80X speedup from 
100 processors? Assume either 1 processor or 100 
fully used

 80 = 1 / [(FracX/100 + (1-FracX)]
 0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
 FracX = (80-1)/79.2 = 0.9975
 Only 0.25% sequential!
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Small-Scale—Shared Memory

 Caches serve to:
– Increase bandwidth versus bus/memoryIncrease bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared datap

 What about cache consistency?
Time Event $A $B X 

(memory)

0 1

1 CPU A: R x 1 11 CPU A: R x 1 1
2 CPU B: R x 1 1 1
3 CPU A: W x,0 0 1 0
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What Does Coherency Mean?

 Informally:
– “Any read of a data item must return the most recently written 

l ”value”
– this definition includes both coherence and consistency

• coherence: what values can be returned by a read
• consistency: when a written value will be returned by a read• consistency: when a written value will be returned by a read

 Memory system is coherent if
– a read(X) by P1 that follows a write(X) by P1, with no writes of 

X by another processor occurring between these two eventsX by another processor occurring between these two events, 
always returns the value written by P1

– a read(X) by P1 that follows a write(X) by another processor, 
returns the written value if the read and write are sufficientlyreturns the written value if the read and write are sufficiently 
separated and no other writes occur between

– writes to the same location are serialized: two writes to the 
same location by any two CPUs are seen in the same order 
by all CPUs
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Potential HW Coherence Solutions

 Snooping Solution (Snoopy Bus):
– every cache that has a copy of the data also has a copy of the 

h i t t f th bl ksharing status of the block
– Processors snoop to see if they have a copy and respond 

accordingly 
Requires broadcast since caching information is at– Requires broadcast, since caching information is at 
processors

– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)– Dominates for small scale machines (most of the market)

 Directory-Based Schemes (discuss later)
– Keep track of what is being shared in 1 centralized place 

(logically)(logically)
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network– Send point-to-point requests to processors via network
– Scales better than Snooping
– Actually existed BEFORE Snooping-based schemes 20



Basic Snoopy Protocols

 Write Invalidate Protocol
– A CPU has exclusive access to a data item before it writes 

that item 
– Write to shared data:  an invalidate is sent to all caches which 

snoop and invalidate any copies
– Read Miss: 

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copyp py

 Write Update Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, 

and update any copiesand update any copies
– Read miss: memory is always up-to-date

 Write serialization: bus serializes requests!
– Bus is single point of arbitration

21



Write Invalidate versus Update

 Multiple writes to the same word with no 
intervening readsintervening reads 
– Update: multiple broadcasts 

 For multiword cache blocks o u t o d cac e b oc s
– Update: each word written in a cache block 

requires a write broadcast 
– Invalidate: only the first write to any word in the 

block requires an invalidation 
 Update has lower latency between write and Update has lower latency between write and 

read
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Snooping Cache Variations

BerkeleBasic Illinois MESIBerkeley 
Protocol

Owned Exclusive
Owned Shared

Basic 
Protocol

Exclusive

Illinois 
Protocol
Private Dirty
Private Clean

MESI 
Protocol

Modfied (private,!=Memory)
eXclusive (private =Memory)Owned Shared

Shared
Invalid

Exclusive
Shared
Invalid

Private Clean
Shared
Invalid

O d t i b i lid t ti

eXclusive (private,=Memory)
Shared (shared,=Memory)

Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if d d f th h th Sh dif read sourced from other cache, then Shared
Can write in cache if held private clean or dirty
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WriteWrite invalidate & Writeinvalidate & Write update Coherence Protocols forupdate Coherence Protocols forWriteWrite--invalidate & Writeinvalidate & Write--update Coherence Protocols for update Coherence Protocols for 
WriteWrite--through Cachesthrough Caches
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Implementing BusImplementing Bus--Snooping ProtocolsSnooping Protocols
C h t ll i i t f b th id Cache controller now receives inputs from both sides: 
1 Requests from local processor
2 Bus requests/responses from bus snooping mechanism .

 In either case, takes zero or more actions:
– Possibly: Updates state, responds with data, generates new 

bus transactions.bus transactions.
 Protocol is a distributed algorithm:  Cooperating state machines.

– Set of states, state transition diagram, actions. 
G l it f h i t i ll h bl k

Change Block State
 Granularity of coherence is typically a cache block

– Like that of allocation in cache and transfer to/from cache.
– False sharing of a cache block may generate unnecessary 

Bus action

coherence protocol actions over the bus.

i.e invalidate or update other shared copies
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Coherence with WriteCoherence with Write--through Cachesthrough Caches

P1

$

Bus snoop

$

Pn

Possible Action:  Invalidate or update 
cache block in P1 if shared

$ $

Cache-memory

Snoop Snoop
Invalidate or update shared copies

I/O devicesMem

Cache-memory
transaction

(Write)Write through
to memory

 Key extensions to uniprocessor: snooping, invalidating/updating 
caches:

• Invalidation- versus update-based protocols.
 Write propagation: even in invalidation case, later reads will see 

new value:
• Invalidation causes miss on later access, and memory update y p

via write-through.
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WriteWrite--invalidate Businvalidate Bus--Snooping Protocol:Snooping Protocol:
For WriteFor Write--Through CachesThrough Caches

The state of a cache block copy of local 
processor i can take one of two states (jprocessor i can take one of two states (j
represents a remote processor):
Valid State:  

Two
States: V

• All processors can read  (R(i), R(j)) safely.
• Local processor i can also  write   W(i)
• In this state after a successful read R(i) or write W(i)I

Assuming write allocate

• In this state after a successful read  R(i) or write W(i)

Invalid State: not in cache or, 
• Block being invalidated.

i = Local Processor
j = Other (remote) processor

• Block being replaced    Z(i) or   Z(j)
• When a remote processor writes  W(j) to its cache copy, all 

other cache copies become invalidated.

V I

p

– Bus write cycles are higher than bus read cycles due 
to request invalidations to remote caches.27



WriteWrite--invalidate Businvalidate Bus--Snooping ProtocolSnooping Protocol
For WriteFor Write--Through CachesThrough CachesFor WriteFor Write Through CachesThrough Caches

State Transition DiagramState Transition Diagram

(i) (i)

For a cache block 
in local processor iLocal write

InvalidInvalid ValidValid

R(i), W(i)
R(i)
W(i)

(j)

R(j)
Z(j)
Z(i) VI

W(i) W i bl k b i

W(j), Z(i)
R(j)
Z(j)

Z(i)
W(j)

Write by other processor j, invalidate

VI

W(i) =  Write to block by processor i
W(j) = Write to block copy in cache j by processor j  i
R(i) = Read block by processor i.( ) y p
R(j) = Read block copy in cache j by processor j  i
Z(i) = Replace block in cache .
Z(j) = Replace block copy in cache j iZ(j)  Replace block copy in cache j  i 

i  local processor       j   other processor28



WriteWrite--invalidate Businvalidate Bus--Snooping ProtocolSnooping Protocol
For WriteFor Write--Through CachesThrough CachesPrRd/— PrWr/BusWrA read by

i.e R(i) i.e W(i)

V

Alternate State Transition DiagramAlternate State Transition Diagram
V =  Valid
I =  Invalid
A/B means if A is observed B is generatedA read by

A write by 
this processor

A read by 
this processor

PrRd/BusRd BusWr/—

A/B  means if A is observed B is generated.
Processor Side Requests:

read  (PrRd)
write (PrWr)

Bus Side or snooper/cache controller Actions:Snooper senses
a write by other processor

A read by 
this processor i.e W(j) 

I

PrWr/BusWr Processor-initiated transactions

B i iti t d t ti

bus read (BusRd)
bus write (BusWr)

a write by other processor 
to same block -> invalidate

A write by other
processor to block

– Two states per block in each cache, as in uniprocessor.
• state of a block can be seen as p-vector  (for all p processors).

Bus-snooper-initiated transactionsi.e W(j)

p bits
– Hardware state bits associated with only blocks that are in the cache. 

• other blocks can be seen as being in invalid (not-present) state in that 
cache

W it ill i lid t ll th h ( l l h f t t )– Write will invalidate all other caches (no local change of state).
• can have multiple simultaneous readers of block,but write invalidates them.
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Problems With WriteProblems With Write--ThroughThrough

 High bandwidth requirements:
– Every write from every processor goes to shared bus and 

memorymemory.
– Consider 200MHz, 1 CPI processor, and 15% of the instructions 

are 8-byte stores.
Each processor generates 30M stores or 240MB data per– Each processor generates 30M stores or 240MB data per 
second.

– 1GB/s bus can support only about 4 processors without 
saturatingsaturating.

– Write-through especially is unpopular for SMPs.

 Write back caches absorb most writes as cache
Visible to all In correct order

 Write-back caches absorb most writes as cache 
hits:
– Write hits don’t go on bus. i.e wwrite atomicityrite atomicity
– But now how do we ensure write propagation and serialization?

• Requires more sophisticated coherence protocols.
30



Basic WriteBasic Write--invalidate Businvalidate Bus--Snooping Protocol:Snooping Protocol:
For WriteFor Write--Back CachesBack Caches

C d t hi t l Corresponds to ownership protocol.
 Valid state in write-through protocol is divided into two states (3 states total):

RW (read-write):    (this processor i owns block)  or  Modified M
Th l h i ti i th t d b th l l

Three
S

i.e which processor owns the block

• The only cache copy existing in the system; owned by the local 
processor.

• Read (R(i)) and (W(i)) can be safely performed in this state.
RO (read-only): or Shared S

States:

RO (read-only):   or Shared S
• Multiple cache block copies exist in the system; owned by memory.
• Reads ((R(i)),  ((R(j)) can safely be performed in this state.

INV (invalid): I For a cache block in local processor iINV (invalid):   I
• Entered when :   Not in cache or, 

– A remote processor writes  (W(j) to its cache copy. 
– A local processor replaces (Z(i) its own copy. i = Local Processor

For a cache block in local processor i

 A cache block is uniquely owned after a local write W(i)
 Before a block is modified, ownership for exclusive access is obtained by a 

read-only bus transaction broadcast to all caches and memory.

j = Other (remote) processor

 If a modified remote block copy exists, memory is updated (forced write 
back), local copy is invalidated and ownership transferred to requesting 
cache. 31



Write-invalidate Bus-Snooping Protocol 
For WriteFor Write--Back CachesBack Caches RW: Read-Write
State Transition Diagram RO:  Read Only

INV: Invalidated or
not in cacheR(j)

Force write backFor a cache block in local processor i

RW RO
not in cache

R(i)
R(j)

R(i)
(i)

(j)

W(i)(Processor i
owns block)

Owned by
memory

W(j), Z(i)

R(j)
Z(j)

W(i)
Z(j)

W(i)

R(i)W(j)
Z(i)

Other processor writes

INV W(i) =  Write to block by processor i
W(j) = Write to block copy in cache j by processor j  i
R(i) = Read block by processor i.

W(i)

i local processor

Other processor writes
invalidate

R(j) = Read block copy in cache j by processor j  i
Z(i) = Replace block in cache .
Z(j) = Replace block copy in cache j  i 

i    local processor      
j   other processor

R(j), Z(j), W(j), Z(i)
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Example
P 1 P 2 B M

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1 R d A1

Processor 1 Processor 2 Bus Memory

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write 
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 33



Example: Step 1

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2.
Active arrow =

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Active arrow  = Remote
Write

Write Back

miss on bus CPU Write
Place Write 
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 34



Example: Step 2

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write 
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 35



Example: Step 3

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl A1 10P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10

A1
A1

P2: Write 40 to A2 10
10

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2.

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write 
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 36



Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

A1
A1
A1

P2: Write 40 to A2 10
10

Assumes initial cache state Remote Write CPU Read hit
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Invalid Shared
Read
miss on bus

Write

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write 
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 37



Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar A1 RdMs P2 A1P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

A1
A1
A1
A1

Remote Write CPU Read hit

Excl. A2 40 WrBk P2 A1 20 20A1

Assumes initial cache state 

R t

Invalid Shared
Read
miss on bus

Write
CPU W it

is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

CPU Read Miss

Remote
Write

Write Back

miss on bus CPU Write
Place Write 
Miss on Bus

Remote Read
Write Back

Exclusive
CPU read hit
CPU write hit

CPU Write Miss
Write Back 38



Basic MSI WriteBasic MSI Write--Back Invalidate ProtocolBack Invalidate Protocol
 States: MSI is similar to previous protocol just different representation States:

– Invalid (I). 
– Shared (S):   Shared unmodified copies exist.
– Dirty or Modified (M): One only valid other copies

MSI is similar to previous protocol just different representation
(i.e still corresponds to ownership protocol)

Three
States: Dirty or Modified (M):  One only valid, other copies   

must be invalidated.
 Processor Events:  

– PrRd (read)– PrRd (read).
– PrWr (write).

 Bus Transactions:
– BusRd: Asks for copy with no intent to modify

MSI
Modified       Shared      Invalid

– BusRd:   Asks for copy with no intent to modify.
– BusRdX: Asks for copy with intent to modify.
– BusWB:  Updates memory.

 Actions: Actions:
– Update state, perform bus transaction, flush value onto 

bus (forced write back).

e.g write back to memory
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Basic MSI WriteBasic MSI Write--Back Invalidate ProtocolBack Invalidate Protocol
State Transition DiagramState Transition DiagramState Transition DiagramState Transition Diagram

PrRd/— PrWr/—

M

M = Dirty or Modified, main memory       
is not up-to-date, owned by local    

Block owned
by local processorThree

S

BusRd/Flush

PrWr/BusRdX

processor
S = Shared, main memory is up-to-date

owned by main memory
I I lid

Forced
Write Back

States:

BusWB

S BusRdX/Flush

BusRdX/—

PrWr/BusRdXI =  Invalid

Processor Side Requests:
read  (PrRd)
write (PrWr)

Block owned
by main memory

BusWB

PrRd/—

PrWr/BusRdX
BusRd/—

I

PrRd/BusRd
( )

Bus Side or snooper/cache controller Actions:
Bus Read (BusRd)
Bus Read Exclusive (BusRdX)
bus write back (BusWB)  Flush

Invalidate

– Replacement changes state of two blocks: Outgoing and incoming.

I Invalidate

Processor Initiated
Bus-Snooper Initiated
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MESI (4MESI (4--state) Invalidation Protocolstate) Invalidation Protocol
P bl ith MSI t l

Modified Exclusive Shared Invalid

 Problem with MSI protocol:
– Reading and modifying data is 2 bus transactions, even if not 

sharing:
i ti l• e.g. even in sequential program.

• BusRd ( I-> S ) followed by BusRdX   ( S -> M ).
 Add exclusive state (E):  Write locally without a bus transaction, but not 

Solution:

modified:
– Main memory is up to date, so cache is not necessarily the owner.
– Four States: i.e no other cache

h• Invalid (I).
• Exclusive or exclusive-clean (E): Only this cache has a copy, but 

not modified; main memory has same copy.

has a copy

• Shared  (S):  Two or more caches may have copies.
• Modified (M):  Dirty.

– I -> E on PrRd if no one else has copy.
i.e. shared signal, S = 0

• Needs “shared” signal S on bus: wired-or line asserted in 
response to BusRd. S = 0  Not Shared

S = 1  Shared41



PrRd

MESI State Transition DiagramMESI State Transition Diagram
PrWr/—

BusRd/Flush
BusRdX/Flush

M

PrRd

Four States:
M = Modified or Dirty
E = Exclusive

PrWr/—

E

BusRd/
Flush

PrWr/BusRdX

E   Exclusive
S  = Shared
I  = Invalid

Invalidate / Forced
Write Back

PrWr/BusRdX
PrRd/—

S

BusRdX/Flush

BusRdX/Flush

PrRd/ Sh d

PrRd/ 

PrRd/—
BusRd/Flush

I

BusRd(S)

BusRd (S) S = shared signal
= 0 not shared
= 1 shared Not Shared

Shared

– BusRd(S)  Means shared line asserted on BusRd transaction.
– Flush: If cache-to-cache sharing, only one cache flushes data.

Not Shared

Flush:   If cache to cache sharing, only one cache flushes data.
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Invalidate Versus UpdateInvalidate Versus Update

 Basic question of program behavior:
– Is a block written by one processor read by others before it is 

rewritten (i.e. written-back)?
 Invalidation:

– Yes   =>  Readers will take a miss.
No => Multiple writes without additional traffic– No    =>  Multiple writes without additional traffic.

• Clears out copies that won’t be used again.
 Update:

– Yes   =>  Readers will not miss if they had a copy previously.
• Single bus transaction to update all copies.

– No  =>  Multiple useless updates, even to dead copies.o u t p e use ess updates, e e to dead cop es
 Need to look at program behavior and hardware complexity.
 In general, invalidation protocols are much more popular.

Some systems provide both or even hybrid protocols– Some systems provide both, or even hybrid protocols.
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UpdateUpdate--Based BusBased Bus--Snooping ProtocolsSnooping Protocols
 A write operation updates values in other caches A write operation updates values in other caches.

– New, update bus transaction.
 Advantages:

– Other processors don’t miss on next access: reduced latency
• In invalidation protocols, they would miss and cause more 

transactions.
– Single bus transaction to update several caches can save 

bandwidth.
• Also, only the word written is transferred, not whole block

 Disadvantages:
– Multiple writes by same processor cause multiple update 

transactions.t a sact o s
• In invalidation, first write gets exclusive ownership, others 

local
 Detailed tradeoffs more complex Detailed tradeoffs more complex.

Depending on program behavior/hardware complexity
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Dragon WriteDragon Write--back Update Protocolback Update Protocol

 4 states:

– Exclusive-clean or exclusive (E): I and memory have this block. 

Fifth (Invalid) State Implied

( ) y

– Shared clean (Sc): I, others, and maybe memory, but I’m not owner.

– Shared modified (Sm): I and others but not memory, and I’m the owner.
• Sm and Sc can coexist in different caches, with only one Sm.

Modified or dirty (D): I have this block and no one else stale memory– Modified or dirty (D): I have this block and no one else, stale memory.

 No explicit invalid state (implied).
– If in cache, cannot be invalid.

Also requires “shared” signal S 
on bus (similar to MESI)

– If not present in cache, can view as being in not-present or invalid state.
 New processor events: PrRdMiss, PrWrMiss.

– Introduced to specify actions when block not present in cache.
 New bus transaction: BusUpd New bus transaction: BusUpd.

– Broadcasts single word written on bus; updates other relevant caches.
That was modified in owner’s cache 45



Dragon State Transition DiagramDragon State Transition Diagram

S h d i lS Sh d
PrRd/—

PrRd/— BusUpd/Update

S = shared signal
= 0 not shared
= 1 shared

S = Shared
S = Not Shared

E Sc
PrRdMiss/BusRd(S)PrRdMiss/BusRd(S)

PrWr/—

BusRd/—

Four States:
E = Exclusive

I I

Shared
Not shared

PrWr/BusUpd(S)
BusUpd/Update

PrWr/BusUpd(S)E = Exclusive
Sc = Shared clean
Sm = Shared modified
M = Modified

Not shared

Shared

P W Mi /(B Rd(S) B U d) PrWrMiss/B sRd(S)
BusRd/Flush

BusUpd/Update

Not sharedUpdate
othersShared

Update others
Supply
data

Sm M

P W /
PrRd/—PrRd/—

PrWrMiss/(BusRd(S); BusUpd) PrWrMiss/BusRd(S)

PrWr/BusUpd(S)

PrWr/BusUpd(S)

This Processor
Not shared

PrWr/—
p ( )

BusRd/Flush

BusUpd = Broadcast word written on bus to update other caches

Shared
is owner

Supply data
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Fundamental Issues

 3 Issues to characterize parallel machines
– 1) Naming1) Naming
– 2) Synchronization
– 3) Performance: Latency and Bandwidth ) y

(covered earlier)
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Fundamental Issue #1: Naming

 Naming: how to solve large problem fast
– what data is shared
– how it is addressed
– what operations can access data

h f t h th– how processes refer to each other
 Choice of naming affects code produced by a 

compiler; via load where just remembercompiler; via load where just remember 
address or keep track of processor number 
and local virtual address for msg. passing

 Choice of naming affects replication of data; 
via load in cache memory hierarchy or via SW 
replication and consistencyreplication and consistency
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Fundamental Issue #1: Naming

 Global physical address space: 
any processor can generate, 
address and access it in a single operation
– memory can be anywhere: 

virtual addr. translation handles it

 Global virtual address space: if the address space of 
each process can  be configured to contain all shared 
d t f th ll ldata of the parallel program

 Segmented shared address space: 
locations are named 
<process number, address> 
uniformly for all processes of the parallel program
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Fundamental Issue #2: Synchronization

 To cooperate, processes must coordinate
 Message passing is implicit coordination with Message passing is implicit coordination with 

transmission or arrival of data
 Shared address Shared address 

=> additional operations to explicitly 
coordinate: 
e.g., write a flag, awaken a thread, 
interrupt a processor
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Summary: Parallel Framework

 Layers:
– Programming Model:

Programming Model
Communication 
Abstraction
I t tig g

• Multiprogramming : 
lots of jobs, no communication

• Shared address space: 

Interconnection 
SW/OS 
Interconnection HW

p
communicate via memory

• Message passing: send and receive messages
• Data Parallel: several agents operate on several data sets 

simultaneously and then exchange information globally 
and simultaneously (shared or message passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling) 

=> many hardware designs 1:1 programming model
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Distributed Directory MPs

C - Cache
P0 P1 Pn

...

M - Memory

IO - Input/Output

P0

M

C

IO

P1

M

C

IO

Pn

M

C

IO...M IO

I t ti N t k

M IO M IO

Interconnection Network
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Directory Protocol

 Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data; 

memory out-of-datey

 In addition to cache state, must track which 
processors have data when in the shared state 
( ll bit t 1 if h )(usually bit vector, 1 if processor has copy)

 Keep it simple(r):
– Writes to non-exclusive dataWrites to non exclusive data 

=> write miss
– Processor blocks until access completes
– Assume messages received– Assume messages received 

and acted upon in order sent
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Directory Protocol

 No bus and don’t want to broadcast:
– interconnect no longer single arbitration pointinterconnect no longer single arbitration point
– all messages have explicit responses

 Terms: typically 3 processors involvedTerms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location 

of an address resides
– Remote node has a copy of a cache 

block whether exclusive or sharedblock, whether exclusive or shared
 Example messages on next slide: 

P = processor number A = addressP  processor number, A  address
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Directory Protocol Messages

Message type Source Destination Msg 
Content

Read miss Local cache Home directory P, Aead ss oca cac e o e d ecto y ,
Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write miss Local cache Home directory P, A
Processor P writes data at address A;Processor P writes data at address A; 
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory;Fetch the block at address A and send it to its home directory; 
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

D i b k R h H di A DData write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)
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State Transition Diagram for an Individual 
Cache Block in a Directory Based Systemy y
 States identical to snoopy case; transactions very 

similar
 Transitions caused by read misses, write misses, 

invalidates, data fetch requests
G t d i & it i t h Generates read miss & write miss msg to home 
directory

 Write misses that were broadcast on the bus forWrite misses that were broadcast on the bus for 
snooping => explicit invalidate & data fetch requests

 Note: on a write, a cache block is bigger, 
d t d th f ll h bl kso need to read the full cache block
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CPU -Cache State Machine
C

 State machine
for CPU  

t
Invalidate

Shared

CPU Read hit

requests
for each 
memory block

Invalid (read/only)CPU Read
Send Read Miss

message CPU read miss:
 Invalid state

if in 
memoryFetch/Invalidate

g
CPU Write:
Send Write Miss 
msg to h.d.

CPU Write:Send 
Write Miss message
to home directory

CPU read miss:
Send Read Miss

Fetch/Invalidate
send Data Write Back message 

to home directory

to home directory

Fetch: send Data Write Back 
message to home directory

CPU read miss: send Data Write

CPU write miss:

Exclusive
(read/writ)

CPU read hit

CPU read miss: send Data Write 
Back message and read miss to 
home directory

CPU write miss:
send Data Write Back message 
and Write Miss to home 
directory

CPU read hit
CPU write hit
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State Transition Diagram for the Directory 

 Same states & structure as the transition diagram for 
an individual cache

 2 actions: update of directory state & send msgs to 
statisfy requests 
T k ll i f bl k Tracks all copies of memory block. 

 Also indicates an action that updates the sharing set, 
Sharers, as well as sending a message.Sharers, as well as sending a message.
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Directory State Machine
Read miss: 

 State machine
for Directory 

Read miss:
Sharers = {P}

d D t V l

Sharers += {P};
send Data Value Reply

requests for each 
memory block

 Uncached state

Uncached
Shared

(read only)

send Data Value 
Reply

 Uncached state
if in memory

Data Write Back:
Sh {}

Write Miss: 
send Invalidate 
to Sharers;

Write Miss:
Sharers = {P}; 
send Data 

Sharers = {}
(Write back block)

to Sharers;
then Sharers = {P};
send Data Value 
Reply msg

Value Reply
msg

Exclusive
(read/writ)

y g
Read miss:
Sharers += {P}; 
send Fetch;

d D t V l R l

Write Miss:
Sharers = {P}; 
send Fetch/Invalidate; (read/writ) send Data Value Reply

msg to remote cache
(Write back block)

send Fetch/Invalidate;
send Data Value Reply
msg to remote cache
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