[image: image1.png]

King Fahd University of Petroleum and Minerals

Department of Computer Engineering

COMPUTER ARCHITECTURE COE 501
EXAM 1
3 March 2014
Student Name:………………………………

Student ID: ……………………………

	Problems
	Grading

	Question 1 (10 points)
	

	Question 2 (10 points)
	

	Question 3 (10 points)
	

	TOTAL

	

QUESTION 1: COMPUTER PERFORMANCE
Consider two different processor implementations, P1 and P2, of the same instruction set architecture (ISA). There are three classes of instructions (Register, Load/store, and Branch) in the instruction set. P1 has a clock rate of 1 GHz and P2 has a clock rate of 1.6 GHz. For a typical benchmark (B), the average number of cycles for each instruction class and their frequencies are as follows:
	Instruction Class
	CPI for P1
	CPI for P2
	Frequency

	Register
	1
	2
	50%

	Load/Store
	3
	2
	30%

	Branch
	2
	3
	20%

1. Calculate the average CPI for each processor, P1and P2.
2. Calculate the average MIPS ratings for each machine, P1 and P2. Which processor has a smaller MIPS rating?
3. We wish to enhance P1 using either of the following two options:
a. Option-1: Enhancing some category of instructions with following speedup:

	Instruction Class
	 Speedup

	Register
	1.3

	Load/Store
	1.0

	Branch
	1.25

b. Option-2: Increasing the clock rate by 20%.

Evaluate the speedup S1 for P1 with option-1 and speedup S2 for P1 with option-2 as compared to the original P1. Which option is more beneficial based on your analysis!
4. It is desired to enhance the processor having the smaller MIPS by reducing the CPI of only one class of instructions so that the processor MIPS rating becomes the same or better than that of the other processor. Which class of instruction is to be enhanced by reducing its CPI and by how much! Show your steps.
Solution:

1. CPI (P1) = 0.5* 1 + 0.3*3 + 0.2*2 = 1.8
 CPI (P2) = 0.5* 2 + 0.3*2 + 0.2*3 = 2.2
2. MIPS (P1) = Clock Rate/CPI = (109) / 1.8 = 555.56 MIPS

 MIPS (P2) = Clock Rate/CPI = (1.6 * 109) / 2.2 = 727.3 MIPS

 P1 has the smaller MIPS rating.
3. Amdahl’s law refers to the fraction of times for the above categories which are the following: 0.28 (ALU), 0.5 (L/S), and 0.22 (B). Using Amdahl’s Law: S1= 1/(0.5+ 0.28/1.3+ 0.22/1.25) = 1.12. On the other hand, S2= CPIoxCTo / CPIn x CTn = CRn / CRo =1.2. Thus option 2 is more beneficial.

4. Since P1 has the smaller MIPS rating, enhancing P1 to same or better MIPS requires: CR1/CPI1 => CR2/CPI2 which gives CPI1 =< (CR1/CR2)CPI2= 2.2/ 1.6 = 1.375. In other words the CPI(CPU1) needs to drop from 1.8 to some value, no more than 1.375. The analysis of each instruction class is as follows:

· Enhancing the Branch cannot achieve the above objective because we already have the CPI of R-type instructions at 1 clock.

· Enhancing the L/S may achieve the above objective because 0.3* 3 and this can be reduced to 0.3 *1 if the L/S is speeded up by a factor of 3, e.g. the CPI(L/S)=1. In this case the CPI(CPU1)= 0.5* 1 + 0.3*1 + 0.2*2 = 1.2.
· Enhancing the Register-type may not achieve the above objective. If CPI(B) drops from 2 to 1, then the CPI(CPU1) becomes 0.5* 1 + 0.3*3 + 0.2*1 = 1.6.
QUESTION 2: EXPLOITING INSTRUCTION LEVEL PARALLELISM (20 Minutes)

Consider the program (P) shown below which evaluates the statement (a[i] = (a[i] + s)2) in the body of a loop which repeats for N iterations, where a[] is an array of data and s is a constant. The data type of a[i] and s is double-word or 8 bytes. The corresponding MIPS assembly program is:

Loop: L.D F1, 0(R1) ;load a[i] in F1, R1 contains the base address of a[]

 ADD.D F1, F2, F1 ;Evaluate F1+F2, where F2 contains constant s

 MUL.D F1, F1, F1 ;Evaluate F1*F1 and store into F1

 SD.D F1, 0(R1) ;Store F1 onto a[i]

 DADDUI R1, R1, #-8 ;Decrement pointer by 8
 BNE R1, R2, Loop ;Branch to Loop if R1<> R2 (R2 first location out of array)

where F and R denotes Floating-Point and Integer registers, respectively. The latencies of producer-consumer operations are:

a. 2 clocks for (Load Double, FP ALU),
b. 1 clock for (FP ALU, FP ALU),
c. 3 clocks for (FP, Store Double),
d. All other latencies are nil.
Answer each of following questions:
1. Re-write the code of the above loop after adding stalls due to data dependencies.

2. What are the pre-requisite for loop unrolling

3. Evaluate its CPI the number of clocks per loop iteration (CPIT) for P.

4. Write the code of the above loop after unrolling it for the least number of times to eliminate all of the potential stalls in P.

5. Evaluate the CPI and CPIT for P and the speedup S of the unrolled loop compared to the original loop.
6. Shortly answer the following:

a. Does loop unrolling apply for a loop with arbitrary recurrence!

b. Under what condition it is legal to move S.D after DADDUI and BNE!

c. What constraints will be avoided when renaming the registers!

Solution to Question 1:

1. Re-writing the code of the above loop after adding stalls due to data dependencies:
Loop: L.D F1, 0(R1) ;load a[i] in F1, R1 contains the base address of a[]

 Stall

 Stall

 ADD.D F1, F2, F1 ;Evaluate F1+F2, where F2 contains constant s

 Stall

 MUL.D F1, F1, F1 ;Evaluate F1*F1 and store into F1

 Stall

 Stall

 Stall

 SD.D F1, 0(R1) ;Store F1 onto a[i]

 DADDUI R1, R1, #-8 ;Decrement pointer by 8
 BNE R1, R2, Loop
2. The pre-requisite for loop unrolling is that the loop does not contain a recurrence, i.e. a read of some data that was (or will be) written in another iteration. The loop must be LID or Loop-Independent-Dependency.

3. The CPI=12 clocks / 6 instructions= 2. The number of clocks per loop iteration is CPIT= 12 clocks for each iteration.
4. Since the highest producer-consumer latency that appears in the above program costs K=3 stalls, we need 4-way (K+1) loop unrolling to eliminate all stalls using a systematic form:
Option-1:

Loop: L.D F1, 0(R1) ; load a(i)

 L.D F3, -8(R1) ; load a(i-1)

 L.D F4, -16(R1) ; load a(i-2)

 L.D F5, -24(R1) ; load a(i-2)

 ADD.D F1, F2, F1

 ADD.D F3, F2, F3

 ADD.D F4, F2, F4

 ADD.D F5, F2, F5

 MUL.D F1, F1, F1

 MUL.D F3, F3, F3

 MUL.D F4, F4, F4

 MUL.D F5, F5, F5

 SD.D F1, 0 (R1)

 SD.D F3, -8 (R1)

 SD.D F4, -16(R1)

 SD.D F4, -24(R1)

 DADDUI R1, R1, # -32

 BNE R1, R2, Loop
Option-2: By moving “DADDUI R1, R1, # -32” just before the first store we may reduce the number of way unrolling by 1: 3-way unrolling will be OK to eliminate all the stalls:

Loop: L.D F1, 0(R1) ; load a(i)

 L.D F3, -8(R1) ; load a(i-1)

 L.D F4, -16(R1) ; load a(i-2)

 ADD.D F1, F2, F1

 ADD.D F3, F2, F3

 ADD.D F4, F2, F4

 MUL.D F1, F1, F1

 MUL.D F3, F3, F3

 MUL.D F4, F4, F4
 DADDUI R1, R1, # -24

 SD.D F1, 24 (R1)

 SD.D F3, 16 (R1)

 SD.D F4, 8(R1)

 BNE R1, R2, Loop
5. Since in both versions there is stall, we have

CPI (option-1)= 18 clocks/ 18 instructions = 1 and CPI (option-2) = 14/14=1

 CPIT (option-1) = 18/ 4= 4.5 and CPIT (option-2) = 14/ 3= 4.67

 The speedup (over the original P) = CPI(no-unrolling) / CPI(unrolled) = 2/1=2

Note that option 1 is faster because it is a time-bound approach as it uses more resource to lower the execution time.

6. Here are the answers:

a. Does loop unrolling apply for a loop with arbitrary recurrence!

No. Unrolling applies only if the loop is an LID.

b. Under what condition it is legal to move S.D after DADDUI and BNE!

Only when: (1) there a Branch delay slot to make sure the instruction after the branch will be executed, and (2) taking care of the dependence on the register and adjusting the memory offsets.

c. What constraints will be avoided when renaming the registers!

Unrolling without register-renaming produces wrong WAW and WAR data hazards due to the use of the same registers. Renaming eliminate these hazards, i.e. use of different set of register for each iteration.
QUESTION 3: DYNAMIC EXECUTION
1. Refer to a Dynamic Scheduling Processor using a Scoreboard Instruction Execution Unit:

a. For what reasons the Issue-ID1 stage checks for WAW data hazards before issuing an instruction.
b. How RAW data hazards are resolved.
c. How WAR data hazards are resolved. Could the WAR be avoided by some action at the issue stage!
2. Consider a micro-architecture which uses the Tomasulo Dynamic Execution Scheme. The functional units are: (1) the load/store (LS-Unit), (2) floating-point addition and subtractions unit (FP-Add), (3) floating-point multiplication and division unit (FP-Mul), (4) an integer unit for address calculation and branching (Int). Answer each of the following questions:
1. Consider the following instructions:

 L.D F1, 100(r1) ; load register F1 from memory

 L.D F2, 100(r2) ; load register F2 from memory

 ADD.D F2, F2, F1 ; Compute F1+F2 and store in F2

Suppose that at the issue time of the ADD.D instruction the previous two loads did not complete yet. Explain in details the dynamic execution steps of ADD.D, e.g. the following steps:

a. How ADD.D is issued,

b. What is format and data content of ADD.D when it is buffered in RS.

c. What task will be done by RS for serving ADD.D,

d. How ADD.D becomes ready to run,

e. What task will be carried out upon completion of ADD.D

2. Consider the following instructions:

ADD.D F3, F2, F1 ; Compute F1+F2 and store in F3
MUL.D F2, F5, F4 ; Compute F4*F5 and store in F2

What type of data hazard is involved between the above two instructions! Analyze in details how the dynamic execution scheme will issue of instruction ADD.D to avoid the above data hazard by considering all possible cases.
3. Consider the following instructions:
ADD.D F3, F2, F1 ; Compute F1+F2 and store in F3

Some instructions
……..
MUL.D F3, F5, F4 ; Compute F4*F5 and store in F3
What type of data hazard is involved between the ADD.D and MUL.D! Analyze how the above data hazard is eliminated by the dynamic execution scheme. Consider the cases where “Some instructions”: (1) includes one or more references to F3 as a source operand register, and (2) do not include references to F3 as a source operand register.
Solution:
1. Dynamic Scheduling Processor using a Scoreboard Instruction Execution Unit:

a. The Issue-ID1 stage checks for WAW data hazards before issuing an instruction because once the instruction is issued execution and potential writes will be out of order, i.e. the order of write cannot be enforced.

b. RAW data hazards are resolved because the scoreboard monitors the availability of the source operands. When all the source operands are available, the scoreboard controls notifies the FUs to read all operands from the registers without explicit forwarding.

c. The scoreboard is alerted when a functional unit completed execution an instruction I which is supposed to write a register Rx, scoreboard checks for a pending instruction that must read Rx and stalls the completing instruction I if there is a WAR hazards. The reason of the WAR hazards is that issued instructions do not read their operands at issue but wait until all their operands are ready before reading them at once.
2. Tomasulo Dynamic Execution Scheme:

a. ISSUE and Format: ADD.D can be issued if there is at least one free entry in the reservation station of FP-ADD. For this it checks for operands availability: data operand is appended if available, otherwise it perform Register Renaming by substituting the name of the producer to the operand register, e.g. L.D-RS if L.D F2, 100(r2) is not completed at this time. This can be done by checking the status of register F2 to see if a pending instruction will write the register, e.g. L.D-RS to write F2. Issue: FP-ADD receives [ADD.D, Dest=F2, L.D-RS-1, L.D-RS-2].
i. RS task and ready to run: RS will monitor the CDB. IF there is any broadcast it carry out associative search for the broadcasted TAG with all of its buffered TAGs. If there is any match, it swaps the associated data with the stored TAG. It also finds out if any instruction becomes ready to run.
ii. Upon completion of the instruction execution, the RS-FU broadcasts the resulting data with its own TAG (physical RS register identifier) on the CDB which allows for the write back on the register file and provides data for any awaiting instruction.
b. A WAR data hazard exists between the above two instructions due to the use of F2. The objective here is to show that at the issue time of MUL.D there will be no WAR due to the way Tomasulo Dynamic Execution works, e.g. register renaming. Recall at the earlier time of issue of ADD.D F3, F2, F1 the register status of F2 was:

a. Pending for some write. In this case the ADD.D must have been issued with the producer name (register renaming). This provided a logical path for ADD.D to get its source operand without the need to read the register.

b. Not being pending for some write. In this case, ADD.D is issued after reading the source register (completed read).
i. In either of the two cases the logical route for F2 data is already set independently from reading of F2. Therefore, MUL.D can write F2 any time without causing any hazard. Therefore, Tomasulo Dynamic Execution produces no WAR hazards.

c. A WAW data hazard exists between the above two instructions due to the use of F3. The main principle for removing the WAW hazards is to overwrite the register status of the instruction that was issued last, e.g. the (MUL.D) at its issue time. In this case the status of register F3 will indicate that MUL.D is pending on the write to F3. Whether ADD.D completed (data in F3) or not (I is pending) it does not cause WAW hazard any more because F3 is instructed to be updated only upon completion of MUL.D. Suppose there instructions following the ADD.D which uses its result, then these instruction will have the TAG of the producer (ADD.D). Therefore, the above renaming is independent from the resolution of the WAW described above.
