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Distributed Directory MPs
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Directory Protocol

 Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data; 

memory out-of-datey

 In addition to cache state, must track which 
processors have data when in the shared state 
( ll bit t 1 if h )(usually bit vector, 1 if processor has copy)

 Keep it simple(r):
– Writes to non-exclusive dataWrites to non exclusive data 

=> write miss
– Processor blocks until access completes
– Assume messages received– Assume messages received 

and acted upon in order sent
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Directory Protocol

 No bus and don’t want to broadcast:
– interconnect no longer single arbitration pointinterconnect no longer single arbitration point
– all messages have explicit responses

 Terms: typically 3 processors involvedTerms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location 

of an address resides
– Remote node has a copy of a cache 

block whether exclusive or sharedblock, whether exclusive or shared
 Example messages on next slide: 

P = processor number A = addressP  processor number, A  address
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Directory Protocol Messages

Message type Source Destination Msg 
Content

Read miss Local cache Home directory P ARead miss Local cache Home directory P, A
Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write miss Local cache Home directory P, A
Processor P writes data at address A; 
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
F h h bl k dd A d d i i h diFetch the block at address A and send it to its home directory; 
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)
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CPU -Cache State Machine
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Directory State Machine
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Parallel Program: An Example

/*
* Title: Matrix multiplication kernel 
* Author: Aleksandar Milenkovic, milenkovic@computer.org
* D t N b  1997 

/* Initialize the Index */
Index = 0;    

/* Initialize the barriers and the lock */* Date: November, 1997 
* 
*------------------------------------------------------------
*    Command Line Options
*     -pP: P = number of processors; must be a power of 2.

/* Initialize the barriers and the lock */
LOCKINIT(indexLock) 
BARINIT(bar_fin)

/*  read/initialize data   */p m f p ; m p f
*     -nN: N = number of columns (even integers).
*     -h : Print out command line options.
*------------------------------------------------------------
* */

id i (i   h * []) {

... 
/* do matrix multiplication in parallel a=a*b 

*/
/* Create the slave processes. */
for (i = 0; i < numProcs-1; i++)void main(int argc, char*argv[]) {

/* Define shared matrix */
ma = (double **) G_MALLOC(N*sizeof(double *));
mb = (double **) G MALLOC(N*sizeof(double *));

for (i = 0; i < numProcs-1; i++)
CREATE(SlaveStart)

/* Make the master do slave work so we 
don't waste a processor */mb  (double ) G_MALLOC(N sizeof(double ));

for(i=0; i<N; i++) {
ma[i] = (double *) G_MALLOC(N*sizeof(double));
mb[i] = (double *) G_MALLOC(N*sizeof(double));

SlaveStart();        

...

};
}
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Parallel Program: An Example

/*====== SlaveStart ================*/
/* This is the routine that each processor will be 

executing in parallel */

/* the main body of a thread */

for(i=begin; i<end; i++) {
void SlaveStart() {

int myIndex, i, j, k, begin, end; 
double tmp;

for(j=0; j<N; j++) {
tmp=0.0;
for(k=0; k<N; k++) {

LOCK(indexLock); /* enter the critical section 
*/

myIndex = Index; /* read your ID */
++Index;               /* increment it, so the next 

( ) {
tmp = tmp + ma[i][k]*mb[k][j];

}
ma[i][j] = tmp;

}
will operate on ID+1 */

UNLOCK(indexLock); /* leave the critical 
section */   

}
} 

BARRIER(bar_fin, numProcs);

/* Initialize begin and end */
begin = (N/numProcs)*myIndex;
end = (N/numProcs)*(myIndex+1); 

}
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Synchronization

 Why Synchronize? Need to know when it is 
safe for different processes to use shared datasafe for different processes to use shared data

 Issues for Synchronization:
– Uninterruptable instruction to fetch and updateUninterruptable instruction to fetch and update 

memory (atomic operation);
– User level synchronization operation using this 

i itiprimitive;
– For large scale MPs, 

synchronization can be a bottleneck;synchronization can be a bottleneck; 
techniques to reduce contention and latency of 
synchronization

12



Uninterruptable Instruction to Fetch and 
Update Memoryp y
 Atomic exchange: interchange a value in a register for 

a value in memory
– 0 => synchronization variable is free 
– 1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock 0 if 

you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

Key is that exchange operation is indivisible– Key is that exchange operation is indivisible
 Test-and-set: tests a value and sets it if the value 

passes the test
 Fetch-and-increment: it returns the value of a memory 

location and atomically increments it
– 0 => synchronization variable is free y
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Lock&Unlock: Test&Set

/* Test&Set */
==============

loadi R2, #1
lockit: exch R2, location /* atomic operation*/

bnez R2, lockit   /* test*/

unlock: store location, #0 /* free the lock (write 0) */

14



Lock&Unlock: Test and Test&Set

/* Test and Test&Set *// /
=======================

lockit: load R2, location /* read lock varijable */oc t: oad , ocat o / ead oc a jab e /
bnz R2, lockit   /* check value  */
loadi R2, #1 
exch R2, location /* atomic operation */exch R2, location /  atomic operation /
bnz reg, lockit   /* if lock is not acquired, repeat */

unlock: store location, #0 /* free the lock (write 0) */

15



Lock&Unlock: Test and Test&Set

/* Load-linked and Store-Conditional */
=======================================
lockit: ll R2, location /* load-linked read */

bnz R2, lockit  /* if busy, try again */
load R2, #1
sc location, R2 /* conditional store */
beqz R2, lockit /* if sc unsuccessful, try again */

unlock: store location, #0 /* store 0 */
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Uninterruptable Instruction to Fetch and 
Update Memoryp y

 Hard to have read & write in 1 instruction: use 2 instead
 Load linked (or load locked) + store conditional Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same memory location 

since preceeding load) and 0 otherwise
 Example doing atomic swap with LL & SC: Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
ll R2,0(R1); load linked
sc R3,0(R1); store conditional (returns 1, if Ok)
b R3    b h  f l  (R3  0)beqz R3,try  ; branch store fails (R3 = 0)
mov R4,R2  ; put load value in R4

 Example doing fetch & increment with LL & SC:
try: ll R2 0(R1); load linkedtry: ll R2,0(R1); load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional 
beqz R2,try  ; branch store fails (R2 = 0)
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User Level Synchronization—Operation 
Using this Primitiveg
 Spin locks: processor continuously tries to acquire, spinning around a 

loop trying to get the lock
li R2 #1li R2,#1

lockit: exch R2,0(R1) ;atomic exchange
bnez R2,lockit ;already locked?

 What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

 Problem: exchange includes a write, which invalidates all other copies; 
thi t id bl b t ffithis generates considerable bus traffic

 Solution: start by simply repeatedly reading the variable; when it 
changes, then try exchange (“test and test&set”):
try: li R2 #1try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?
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Barrier Implementation

struct BarrierStruct {
LOCKDEC(counterlock);
LOCKDEC(sleeplock);
int sleepers;p
};
...
#define BARDEC(B) struct BarrierStruct B;# ( ) ;
#define BARINIT(B) sys_barrier_init(&B);
#define BARRIER(B,N) sys_barrier(&B, N);
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Barrier Implementation (cont’d)

void sys_barrier(struct BarrierStruct *B, int N) {
LOCK(B->counterlock)LOCK(B->counterlock)

(B->sleepers)++;

if (B->sleepers < N ) {
UNLOCK(B->counterlock)

LOCK(B->sleeplock)
B->sleepers--;p ;
if(B->sleepers > 0) UNLOCK(B->sleeplock)
else UNLOCK(B->counterlock)

}
else {else {
B->sleepers--;
if(B->sleepers > 0) UNLOCK(B->sleeplock)
else UNLOCK(B->counterlock)

}
}
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Another MP Issue: 
Memory Consistency Modelsy y
 What is consistency? When must a processor see the new 

value? e.g., seems that
P1 A 0 P2 B 0P1: A = 0; P2: B = 0;

..... .....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...
 Impossible for both if statements L1 & L2 to be true?

– What if write invalidate is delayed & processor continues?What if write invalidate is delayed & processor continues?
 Memory consistency models: 

what are the rules for such cases?
 Sequential consistency: result of any execution is the same as if Sequential consistency: result of any execution is the same as if 

the accesses of each processor were kept in order and the 
accesses among different processors were interleaved => 
assignments before ifs aboveass g e ts be o e s abo e
– SC: delay all memory accesses until all invalidates done
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Memory Consistency Model

 Schemes faster execution to sequential consistency
 Not really an issue for most programs; 

they are synchronizedt ey a e sy c o ed
– A program is synchronized if all access to shared data are ordered 

by synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

 Only those programs willing to be nondeterministic are not synchronized: 
“data race”: outcome f(proc. speed)

 Several Relaxed Models for Memory Consistency since most programs 
are synchronized; characterized by their attitude towards: RAR, WAR, 
RAW, WAW 
to different addressesto different addresses
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Summary

 Caches contain all information on state of cached 
memory blocks 

 Snooping and Directory Protocols similar; bus makes 
snooping easier because of broadcast (snooping => 
uniform memory access)uniform memory access)

 Directory has extra data structure to keep track of 
state of all cache blocks

 Distributing directory 
=> scalable shared address multiprocessor 
=> Cache coherent Non uniform memory access=> Cache coherent, Non uniform memory access
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Achieving High Performance in Bus-Based 
SMPs
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Partially funded by Encore Florida done at the School of Electrical
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Introduction

 Bus-based SMPs: 
current situation and challengescurrent situation and challenges
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Pn
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M - Memory

IO - Input/Output
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Introduction Introduction

 Cache misses and bus traffic are key 
obstacles
to achieving high performance due to
– widening speed gap between processor and 

memorymemory
– high contention on the bus
– data sharing in parallel programs

 Write miss latencies: relaxed memory 
consistency models
L t f d i i Latency of read misses remains

 Techniques to reduce 
the number of read missesthe number of read misses
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Existing solutions

 Cache Prefetching
 Read Snarfing Read Snarfing
 Software-controlled updating
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An Example Exisitng solutions

store a
l d

0. Initial state
P0 P1 P2

load a
load a

1. P0: store a

3 P2 l d
2. P1: load a
3. P2: load a

P0 P1 P2
a:M a:I/- a:I/-a:S a:S a:I/-a:S M - Modified

S - Shared

a:Ia:S

I – Invalid

- – Not present
:S
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Cache Prefetching Exisiting solutions

P0 P1 P2
store a pf a

l d

1. P0: store a
0. Initial state

2 P1: pf aload a
pf a

load a
3. P2: pf a
2. P1: pf aload a

4 P1: load a

a:M a:I/- a:I/-

4. P1: load a
5. P2: load a

a:S a:S a:I/-a:S

P0 P1 P2

pf - prefetch

a:Ia:S
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Cache Prefetching Exisiting solutions

 Reduces all kind of misses (cold, coh., repl.)
 Hardware support: prefetch instructions + Hardware support: prefetch instructions + 

buffering of prefetches
 Compiler support Compiler support 

[T. Mowry, 1994; T. Mowry and C. Luk, 1997]
 Potential of cache prefetching in BB SMPs [D. Potential of cache prefetching in BB SMPs [D. 

Tullsen, S. Eggers, 1995]
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Read Snarfing Exisitng solutions

store a 0. Initial state
P0 P1 P2

store a
load a

load a
1. P0: store a
0. Initial state

2. P1: load a
3. P2: load a

P0 P1 P2

a:M a:I/- a:Ia:S a:S a:S  

P0 P1 P2

a:Ia:S
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Read Snarfing Exisiting solutions

 Reduces only coherence misses
 Hardware support: negligible Hardware support: negligible
 Compiler support: none
 Performance evaluation Performance evaluation 

[C. Andersen and J.-L. Baer, 1995]
 Drawbacks Drawbacks
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Software-controlled updating Exisiting solutions

P0 P1 P2
store-up a

load a
0 I iti l t t

load a

2 P1: load a

0. Initial state
1. P0: store-up a

P0 P1 P2 2. P1: load a

a:M a:I a:Ia:S a:S a:S 3. P2: load a
P0 P1 P2

a:Ia:S
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Software-controlled updating Exisiting solutions

 Reduces only coherence misses
 Hardware support Hardware support
 Compiler support: 

[J Skeppstedt P Stenstrom 1994][J. Skeppstedt, P. Stenstrom, 1994]
 Performance evaluation 

[F. Dahlgren, J. Skeppstedt, P. Stenstrom,[F. Dahlgren, J. Skeppstedt, P. Stenstrom, 
1995]

 Drawbacks
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CACHE INJECTION

 Motivation
 Definition and programming model Definition and programming model
 Implementation
 Primena na prave deljene podatke (PDP) Primena na prave deljene podatke (PDP)
 Primena na sinhro-primitive (SP)

H d k d šk Hardverska podrška
 Softverska podrška
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Motivation Cache Injection

 Overcome some of the other techniques’ 
shortcomings such asshortcomings such as
– minor effectiveness of cache prefetching in 

reducing coherence cache misses
– minor effectiveness of read snarfing and software-

controlled updating in SMPs with relatively small 
private cachesprivate caches

– high contention on the bus in cache prefetching 
and software-controlled updating
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Definition Cache Injection

 Consumers predicts their future needs for 
shared data by executing an openWinshared data by executing an openWin 
instruction 

 OpenWin Laddr, Haddrp ,
 Injection table 
 Hit in injection table  Hit in injection table 

cache injection
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Definition Cache Injection

 Injection on first read
– Applicable for read only shared data andApplicable for read only shared data and 

1-Producer-Multiple-Consumers sharing pattern
– Each consumer initializes its local injection table

 Injection on Update
– Applicable for 1-Producer-1-Consumer and

1 P d M l i l C h i1-Producer-Multiple-Consumers sharing patterns or
migratory sharing pattern

– Each consumer initializes its local injection tableEach consumer initializes its local injection table
– After data production, the data producer initiates an 

update bus transaction by executing an update or 
store-update instruction
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Implementation Cache Injection

 OpenWin(Laddr, Haddr)
– OWL(Laddr)OWL(Laddr)
– OWH(Haddr)

 CloseWin(Laddr)CloseWin(Laddr)
 Update(A)
 StoreUpdate(A)

C

IT
Laddr Haddr V

 StoreUpdate(A)

IT hit

Addr

Data

C d+St tCmd+Stat
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Injection on first read Cache Injection

store a l
P0 P1 P2

0. Initial stateowl astore a
load a

owl a

load a

1. P0: store a
0. Initial stateowl a

2. P1: owl aload a
3. P2: owl a
4. P1: load a

P0 P1 P2 5. P2: load a
a:M a:I a:I aa:S a:S a:Sa

P0 P1 P2

a:Ia:S
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Injection on update Cache Injection

P0 P1 P2 0 Initial state
storeUp a owl a owl a

l d

1. P2: owl a
0. Initial state

2 P1: owl aload a load a

4. P1: load a

2. P1: owl a
3. P0: storeUp a

oad a

a:M a:I a:I aa:S a:S a:S
5. P2: load a

a

P0 P1 P2

a:Ia:S
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Cache Injection

Injection for true shared data: PC

shared double A[NumProcs][100];shared double A[NumProcs][100];
OpenWin(A[0][0], A[NumProcs-1][99]);
for(t=0; t<t_max; t++) {

local double myVal =0.0
for(p=0; p<NumProcs; p++) {

for(i=0; i<100; i++)
myVal+=foo(A[p][i], MyProcNum];

}}
barrier(B, NumProcs);
for(i=0; i<100; i++)

A[MyProcNum][i]+=myVal;
b i (B N P )barrier(B, NumProcs);

}

CloseWin(A[0][0]);
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Cache Injection
Injection for true shared data: PC

B P f E F F + I j tFR I j tWB I j t+ Base Pref-Ex Forw Forw+
Pref-Ex

InjectFR InjectWB Inject+
Pref-Ex

Tstall 
[x103pclk]

304,5 0 34,5 0 22,5 4,5 2 
[x10 pclk] 

Traffic 
[x106B] 

2,576 2,5768 2,576 2,5768 0,2017 0,2017 0,2017 

Code 0 >> >> >> 0 > >>
Complexity 
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Injection for Lock SP Cache Injection

 Base  Inject

OpenWin(L);
lock(L);

lock(L);
critical-section(d);

unlock(L);

critical-section(d);
unlock(L);

CloseWin(L);
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Injection for Lock SP Cache Injection

 Traffic
– Test&exch Lock implementationTest&exch Lock implementation

 RdC RdXC InvC WbC 
Base N2 N(N+1)/2 N - 
InjectFR 2N-1 N(N+1)/2 N -

– LL-SC Lock implementation

InjectFR 2N 1 N(N 1)/2 N 
InjectWb 1 - N(N+1)/3 N(N+1)/3 

 

 RdC RdXC InvC WbC 
Base N2 - 2N-1 - 
InjectFR 2N-1 - 2N-1 -j
InjectWb 1 - 2N-1 2N-1 

 N – Number of processors; 
RdC Read; RdXC ReadExclusive;RdC - Read; RdXC - ReadExclusive; 
InvC - Invalidate; WbC - WriteBack 

46



Injection for Barrier SP Cache Injection

 Base barrier implementation
struct BarrierStruct {struct BarrierStruct {

LOCKDEC(counterlock); //semafor dolazaka
LOCKDEC(sleeplock);   //semafor odlazaka
int sleepers;};       //broj blokiranih

#define BARDEC(B) struct BarrierStruct B;
#define BARINIT(B) sys_barrier_init(&B);

#define BARRIER(B,N)sys_barrier(&B, N);

 Injection barrier implementation

BARDEC(B) BARINIT(B)
OpenWin(B->counterlock, B->sleepers);
....
BARRIER(B, N); ...;
BARRIER(B, N); ...;BARRIER(B, N); ...;
CloseWin(B->counterlock);
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Hardware support Cache Injection

 Injection table
 Instructions: OWL, OWH, CWL , ,

(Update, StoreUpdate)
 Injection cycle in cache controller
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Software support Cache Injection

 Compiler and/or programmer are responsible for 
inserting instructions

 Sinhro
 True shared data
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Experimental Methodology

 Limes (Linux Memory Simulator) – a tool for 
program-driven simulation of shared memoryprogram driven simulation of shared memory 
multiprocessors

 Workload
 Modeled Architecture
 Experiments Experiments
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Workload Experimental methodology

 Sinhronization kernels (SP)
– LTEST (I=1000, C=200/20pclk, D=300pclk)( , p , p )
– BTEST (I=100, Tmin=Tmax=40)

 Test applications (SP+PDP)
– PC (I=20, M=128, N=128)
– MM (M=128, N=128)

Jacobi (I=20 M=128 N=128)– Jacobi (I=20, M=128, N=128)
 Applications from SPLASH-2

– Radix (N=128K, radix=256, range={0-231})( , , g { })
– LU (256x256, b=8)
– FFT (N=216)

O (130 130)– Ocean (130x130)
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Modeled Architecture Experimental methodology

 SMP with 16 processors, 
Illinois cache coherence protocolIllinois cache coherence protocol

 Cache: first level 2-way set associative, 
128 entry injection table, 32B cache line sizey j ,

 Processor model: single-issue, in-order, single 
cycle per instruction, blocking read misses, y p g
cache hit is solved without penalty

 Bus: split-transactions, round-robin arbitration, 
64 bits data bus width, 2pclk snoop cycle, 
20pclk memory read cycle
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Modeled Architecture Experimental methodology

R d W it
RdC, RdXC, 

Cache ControllerCache Controller
Proc

BCU & PCC

Read, Write
Lock, Unlock

Owl, Owh, Cw

dC, d C,
InvC, SWbC, 
RWbC, IWbC SC, IC

CD RAMST PT
BCU &

SC
PCC

WBITRT

Owl, Owh, Cw

Pf, Pf-ex, Update

DB

A+CB

PCC - Processor Cache Controller 
BCU&SC - Bus Control Unit&Snoop Controller
PT - Processor Tag, ST - Snoop Tag, WB - WriteBack Buffer
RT Request Table IT Injection Table CD Cache DataRT - Request Table, IT - Injection Table, CD - Cache Data
DB - Data Bus, A+CB - Address+Control Bus
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Experiments Experimental methodology

 Execution time
 Number of read misses and Number of read misses and 

the bus traffic for
B – base systemy
S – read snarfing
U – software-controlled updating
I – cache injection
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Results

 Number of read misses
normalized to the base system in the systemnormalized to the base system in the system 
when the caches are relatively small and 
relatively large

 Bus traffic 
normalized to the base system in the system 
when the caches are relatively small and 
relatively large
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Number of read misses Results
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Bus traffic Results
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Number of read misses Results
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Bus traffic Results
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Conclusions Results

 Cache injection outperforms read snarfing and 
software-controlled updatingsoftware controlled updating 

 It reduces the number of read misses 
by 6 to 90% (small caches), y ( ),
and by 27 to 98% (large caches)

 It reduces bus traffic for up to 82% (small p (
caches), and up to 90% (large caches); it 
increases bus traffic for MS, Jacobi, and FFT 
i th t ith ll h f t 7%in the system with small caches for up to 7%
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Conclusions Results

 Effectiveness of cache injection relative to 
read snarfing and software-controlled updatingread snarfing and software controlled updating 
is higher in the systems with relatively small 
caches

 Cache injection can be effective in reducing 
cold misses when there are multiple 
consumers of shared data (MM and LU)

 Software control of time window during which 
bl k b i j t d id fl ibilit da block can be injected provides flexibility and 

adaptivity (MS and FFT)
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Conclusions

 Cache injection further improves performance 
at minimal costat minimal cost

 Cache injection encompasses the existing 
techniques read snarfing and software-q g
controlled updating

 Possible future research directions
– compiler algorithm to support cache injection
– combining cache prefetching and cache injection
– implementation of injection mechanism 

in scalable shared-memory cache-coherent 
multiprocessorsmultiprocessors
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