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Directory Protocol

m Similar to Snoopy Protocol: Three states
— Shared: = 1 processors have data, memory up-to-date
— Uncached (no processor has it; not valid in any cache)
— Exclusive: 1 processor (owner) has data;
memory out-of-date
m In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)
m Keep it simple(r):
— Writes to non-exclusive data
=> write miss
— Processor blocks until access completes

— Assume messages received
and acted upon in order sent



Directory Protocol

®m No bus and don’t want to broadcast:
— interconnect no longer single arbitration point
— all messages have explicit responses

m Terms: typically 3 processors involved
— Local node where a request originates

— Home node where the memory location
of an address resides

— Remote node has a copy of a cache
block, whether exclusive or shared

m Example messages on next slide:
P = processor number, A = address



Directory Protocol Messages

Message type Source Destination Msg
Content
Read miss Local cache P, A

Processor P reads data at address A;
make P a read sharer and arrange to send data back
Write miss Local cache P, A

Processor P writes data at address A,
make P the exclusive owner and arrange to send data back

Invalidate Remote caches A
Invalidate a shared copy at address A.
Fetch Remote cache A
Fetch the block at address A and send it to its home directory
Fetch/Invalidate Remote cache A

Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Local cache Data
Return a data value from the home memory (read miss response)
Data write-back Remote cache A, Data

Write-back a data value for address A (invalidate response)
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Directory State Machine
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Parallel Program: An Example

/*
* Title: Matrix multiplication kernel

* Author:  Aleksandar Milenkovic, milenkovic@computer.org

* Date: November, 1997

k.

*  Command Line Options

*  -pP: P = number of processors; must be a power of 2.
*  -nN: N = number of columns (even integers).

*  -h: Print out command line options.

k.

*x */

void main(int argc, char*argv[]) {

/* Define shared matrix */
ma = (double **) 6_MALLOC(N*sizeof(double *));
mb = (double **) 6_MALLOC(N*sizeof(double *));

for(i=0; ikN; i++) {
ma[i] = (double *) 6_MALLOC(N*sizeof(double));
mb[i] = (double *) 6_MALLOC(N*sizeof(double));
I

/* Initialize the Index */

Index = O;

/* Initialize the barriers and the lock */

LOCKINIT(indexLock)
BARINIT(bar_fin)

/* read/initialize data */

/* do matrix multiplication in parallel a=a*b
*/

/* Create the slave processes. */

for (i = O; i < numProcs-1; i++)
CREATE(SlaveStart)

/* Make the master do slave work so we
don't waste a processor */

SlaveStart();

10



Parallel Program: An Example

/*====== SlaveStart ================*/
/* This is the routine that each processor will be
executing in parallel */
void SlaveStart() {
int myIndex, i, j, k, begin, end:;
double tmp;

LOCK(indexLock); /* enter the critical section
*/
myIndex = Index; /* read your ID */

++Index; /* increment it, so the next
will operate on ID+1 */

UNLOCK(indexLock); /* leave the critical
section */

/* Initialize begin and end */
begin = (N/numProcs)*myIndex;
end = (N/numProcs)*(myIndex+1);

/* the main body of a thread */
for(i=begin; i<end; i++) {

for(j=0; j<N: j++) {
tmp=0.0;
for(k=0; k<N; k++) {

tmp = tmp + malil[kT*mb[KI[jL

}
mali][j] = Tmp;

}

}

BARRIER(bar_fin, numProcs);

11



Synchronization

m Why Synchronize” Need to know when it is
safe for different processes to use shared data

m Issues for Synchronization:

— Uninterruptable instruction to fetch and update
memory (atomic operation);

— User level synchronization operation using this
primitive;

— For large scale MPs,
synchronization can be a bottleneck;

techniques to reduce contention and latency of
synchronization

12



Uninterruptable Instruction to Fetch and
Update Memory

m Atomic exchange: interchange a value in a register for
a value in memory
— 0 => synchronization variable is free
— 1 => synchronization variable is locked and unavailable
— Setregisterto 1 & swap

— New value in register determines success in getting lock 0 if
you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

— Key is that exchange operation is indivisible

m Test-and-set: tests a value and sets it if the value
passes the test

m Fetch-and-increment: it returns the value of a memory
location and atomically increments it
— 0 => synchronization variable is free

13



Lock&Unlock: Test&Set

/* Test&Set */

loadi R2, #1
lockit: exch R2, location /* atomic operation*/

bnez R2, lockit /* test*/

unlock: store location, #0 /* free the lock (write 0) */

14



Lock&Unlock: Test and Test&Set

/* Test and Test&Set */

lockit: load R2, location /* read lock varijable */
bnz R2, lockit /* check value */

loadi R2, #1
exch R2, location /* atomic operation */
bnz reg, lockit /* 1f lock 1s not acquired, repeat */

unlock: store location, #0 /* free the lock (write 0) */

15



Lock&Unlock: Test and Test&Set

/* Load-linked and Store-Conditional */

lockit: 11 R2, location /7* load-linked read */
bnz R2, lockit /* i1f busy, try again */
load R2, #1
sc location, R2 /* conditional store */
begz R2, lockit /* 1f sc unsuccessful, try again */

unlock: store location, #0 /* store 0 */

16



Uninterruptable Instruction to Fetch and
Update Memory

Hard to have read & write in 1 instruction: use 2 instead

Load linked (or load locked) + store conditional

— Load linked returns the initial value
— Store conditional returns 1 if it succeeds (no other store to same memory location
since preceeding load) and 0 otherwise

Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
Il R2,0(R1); load linked
sc R3,0(R1); store conditional (returns 1, if Ok)
beqz  R3,try ; branch store fails (R3 = 0)
mov R4 R2 ; put load value in R4
Example doing fetch & increment with LL & SC:
try: |l R2,0(R1); load linked
addi R2 R2 #1 ; increment (OK if reg-reg)
sc R2,0(R1) ; store conditional
beqz  R2,try ; branch store fails (R2 = 0)

17



User Level Synchronization—Operation
Using this Primitive

Spin locks: processor continuously tries to acquire, spinning around a
loop trying to get the lock

li R2 #1
lockit: exch R2,0(R1) ;atomic exchange
bnez  R2,lockit ;already locked?

What about MP with cache coherency?
— Want to spin on cache copy to avoid full memory latency
— Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all other copies;
this generates considerable bus traffic

Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):

try: li R2 #1

lockit: lw R3,0(R1) :load var
bnez  R3 lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange

bnez  R2,try .already locked?

18



Barrier Implementation

struct BarrierStruct {
LOCKDEC(counterlock);
LOCKDEC(sleeplock);
int sleepers;

};

#define BARDEC(B) struct BarrierStruct B;
#define BARINIT(B) sys barrier_init(&B);
#define BARRIER(B,N) sys barrier(&B, N);

19



Barrier Implementation (cont’d)

voild sys barrier(struct BarrierStruct *B, int N) {
LOCK(B->counterlock)
(B->sleepers)++;

IT (B->sleepers < N ) {
UNLOCK(B->counterlock)

LOCK(B->sleeplock)
B->sleepers--;
1T(B->sleepers > 0) UNLOCK(B->sleeplock)
else UNLOCK(B->counterlock)
+
else {
B->sleepers--;
1T(B->sleepers > 0) UNLOCK(B->sleeplock)
else UNLOCK(B->counterlock)

}

20



Another MP Issue:
Memory Consistency Models

What is consistency? When must a processor see the new
value? e.g., seems that

P1:. A=0; P2: B =0;
A=1; B=1,
L1: if (B==0)... L2: if (A==0) ...

Impossible for both if statements L1 & L2 to be true?

— What if write invalidate is delayed & processor continues?
Memory consistency models:
what are the rules for such cases?

Sequential consistency: result of any execution is the same as if
the accesses of each processor were kept in order and the
accesses among different processors were interleaved =>
assignments before ifs above

— SC: delay all memory accesses until all invalidates done

21



Memory Consistency Model

m Schemes faster execution to sequential consistency

m Not really an issue for most programs;
they are synchronized

— A program is synchronized if all access to shared data are ordered
by synchronization operations

write (x)
release (s) {unlock}
acquire (s) {lock}
read(x)
m  Only those programs willing to be nondeterministic are not synchronized:

“data race”: outcome f(proc. speed)

m  Several Relaxed Models for Memory Consistency since most programs
are synchronized; characterized by their attitude towards: RAR, WAR,
RAW, WAW
to different addresses

22



Summary

m Caches contain all information on state of cached
memory blocks

m Snooping and Directory Protocols similar; bus makes
snooping easier because of broadcast (snooping =>
uniform memory access)

m Directory has extra data structure to keep track of
state of all cache blocks

m Distributing directory
=> scalable shared address multiprocessor
=> Cache coherent, Non uniform memory access

23



Achieving High Performance in Bus-Based
SMPs

A. Milenkovic, "Achieving High Performance in Bus-Based Shared
Memory Multiprocessors," , Vol. 8, No. 3, July-
September 2000, pp. 36-44.

Partially funded by Encore, Florida, done at the School of Electrical
Engineering, University of Belgrade (1997/1999)



Outline

m Introduction

m Existing Solutions

m Proposed Solution: Cache Injection
m Experimental Methodology

m Results

m Conclusions
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Introduction 19
m Bus-based SMPs:

current situation and challenges

C - Cache
M - Memory
|O - Input/Output
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Introduction Introduction

m Cache misses and bus traffic are key
obstacles
to achieving high performance due to

— widening speed gap between processor and
memory

— high contention on the bus
— data sharing in parallel programs

m Write miss latencies: relaxed memory
consistency models

m Latency of read misses remains

m Techniques to reduce
the number of read misses

27



Existing solutions

m Cache Prefetching
m Read Snarfing
m Software-controlled updating

28



An Example Exisitng solutions

PO P1 P2 N
0. Initial state

I —load a 1. PO: store a
—load a 2.P1: load a
3. P2: load a

—-Store a

M - Modified
S - Shared

| — Invalid

- — Not present
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Cache Prefetching Exisiting solutions

PO P1 P2
—Store a I _pfa

—load a

Initial state
. PO: store a
Pl: pfa
P2: pfa
P1l: load a
.P2:load a

—»pf a

—load a

g R W N PO

pf - prefetch
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Cache Prefetching Exisiting solutions

m Reduces all kind of misses (cold, coh., repl.)

m Hardware support: prefetch instructions +
puffering of prefetches

m Compiler support
[T. Mowry, 1994; T. Mowry and C. Luk, 1997]

m Potential of cache prefetching in BB SMPs [D.
Tullsen, S. Eggers, 1995]
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Read Snarfing Exisitng solutions

PO Pl P2 N
—.store a I 0. Initial state
—load a 1. PO: store a

—load a 2. P1: load a

3. P2: load a
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Read Snarfing Exisiting solutions

m Reduces only coherence misses
m Hardware support: negligible
m Compiler support: none

m Performance evaluation
C. Andersen and J.-L. Baer, 19995]

m Drawbacks
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Software-controlled updating Exisiting solutions

PO P1 P2
—store-up a I

load a
- —l0oad a

0. Initial state

1. PO: store-up a
2.P1: load a

3. P2: load a
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Software-controlled updating Exisiting solutions

m Reduces only coherence misses
m Hardware support

m Compiler support:
J. Skeppstedt, P. Stenstrom, 1994]

m Performance evaluation

F. Dahlgren, J. Skeppstedt, P. Stenstrom,
1995]

m Drawbacks
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CACHE INJECTION i% ;@

= Motivation

Definition and programming model
mplementation

Primena na prave deljene podatke (PDP)
Primena na sinhro-primitive (SP)
Hardverska podrska

Softverska podrska
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Motivation Cache Injection

m Overcome some of the other techniques’
shortcomings such as

— minor effectiveness of cache prefetching in
reducing coherence cache misses

— minor effectiveness of read snarfing and software-
controlled updating in SMPs with relatively small
private caches

— high contention on the bus in cache prefetching
and software-controlled updating

37



Definition Cache Injection

m Consumers predicts their future needs for
shared data by executing an openWin
Instruction

m OpenWin Laddr, Haddr
m Injection table

m Hit in injection table =
cache injection

38



Definition Cache Injection

m Injection on first read

— Applicable for read only shared data and
1-Producer-Multiple-Consumers sharing pattern

— Each consumer initializes its local injection table

m Injection on Update

— Applicable for 1-Producer-1-Consumer and
1-Producer-Multiple-Consumers sharing patterns or
migratory sharing pattern

— Each consumer initializes its local injection table

— After data production, the data producer initiates an
update bus transaction by executing an update or
store-update instruction

39



Implementation Cache Injection

m OpenWin(Laddr, Haddr)

— OWL(Laddr)
— OWH(Haddr)
® CloseWin(Laddr) i
] Update(A) Laddr Haddr V
= StoreUpdate(A) B DR
IThit }%
E:d+8tat Y

40
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Injection on first read

PO P1 P2
—Store a —0W| a — 0wl a

—l0oad a

—l0oad a

Cache Injection

0. Initial state
1. PO: store a
2. P1: owl a

3. P2: owl a
4. P1: load a

5. P2: load a
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Injection on update Cache Injection

PO | P1 —owi aP2 0. Initial state
—storeUp a I —-0Wl a 1. P2: owl a
—load a __load a 2. P1: owl a
3. PO: storeUp a
4. P1: load a

5. P2: load a
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Cache Injection
Injection for true shared data: PC

shared double A[NumProcs][100];
OpenWin(A[O][0], A[NumProcs-1]1[99]);
for(t=0; t<t _max; t++) {
local double myval =0.0
for(p=0; p<NumProcs; p++) {
for(1=0; 1<100; i1++)
myVal+=Foo(A[p][1], MyProcNum];
+
barrier(B, NumProcs);
for(1=0; 1<100; i1++)
A[MyProcNum][1]+=myVal;
barrier(B, NumProcs);

¥
CloseWin(A[O][OD):

43



Cache Injection

Injection for true shared data: PC

Base |Pref-Ex | Forw | Forw+ | InjectFR | InjectWB | Inject+
Pref-Ex Pref-Ex
Tt 304,5 ~0 34,5 ~ 22,5 4,5 2
[x10°pclk]
Traffic | 2,576 | 2,5768 | 2,576 | 2,5768 | 0,2017 0,2017 0,2017
[x10°B]
Code 0 >> >> >> 0 > >>

Complexity

44




Injection for Lock SP

m Base

lock(L);
critical-section(d);
unlock(L);

Cache Injection

m Inject

OpenWin(L);

lock(L);
critical-section(d);

unlock(L);

CloseWin(L);
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Injection for Lock SP Cache Injection

m Traffic
— Test&exch Lock implementation
RdC RdXC InvC WhbC
Base N? N(N+1)/2 N -
InjectFR | 2N-1 N(N+1)/2 N -
InjectWb" 1 - N(N+1)/3 N(N+1)/3

— LL-SC Lock implementation

RdC RdAXC InvC WbC
Base N? - 2N-1 -
InjectFR = 2N-1 - 2N-1 -
InjectWb " 1 - 2N-1 2N-1

N — Number of processors;
RdC - Read; RdXC - ReadExclusive;
InvC - Invalidate; WbC - WriteBack




Injection for Barrier SP Cache Injection

m Base barrier implementation

struct BarrierStruct {
LOCKDEC(counterlock); //semafor dolazaka
LOCKDEC(sleeplock); //semafor odlazaka
int sleepers;}; //broj blokiranih
#define BARDEC(B) struct BarrierStruct B;
#define BARINIT(B) sys barrier_init(&B);

#define BARRIER(B,N)sys barrier(&B, N);

m Injection barrier implementation

BARDEC(B) BARINIT(B)
OpenWin(B->counterlock, B->sleepers);

BARRIER(B, N); ...;
BARRIER(B, N); ...;
CloseWin(B->counterlock);
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Hardware support

m Injection table

m Instructions: OWL, OWH, CWL
(Update, StoreUpdate)

m Injection cycle in cache controller

Cache Injection

48



Software support Cache Injection

m Compiler and/or programmer are responsible for
Inserting instructions

m Sinhro
m True shared data

49



Experimental Methodology

m Limes (Linux Memory Simulator) — a tool for
program-driven simulation of shared memory
multiprocessors

m \Workload
m Modeled Architecture
m Experiments

50



Workload Experimental methodology

m Sinhronization kernels (SP)
— LTEST (I=1000, C=200/20pclk, D=300pclk)
— BTEST (I=100, Tmin=Tmax=40)
m Test applications (SP+PDP)
— PC (I=20, M=128, N=128)
— MM (M=128, N=128)
— Jacobi (1=20, M=128, N=128)
m Applications from SPLASH-2
— Radix (N=128K, radix=256, range={0-231})
— LU (256x256, b=8)
— FFT (N=216)
— Ocean (130x130)
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Modeled Architecture Experimental methodology

m SMP with 16 processors,
lllinois cache coherence protocol

m Cache: first level 2-way set associative,
128 entry injection table, 32B cache line size

m Processor model: single-issue, in-order, single
cycle per instruction, blocking read misses,
cache hit is solved without penalty

m Bus: split-transactions, round-robin arbitration,
64 bits data bus width, 2pclk snoop cycle,
20pclk memory read cycle
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Modeled Architecture  Experimental methodology

Cache Controller

:_\r)f\j/g l;\(jG(bc(:: Proc Read, Write
RWb’C, |Wbé SC, IC i L Lock, Unlock
BV & Owl, Owh, Cw
SC ST CD RAM PT |<«—>»
»
A 1 —Pf, Pf-ex, Update
RT ﬁ IT :V¢B
i
T \ i e
+ + + \ A+CB

PCC - Processor Cache Controller

BCU&SC - Bus Control Unit&Snoop Controller

PT - Processor Tag, ST - Snoop Tag, WB - WriteBack Buffer
RT - Request Table, IT - Injection Table, CD - Cache Data
DB - Data Bus, A+CB - Address+Control Bus
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Experiments Experimental methodology

m Execution time

m Number of read misses and
the bus traffic for
B — base system
S — read snarfing
U — software-controlled updating
| — cache injection
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Results

® Number of read misses
normalized to the base system in the system
when the caches are relatively small and

relatively large

m Bus traffic
normalized to the base system in the system

when the caches are relatively small and
relatively large
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Number of read misses
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Bus traffic
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Bus traffic Results
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Conclusions Results

m Cache injection outperforms read snarfing and
software-controlled updating

m It reduces the number of read misses
by 6 to 90% (small caches),
and by 27 to 98% (large caches)

m It reduces bus traffic for up to 82% (small
caches), and up to 90% (large caches); it
iIncreases bus traffic for MS, Jacobi, and FFT
In the system with small caches for up to 7%
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Conclusions Results

m Effectiveness of cache injection relative to
read snarfing and software-controlled updating
IS higher In the systems with relatively small
caches

m Cache injection can be effective in reducing
cold misses when there are multiple
consumers of shared data (MM and LU)

m Software control of time window during which
a block can be injected provides flexibility and
adaptivity (MS and FFT)
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498
Conclusions \j Eé'ﬁ

m Cache injection further improves performance
at minimal cost

m Cache injection encompasses the existing
techniques read snarfing and software-
controlled updating

m Possible future research directions
— compiler algorithm to support cache injection
— combining cache prefetching and cache injection

— implementation of injection mechanism
In scalable shared-memory cache-coherent
multiprocessors
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