
Multiprocessors Directory Protocols

Review: Bus Snooping Topology

P0 P1 Pn

C C C... C - Cache

M - Memory

IO - Input/Output

M IO

IO Input/Output

2

Snoopy-Cache State Machine

SharedCPU R d

CPU Read hit
Write miss
for this block

Place read miss
on bus

Invalid
Shared

(read/only)CPU Read

CPU Write
Place Write
Miss on bus

CPU read miss
Write back block,

CPU Read miss
Place read miss

Write miss
for this block

Place read miss
on bus CPU Write

Place Write Miss on Bus

on bus

Cache Block

Write Back
Block; (abort
memory
access) Write Back

Exclusive
(read/write) CPU Write Miss

W it b k h bl kCPU read hit

Cache Block
State

access) Read miss
for this block

Write Back
Block; (abort
memory access)

Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

3

Distributed Directory MPs

C - Cache
P0 P1 Pn

...

M - Memory

IO - Input/Output

P0

M

C

IO

P1

M

C

IO

Pn

M

C

IO...M IO

I t ti N t k

M IO M IO

Interconnection Network

4

Directory Protocol

 Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-datey

 In addition to cache state, must track which
processors have data when in the shared state
(ll bit t 1 if h)(usually bit vector, 1 if processor has copy)

 Keep it simple(r):
– Writes to non-exclusive dataWrites to non exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received– Assume messages received

and acted upon in order sent

5

Directory Protocol

 No bus and don’t want to broadcast:
– interconnect no longer single arbitration pointinterconnect no longer single arbitration point
– all messages have explicit responses

 Terms: typically 3 processors involvedTerms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block whether exclusive or sharedblock, whether exclusive or shared
 Example messages on next slide:

P = processor number A = addressP processor number, A address

6

Directory Protocol Messages

Message type Source Destination Msg
Content

Read miss Local cache Home directory P ARead miss Local cache Home directory P, A
Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
F h h bl k dd A d d i i h diFetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

7

CPU -Cache State Machine
C

Invalidate
Shared

CPU Read hit

Invalid (read/only)CPU Read
Send Read Miss

message CPU read miss:

Fetch/Invalidate

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read miss:
Send Read Miss

Fetch/Invalidate
send Data Write Back message

to home directory

to home directory

Fetch: send Data Write Back
message to home directory

CPU read miss: send Data Write

CPU write miss:

Exclusive
(read/writ)

CPU read hit

CPU read miss: send Data Write
Back message and read miss to
home directory

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read hit
CPU write hit

8

Directory State Machine
Read miss:

Read miss:
Sharers = {P}

d D t V l

Sharers += {P};
send Data Value Reply

Uncached
Shared

(read only)

send Data Value
Reply

Data Write Back:
Sh {}

Write Miss:
send Invalidate
to Sharers;

Write Miss:
Sharers = {P};
send Data

Sharers = {}
(Write back block)

to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Value Reply
msg

Exclusive
(read/writ)

y g
Read miss:
Sharers += {P};
send Fetch;

d D t V l R l

Write Miss:
Sharers = {P};
send Fetch/Invalidate; (read/writ) send Data Value Reply

msg to remote cache
(Write back block)

send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

9

Parallel Program: An Example

/*
* Title: Matrix multiplication kernel
* Author: Aleksandar Milenkovic, milenkovic@computer.org
* D t N b 1997

/* Initialize the Index */
Index = 0;

/* Initialize the barriers and the lock */* Date: November, 1997
*
*--
* Command Line Options
* -pP: P = number of processors; must be a power of 2.

/* Initialize the barriers and the lock */
LOCKINIT(indexLock)
BARINIT(bar_fin)

/* read/initialize data */p m f p ; m p f
* -nN: N = number of columns (even integers).
* -h : Print out command line options.
*--
* */

id i (i h * []) {

...
/* do matrix multiplication in parallel a=a*b

*/
/* Create the slave processes. */
for (i = 0; i < numProcs-1; i++)void main(int argc, char*argv[]) {

/* Define shared matrix */
ma = (double **) G_MALLOC(N*sizeof(double *));
mb = (double **) G MALLOC(N*sizeof(double *));

for (i = 0; i < numProcs-1; i++)
CREATE(SlaveStart)

/* Make the master do slave work so we
don't waste a processor */mb (double) G_MALLOC(N sizeof(double));

for(i=0; i<N; i++) {
ma[i] = (double *) G_MALLOC(N*sizeof(double));
mb[i] = (double *) G_MALLOC(N*sizeof(double));

SlaveStart();

...

};
}

10

Parallel Program: An Example

/*====== SlaveStart ================*/
/* This is the routine that each processor will be

executing in parallel */

/* the main body of a thread */

for(i=begin; i<end; i++) {
void SlaveStart() {

int myIndex, i, j, k, begin, end;
double tmp;

for(j=0; j<N; j++) {
tmp=0.0;
for(k=0; k<N; k++) {

LOCK(indexLock); /* enter the critical section
*/

myIndex = Index; /* read your ID */
++Index; /* increment it, so the next

() {
tmp = tmp + ma[i][k]*mb[k][j];

}
ma[i][j] = tmp;

}
will operate on ID+1 */

UNLOCK(indexLock); /* leave the critical
section */

}
}

BARRIER(bar_fin, numProcs);

/* Initialize begin and end */
begin = (N/numProcs)*myIndex;
end = (N/numProcs)*(myIndex+1);

}

11

Synchronization

 Why Synchronize? Need to know when it is
safe for different processes to use shared datasafe for different processes to use shared data

 Issues for Synchronization:
– Uninterruptable instruction to fetch and updateUninterruptable instruction to fetch and update

memory (atomic operation);
– User level synchronization operation using this

i itiprimitive;
– For large scale MPs,

synchronization can be a bottleneck;synchronization can be a bottleneck;
techniques to reduce contention and latency of
synchronization

12

Uninterruptable Instruction to Fetch and
Update Memoryp y
 Atomic exchange: interchange a value in a register for

a value in memory
– 0 => synchronization variable is free
– 1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock 0 if

you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

Key is that exchange operation is indivisible– Key is that exchange operation is indivisible
 Test-and-set: tests a value and sets it if the value

passes the test
 Fetch-and-increment: it returns the value of a memory

location and atomically increments it
– 0 => synchronization variable is free y

13

Lock&Unlock: Test&Set

/* Test&Set */
==============

loadi R2, #1
lockit: exch R2, location /* atomic operation*/

bnez R2, lockit /* test*/

unlock: store location, #0 /* free the lock (write 0) */

14

Lock&Unlock: Test and Test&Set

/* Test and Test&Set *// /
=======================

lockit: load R2, location /* read lock varijable */oc t: oad , ocat o / ead oc a jab e /
bnz R2, lockit /* check value */
loadi R2, #1
exch R2, location /* atomic operation */exch R2, location / atomic operation /
bnz reg, lockit /* if lock is not acquired, repeat */

unlock: store location, #0 /* free the lock (write 0) */

15

Lock&Unlock: Test and Test&Set

/* Load-linked and Store-Conditional */
=======================================
lockit: ll R2, location /* load-linked read */

bnz R2, lockit /* if busy, try again */
load R2, #1
sc location, R2 /* conditional store */
beqz R2, lockit /* if sc unsuccessful, try again */

unlock: store location, #0 /* store 0 */

16

Uninterruptable Instruction to Fetch and
Update Memoryp y

 Hard to have read & write in 1 instruction: use 2 instead
 Load linked (or load locked) + store conditional Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same memory location

since preceeding load) and 0 otherwise
 Example doing atomic swap with LL & SC: Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
ll R2,0(R1); load linked
sc R3,0(R1); store conditional (returns 1, if Ok)
b R3 b h f l (R3 0)beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

 Example doing fetch & increment with LL & SC:
try: ll R2 0(R1); load linkedtry: ll R2,0(R1); load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

17

User Level Synchronization—Operation
Using this Primitiveg
 Spin locks: processor continuously tries to acquire, spinning around a

loop trying to get the lock
li R2 #1li R2,#1

lockit: exch R2,0(R1) ;atomic exchange
bnez R2,lockit ;already locked?

 What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

 Problem: exchange includes a write, which invalidates all other copies;
thi t id bl b t ffithis generates considerable bus traffic

 Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):
try: li R2 #1try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

18

Barrier Implementation

struct BarrierStruct {
LOCKDEC(counterlock);
LOCKDEC(sleeplock);
int sleepers;p
};
...
#define BARDEC(B) struct BarrierStruct B;# () ;
#define BARINIT(B) sys_barrier_init(&B);
#define BARRIER(B,N) sys_barrier(&B, N);

19

Barrier Implementation (cont’d)

void sys_barrier(struct BarrierStruct *B, int N) {
LOCK(B->counterlock)LOCK(B->counterlock)

(B->sleepers)++;

if (B->sleepers < N) {
UNLOCK(B->counterlock)

LOCK(B->sleeplock)
B->sleepers--;p ;
if(B->sleepers > 0) UNLOCK(B->sleeplock)
else UNLOCK(B->counterlock)

}
else {else {
B->sleepers--;
if(B->sleepers > 0) UNLOCK(B->sleeplock)
else UNLOCK(B->counterlock)

}
}

20

Another MP Issue:
Memory Consistency Modelsy y
 What is consistency? When must a processor see the new

value? e.g., seems that
P1 A 0 P2 B 0P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...
 Impossible for both if statements L1 & L2 to be true?

– What if write invalidate is delayed & processor continues?What if write invalidate is delayed & processor continues?
 Memory consistency models:

what are the rules for such cases?
 Sequential consistency: result of any execution is the same as if Sequential consistency: result of any execution is the same as if

the accesses of each processor were kept in order and the
accesses among different processors were interleaved =>
assignments before ifs aboveass g e ts be o e s abo e
– SC: delay all memory accesses until all invalidates done

21

Memory Consistency Model

 Schemes faster execution to sequential consistency
 Not really an issue for most programs;

they are synchronizedt ey a e sy c o ed
– A program is synchronized if all access to shared data are ordered

by synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

 Only those programs willing to be nondeterministic are not synchronized:
“data race”: outcome f(proc. speed)

 Several Relaxed Models for Memory Consistency since most programs
are synchronized; characterized by their attitude towards: RAR, WAR,
RAW, WAW
to different addressesto different addresses

22

Summary

 Caches contain all information on state of cached
memory blocks

 Snooping and Directory Protocols similar; bus makes
snooping easier because of broadcast (snooping =>
uniform memory access)uniform memory access)

 Directory has extra data structure to keep track of
state of all cache blocks

 Distributing directory
=> scalable shared address multiprocessor
=> Cache coherent Non uniform memory access=> Cache coherent, Non uniform memory access

23

Achieving High Performance in Bus-Based
SMPs

A Milenkovic "Achieving High Performance in Bus-Based Shared

Partially funded by Encore Florida done at the School of Electrical

A. Milenkovic, Achieving High Performance in Bus Based Shared
Memory Multiprocessors," IEEE Concurrency , Vol. 8, No. 3, July-
September 2000, pp. 36-44.

Partially funded by Encore, Florida, done at the School of Electrical
Engineering, University of Belgrade (1997/1999)

Outline

 Introduction
 Existing Solutions Existing Solutions
 Proposed Solution: Cache Injection
 Experimental Methodology Experimental Methodology
 Results

C l i Conclusions

25

Introduction

 Bus-based SMPs:
current situation and challengescurrent situation and challenges

P0 P1

C C C

Pn
C - Cache

C C C...
M - Memory

IO - Input/Output

M IO

26

Introduction Introduction

 Cache misses and bus traffic are key
obstacles
to achieving high performance due to
– widening speed gap between processor and

memorymemory
– high contention on the bus
– data sharing in parallel programs

 Write miss latencies: relaxed memory
consistency models
L t f d i i Latency of read misses remains

 Techniques to reduce
the number of read missesthe number of read misses

27

Existing solutions

 Cache Prefetching
 Read Snarfing Read Snarfing
 Software-controlled updating

28

An Example Exisitng solutions

store a
l d

0. Initial state
P0 P1 P2

load a
load a

1. P0: store a

3 P2 l d
2. P1: load a
3. P2: load a

P0 P1 P2
a:M a:I/- a:I/-a:S a:S a:I/-a:S M - Modified

S - Shared

a:Ia:S

I – Invalid

- – Not present
:S

29

Cache Prefetching Exisiting solutions

P0 P1 P2
store a pf a

l d

1. P0: store a
0. Initial state

2 P1: pf aload a
pf a

load a
3. P2: pf a
2. P1: pf aload a

4 P1: load a

a:M a:I/- a:I/-

4. P1: load a
5. P2: load a

a:S a:S a:I/-a:S

P0 P1 P2

pf - prefetch

a:Ia:S
30

Cache Prefetching Exisiting solutions

 Reduces all kind of misses (cold, coh., repl.)
 Hardware support: prefetch instructions + Hardware support: prefetch instructions +

buffering of prefetches
 Compiler support Compiler support

[T. Mowry, 1994; T. Mowry and C. Luk, 1997]
 Potential of cache prefetching in BB SMPs [D. Potential of cache prefetching in BB SMPs [D.

Tullsen, S. Eggers, 1995]

31

Read Snarfing Exisitng solutions

store a 0. Initial state
P0 P1 P2

store a
load a

load a
1. P0: store a
0. Initial state

2. P1: load a
3. P2: load a

P0 P1 P2

a:M a:I/- a:Ia:S a:S a:S

P0 P1 P2

a:Ia:S

32

Read Snarfing Exisiting solutions

 Reduces only coherence misses
 Hardware support: negligible Hardware support: negligible
 Compiler support: none
 Performance evaluation Performance evaluation

[C. Andersen and J.-L. Baer, 1995]
 Drawbacks Drawbacks

33

Software-controlled updating Exisiting solutions

P0 P1 P2
store-up a

load a
0 I iti l t t

load a

2 P1: load a

0. Initial state
1. P0: store-up a

P0 P1 P2 2. P1: load a

a:M a:I a:Ia:S a:S a:S 3. P2: load a
P0 P1 P2

a:Ia:S

34

Software-controlled updating Exisiting solutions

 Reduces only coherence misses
 Hardware support Hardware support
 Compiler support:

[J Skeppstedt P Stenstrom 1994][J. Skeppstedt, P. Stenstrom, 1994]
 Performance evaluation

[F. Dahlgren, J. Skeppstedt, P. Stenstrom,[F. Dahlgren, J. Skeppstedt, P. Stenstrom,
1995]

 Drawbacks

35

CACHE INJECTION

 Motivation
 Definition and programming model Definition and programming model
 Implementation
 Primena na prave deljene podatke (PDP) Primena na prave deljene podatke (PDP)
 Primena na sinhro-primitive (SP)

H d k d šk Hardverska podrška
 Softverska podrška

36

Motivation Cache Injection

 Overcome some of the other techniques’
shortcomings such asshortcomings such as
– minor effectiveness of cache prefetching in

reducing coherence cache misses
– minor effectiveness of read snarfing and software-

controlled updating in SMPs with relatively small
private cachesprivate caches

– high contention on the bus in cache prefetching
and software-controlled updating

37

Definition Cache Injection

 Consumers predicts their future needs for
shared data by executing an openWinshared data by executing an openWin
instruction

 OpenWin Laddr, Haddrp ,
 Injection table
 Hit in injection table  Hit in injection table 

cache injection

38

Definition Cache Injection

 Injection on first read
– Applicable for read only shared data andApplicable for read only shared data and

1-Producer-Multiple-Consumers sharing pattern
– Each consumer initializes its local injection table

 Injection on Update
– Applicable for 1-Producer-1-Consumer and

1 P d M l i l C h i1-Producer-Multiple-Consumers sharing patterns or
migratory sharing pattern

– Each consumer initializes its local injection tableEach consumer initializes its local injection table
– After data production, the data producer initiates an

update bus transaction by executing an update or
store-update instruction

39

Implementation Cache Injection

 OpenWin(Laddr, Haddr)
– OWL(Laddr)OWL(Laddr)
– OWH(Haddr)

 CloseWin(Laddr)CloseWin(Laddr)
 Update(A)
 StoreUpdate(A)

C

IT
Laddr Haddr V

 StoreUpdate(A)

IT hit

Addr

Data

C d+St tCmd+Stat

40

Injection on first read Cache Injection

store a l
P0 P1 P2

0. Initial stateowl astore a
load a

owl a

load a

1. P0: store a
0. Initial stateowl a

2. P1: owl aload a
3. P2: owl a
4. P1: load a

P0 P1 P2 5. P2: load a
a:M a:I a:I aa:S a:S a:Sa

P0 P1 P2

a:Ia:S

41

Injection on update Cache Injection

P0 P1 P2 0 Initial state
storeUp a owl a owl a

l d

1. P2: owl a
0. Initial state

2 P1: owl aload a load a

4. P1: load a

2. P1: owl a
3. P0: storeUp a

oad a

a:M a:I a:I aa:S a:S a:S
5. P2: load a

a

P0 P1 P2

a:Ia:S

42

Cache Injection

Injection for true shared data: PC

shared double A[NumProcs][100];shared double A[NumProcs][100];
OpenWin(A[0][0], A[NumProcs-1][99]);
for(t=0; t<t_max; t++) {

local double myVal =0.0
for(p=0; p<NumProcs; p++) {

for(i=0; i<100; i++)
myVal+=foo(A[p][i], MyProcNum];

}}
barrier(B, NumProcs);
for(i=0; i<100; i++)

A[MyProcNum][i]+=myVal;
b i (B N P)barrier(B, NumProcs);

}

CloseWin(A[0][0]);

43

Cache Injection
Injection for true shared data: PC

B P f E F F + I j tFR I j tWB I j t+ Base Pref-Ex Forw Forw+
Pref-Ex

InjectFR InjectWB Inject+
Pref-Ex

Tstall
[x103pclk]

304,5 0 34,5 0 22,5 4,5 2
[x10 pclk]

Traffic
[x106B]

2,576 2,5768 2,576 2,5768 0,2017 0,2017 0,2017

Code 0 >> >> >> 0 > >>
Complexity

44

Injection for Lock SP Cache Injection

 Base  Inject

OpenWin(L);
lock(L);

lock(L);
critical-section(d);

unlock(L);

critical-section(d);
unlock(L);

CloseWin(L);

45

Injection for Lock SP Cache Injection

 Traffic
– Test&exch Lock implementationTest&exch Lock implementation

 RdC RdXC InvC WbC
Base N2 N(N+1)/2 N -
InjectFR 2N-1 N(N+1)/2 N -

– LL-SC Lock implementation

InjectFR 2N 1 N(N 1)/2 N
InjectWb 1 - N(N+1)/3 N(N+1)/3

 RdC RdXC InvC WbC
Base N2 - 2N-1 -
InjectFR 2N-1 - 2N-1 -j
InjectWb 1 - 2N-1 2N-1

 N – Number of processors;
RdC Read; RdXC ReadExclusive;RdC - Read; RdXC - ReadExclusive;
InvC - Invalidate; WbC - WriteBack

46

Injection for Barrier SP Cache Injection

 Base barrier implementation
struct BarrierStruct {struct BarrierStruct {

LOCKDEC(counterlock); //semafor dolazaka
LOCKDEC(sleeplock); //semafor odlazaka
int sleepers;}; //broj blokiranih

#define BARDEC(B) struct BarrierStruct B;
#define BARINIT(B) sys_barrier_init(&B);

#define BARRIER(B,N)sys_barrier(&B, N);

 Injection barrier implementation

BARDEC(B) BARINIT(B)
OpenWin(B->counterlock, B->sleepers);
....
BARRIER(B, N); ...;
BARRIER(B, N); ...;BARRIER(B, N); ...;
CloseWin(B->counterlock);

47

Hardware support Cache Injection

 Injection table
 Instructions: OWL, OWH, CWL , ,

(Update, StoreUpdate)
 Injection cycle in cache controller

48

Software support Cache Injection

 Compiler and/or programmer are responsible for
inserting instructions

 Sinhro
 True shared data

49

Experimental Methodology

 Limes (Linux Memory Simulator) – a tool for
program-driven simulation of shared memoryprogram driven simulation of shared memory
multiprocessors

 Workload
 Modeled Architecture
 Experiments Experiments

50

Workload Experimental methodology

 Sinhronization kernels (SP)
– LTEST (I=1000, C=200/20pclk, D=300pclk)(, p , p)
– BTEST (I=100, Tmin=Tmax=40)

 Test applications (SP+PDP)
– PC (I=20, M=128, N=128)
– MM (M=128, N=128)

Jacobi (I=20 M=128 N=128)– Jacobi (I=20, M=128, N=128)
 Applications from SPLASH-2

– Radix (N=128K, radix=256, range={0-231})(, , g { })
– LU (256x256, b=8)
– FFT (N=216)

O (130 130)– Ocean (130x130)

51

Modeled Architecture Experimental methodology

 SMP with 16 processors,
Illinois cache coherence protocolIllinois cache coherence protocol

 Cache: first level 2-way set associative,
128 entry injection table, 32B cache line sizey j ,

 Processor model: single-issue, in-order, single
cycle per instruction, blocking read misses, y p g
cache hit is solved without penalty

 Bus: split-transactions, round-robin arbitration,
64 bits data bus width, 2pclk snoop cycle,
20pclk memory read cycle

52

Modeled Architecture Experimental methodology

R d W it
RdC, RdXC,

Cache ControllerCache Controller
Proc

BCU & PCC

Read, Write
Lock, Unlock

Owl, Owh, Cw

dC, d C,
InvC, SWbC,
RWbC, IWbC SC, IC

CD RAMST PT
BCU &

SC
PCC

WBITRT

Owl, Owh, Cw

Pf, Pf-ex, Update

DB

A+CB

PCC - Processor Cache Controller
BCU&SC - Bus Control Unit&Snoop Controller
PT - Processor Tag, ST - Snoop Tag, WB - WriteBack Buffer
RT Request Table IT Injection Table CD Cache DataRT - Request Table, IT - Injection Table, CD - Cache Data
DB - Data Bus, A+CB - Address+Control Bus

53

Experiments Experimental methodology

 Execution time
 Number of read misses and Number of read misses and

the bus traffic for
B – base systemy
S – read snarfing
U – software-controlled updating
I – cache injection

54

Results

 Number of read misses
normalized to the base system in the systemnormalized to the base system in the system
when the caches are relatively small and
relatively large

 Bus traffic
normalized to the base system in the system
when the caches are relatively small and
relatively large

55

Number of read misses Results

120 CacheSize=64/128KBCacheSize=64/128KB
10098 98 100100100 10099 99 100

96 96 94
100

87 86

10098 96
90

100

93 93

100
100

s

60

75
69 69

64

53
60

80

f r
ea

d
m

is
se

s

53

40

N
um

be
r o

11 10

0

20

B S U I B S U I B S U I B S U I B S U I B S U I B S U I B S U I

PC MM MS Jacobi Radix FFT LU Ocean

56

Bus traffic Results

120
CacheSize=64/128KBCacheSize=64/128KB

100
96

100 100100100 100100100
104

10098
104104

100
94 94

90

10099

111
107

100

93 94
100

100

120

62

75
79

66

60

80

s
tr

af
fic

23
18

40

B
us

18

0

20

B S U I B S U I B S U I B S U I B S U I B S U I B S U I B S U IB S U I B S U I B S U I B S U I B S U I B S U I B S U I B S U I

PC MM MS Jacobi Radix FFT LU Ocean

57

Number of read misses Results

120
CacheSize=1024KBCacheSize=1024KB

100 10098 98 100
94 94

100 100 10098 100 100
100

120

s

73 75 73

66 68

52

67 67

58

66
60

51
60

80

of
 re

ad
 m

is
se

51

20

40

N
um

be
r o

11 11

2

9
3

8 8

0

20

B S U I B S U I B S U I B S U I B S U I B S U I B S U I B S U I

PC MM MS Jacobi Radix FFT LU Ocean

58

Bus traffic Results

CacheSize=1024KBCacheSize=1024KB

100 10098 98 100
95 95 96

100 100

87 87

10098 98

88

100 100
100

120

76 74 74

87 87
84

88

61 61
66 68

5860

80

tr
af

fic

22 23

52

40

60

B
us

 t

16
22

10

23

0

20

B S U I B S U I B S U I B S U I B S U I B S U I B S U I B S U I

PC MM MS Jacobi Radix FFT LU Ocean
59

Conclusions Results

 Cache injection outperforms read snarfing and
software-controlled updatingsoftware controlled updating

 It reduces the number of read misses
by 6 to 90% (small caches), y (),
and by 27 to 98% (large caches)

 It reduces bus traffic for up to 82% (small p (
caches), and up to 90% (large caches); it
increases bus traffic for MS, Jacobi, and FFT
i th t ith ll h f t 7%in the system with small caches for up to 7%

60

Conclusions Results

 Effectiveness of cache injection relative to
read snarfing and software-controlled updatingread snarfing and software controlled updating
is higher in the systems with relatively small
caches

 Cache injection can be effective in reducing
cold misses when there are multiple
consumers of shared data (MM and LU)

 Software control of time window during which
bl k b i j t d id fl ibilit da block can be injected provides flexibility and

adaptivity (MS and FFT)

61

Conclusions

 Cache injection further improves performance
at minimal costat minimal cost

 Cache injection encompasses the existing
techniques read snarfing and software-q g
controlled updating

 Possible future research directions
– compiler algorithm to support cache injection
– combining cache prefetching and cache injection
– implementation of injection mechanism

in scalable shared-memory cache-coherent
multiprocessorsmultiprocessors

62

