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This article presents a new and highly accurate method for branch prediction. The key idea is to
use one of the simplest possible neural methods, the perceptron, as an alternative to the commonly
used two-bit counters. The source of our predictor’s accuracy is its ability to use long history lengths,
because the hardware resources for our method scale linearly, rather than exponentially, with the
history length. We describe two versions of perceptron predictors, and we evaluate these predictors
with respect to five well-known predictors. We show that for a 4 KB hardware budget, a simple
version of our method that uses a global history achieves a misprediction rate of 4.6% on the SPEC
2000 integer benchmarks, an improvement of 26% over gshare. We also introduce a global/local
version of our predictor that is 14% more accurate than the McFarling-style hybrid predictor of the
Alpha 21264. We show that for hardware budgets of up to 256 KB, this global/local perceptron pre-
dictor is more accurate than Evers’ multicomponent predictor, so we conclude that ours is the most
accurate dynamic predictor currently available. To explore the feasibility of our ideas, we provide
a circuit-level design of the perceptron predictor and describe techniques that allow our complex
predictor to operate quickly. Finally, we show how the relatively complex perceptron predictor can
be used in modern CPUs by having it override a simpler, quicker Smith predictor, providing IPC
improvements of 15.8% over gshare and 5.7% over the McFarling hybrid predictor.
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1. INTRODUCTION

Modern computer architectures increasingly rely on speculation to boost
instruction-level parallelism. For example, data that are likely to be read in
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the near future are speculatively prefetched, and predicted values are specula-
tively used before actual values are available [Hennessy and Patterson 1996;
Wang and Franklin 1997]. Accurate prediction mechanisms have been the driv-
ing force behind these techniques, so increasing the accuracy of predictors
increases the performance benefit of speculation. Machine learning techniques
offer the possibility of further improving performance by increasing prediction
accuracy. In this article, we show that one particular machine learning tech-
nique can be implemented in hardware to improve branch prediction.

Branch prediction is an essential part of modern microarchitectures. Rather
than stall when a branch is encountered, a pipelined processor uses branch
prediction to speculatively fetch and execute instructions along the predicted
path. As pipelines deepen and the number of instructions issued per cycle in-
creases, the penalty for a misprediction increases, as does the benefit of ac-
curate branch prediction. Recent efforts to improve branch prediction focus
primarily on eliminating aliasing in two-level adaptive predictors [McFarling
1993; Lee et al. 1997; Sprangle et al. 1997; Eden and Mudge 1998], which oc-
curs when two unrelated branches destructively interfere by using the same
prediction resources. We take a different approach—one that is largely orthog-
onal to previous work—by improving the accuracy of the prediction mechanism
itself.

Our work builds on the observation that all existing two-level techniques
use tables of saturating counters. Since neural networks are known to pro-
vide good predictive capabilities, it is natural to ask whether we can im-
prove accuracy by replacing saturating counters with neural networks. How-
ever, most neural networks would be prohibitively expensive to implement as
branch predictors, so we explore the use of simple artificial neurons from which
these neural networks are built. These artificial neurons, such as the percep-
tron [Rosenblatt 1962], have several attractive properties that differentiate
them from neural networks. They are easier to understand, they are simpler to
implement and tune, they train faster, and they are computationally much less
expensive.

In this article, we explore various types of artificial neurons and propose a
two-level scheme that uses perceptrons instead of two-bit counters. Because
the size of perceptrons scales linearly with the size of their inputs, which in
our case is the branch history, our predictor can exploit long history lengths.
By contrast, traditional two-level adaptive schemes use pattern history tables
(PHTSs), which are indexed by the branch history and which therefore grow
exponentially with the history length. Thus the PHT structure limits the length
of the history register to the logarithm of the number of counters. As a result,
for the same hardware budget, our predictor can consider much longer histories
than PHT-based schemes. For example, for a 4 KB hardware budget, a PHT-
based predictor can use a history length of 14, whereas a version of our predictor
can use a history length of 34. These longer history lengths lead to higher
accuracy.

A perceptron is a learning device that takes a set of input values and com-
bines them with a set of weights (which are learned through training) to pro-
duce an output value. In our predictor, each weight represents the degree of
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Fig. 1. The perceptron prediction mechanism. The prediction is the sign of the dot product of
the branch history and the perceptron weights. The taken branches (T) in the branch history are
represented as 1’s, and not taken branches (NT) are represented as —1’s. The bias weight represents
the bias of the branch independent of branch history, so its input bit is hardwired to 1.

correlation between the behavior of a past branch and the behavior of the
branch being predicted. Positive weights represent positive correlation, and
negative weights represent negative correlation. To make a prediction, each
weight contributes in proportion to its magnitude in the following manner. If
its corresponding branch was taken, we add the weight; otherwise we subtract
the weight. If the resulting sum is positive, we predict taken; otherwise we
predict not taken. To make this solution work, the branch history uses 1 to rep-
resent taken and —1 to represent not taken. The perceptrons are trained by an
algorithm that increments a weight when the branch outcome agrees with the
weight’s correlation and decrements the weight otherwise.

Figure 1 shows an example with a four-bit history length. We see that the
second and fourth branches (corresponding to bits 1 and 3, respectively) con-
tribute the most to the prediction of the next branch. In particular, the second
weight indicates that there is a strong positive correlation between the direc-
tion of the second branch and the direction of the predicted branch. The fourth
weight reveals a strong negative correlation between the outcome of the fourth
branch and the outcome of the predicted branch; because the fourth branch was
not taken, this strong negative correlation suggests that the predicted branch
will be taken. Finally, the figure shows that an additional bias weight, which
learns the bias of the branch independent of branch history, also contributes to
the prediction.

This article describes and evaluates various perceptron predictors. We show
that the perceptron works well for the class of linearly separable branches,
a term we introduce. We also show that programs tend to have many linearly
separable branches and that although perceptrons are unable to predict linearly
inseparable branches, PHT-based schemes also have trouble predicting such
branches.

This article makes the following contributions.

—We describe the perceptron predictor [Jiménez and Lin 2001], the first
dynamic predictor to successfully use neural networks, and we show that
it is more accurate than existing dynamic global branch predictors. For a
4 KB hardware budget, our global predictor improves misprediction rates
on the SPEC 2000 integer benchmarks by 26% over a gshare predictor of
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the same size and by 12% over the McFarling-style hybrid predictor of the
Alpha 21264.!

—We introduce a version of the perceptron predictor that uses both global
and per-branch information, yielding misprediction rates that are 14% more
accurate than the McFarling-style hybrid predictor, which is the most ac-
curate predictor that is known to have been implemented in silicon. We also
show that our predictor is more accurate than Evers’ multicomponent pre-
dictor [Evers 2000], making it the most accurate known dynamic predictor.

—We provide a circuit-level design of the perceptron predictor. Using concepts
from binary arithmetic, we show how to construct an efficient circuit for
computing the perceptron output. With transistor-level simulations, we
measure the latency of our perceptron output circuit.

— We suggest how the perceptron predictor, despite its complex design, can be
implemented and used in modern CPUs. In particular, we introduce a hier-
archical predictor in which a perceptron predictor overrides a faster Smith
predictor. We show that this overriding perceptron predictor improves IPC
by 15.8% over gshare and by 5.7% over the McFarling-style hybrid predictor.

— We show that the chief advantage of our predictor over PHT-based predictors
is the ability to use long history lengths.

The remainder of this article is organized as follows. Section 2 summarizes
related work, and Section 3 provides background on neural learning methods
and their potential applications in microarchitectures. Section 4 reviews the
characteristics of perceptrons, in preparation for Section 5, where we discuss
details of the perceptron predictor. In Section 6 we present experimental results,
and we conclude in Section 7.

2. RELATED WORK

This section reviews related work in dynamic branch prediction and neural
systems.

2.1 Dynamic Branch Prediction

Dynamic branch prediction has been the focus of intense study in the literature.
Recent research focuses on refining the two-level scheme of Yeh and Patt [1991].
In this scheme, a pattern history table (PHT) of two-bit saturating counters is
indexed by a combination of branch address and global or per-branch history.
The high bit of the counter is taken as the prediction. Once the branch outcome
is known, the counter is incremented if the branch is taken, and decremented
otherwise. An important problem in two-level predictors is aliasing [Sechrest
et al. 1996], and many of the recently proposed branch predictors seek to reduce
the aliasing problem [McFarling 1993; Lee et al. 1997; Sprangle et al. 1997;

IThese results differ from our previously published numbers [Jiménez and Lin 2001] because our
new methodology uses the Alpha instruction set, which allows us to get simulated IPC results from
SimpleScalar [Burger and Austin 1997]. We discuss the impact of this methodological change in
Section 6.1.1.
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Eden and Mudge 1998] but do not change the basic prediction mechanism.
Given a generous hardware budget, many of these two-level schemes perform
about the same as one another [Eden and Mudge 1998].

Most two-level predictors cannot consider long history lengths, which be-
comes a problem when the distance between correlated branches is longer than
the length of a global history shift register [Evers et al. 1998]. Even if a PHT
scheme could somehow implement longer history lengths, it would not help
because longer history lengths require longer training times for these meth-
ods [Michaud et al. 1997].

Variable length path branch prediction [Stark et al. 1998] is one scheme for
considering longer paths. It avoids the PHT capacity problem by computing a
hash function of the addresses along the path to the branch. It uses a complex
multipass profiling and compiler-feedback mechanism that is impractical for
a real architecture, but it achieves good performance because of its ability to
consider longer histories.

2.2 Neural Methods and Computer Architecture

Neural systems and other forms of machine learning have been suggested for
several computer architecture applications.

2.2.1 The Perceptron Predictor. In a previous paper [Jiménez and Lin
2001] we introduce the basic perceptron predictor that uses only global history
information, and we compare it with two dynamic global predictors, gshare and
bi-mode.

2.2.2 Branch Prediction with Neural Networks. Neural networks have
been used to perform static branch prediction [Calder et al. 1997], where the
likely direction of a branch is predicted at compile-time by supplying program
features, such as control-flow and opcode information, as input to a trained
neural network. This approach achieves a 20% misprediction rate compared
to a 25% misprediction rate for static heuristics [Ball and Larus 1993; Calder
et al. 1997]. Static branch prediction performs worse than existing dynamic
techniques, but can be useful for performing static compiler optimizations and
providing extra information to dynamic branch predictors such as the agree
predictor [Sprangle et al. 1997].

Learning vector quantization (LVQ), another neural method, has been sug-
gested for dynamic branch prediction by Vintan and Iridon [1999]. LVQ pre-
diction is about as accurate as a table-based branch predictor. Unfortunately,
LVQ does not lend itself well to high-speed implementation because it performs
complex computations involving floating point numbers. By contrast, our pre-
dictor has accuracy superior to any table-based method and can be implemented
efficiently.

2.2.3 Branch Prediction and Genetic Algorithms. Neural networks are
part of the field of machine learning, which also includes genetic algorithms.
Emer and Gloy [1997] use genetic algorithms to “evolve” branch predictors,
[1997] but it is important to note the difference between their work and ours.
Their work uses evolution to design more accurate predictors, but the end result
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is something similar to a highly tuned traditional predictor. We instead place in-
telligence in the microarchitecture, so the branch predictor can learn and adapt
online. In fact, Emer and Gloy’s approach cannot describe our new predictor.

2.2.4 Neural Networks for Resource Allocation. Neural networks learned
through evolutionary computation have been proposed as a method for man-
aging on chip resources for chip multiprocessors [Gomez et al. 2001]. When
compared with static partitioning, performance is improved 13% when a neural
network is used to dynamically assign a pool of L2 cache banks to a set of cores.

3. NEURAL SYSTEMS

In this section we describe the basics of how artificial neural systems work,
we explain how neural methods might be applied to dynamic branch predic-
tion, and we explain why we choose the perceptron in particular for branch
prediction.

Neural systems employ some of the properties of biological neural networks,
such as brains and nervous systems, for computational tasks such as prediction
and regression. Artificial neural networks learn to compute a function using
example inputs and outputs. Neural networks have been used for a variety of
applications, including pattern recognition, classification [Faucett 1994], and
image understanding [Kulkarni 1993; Jiménez and Walsh 1998]. The general
idea of neural computation is that many processing nodes, known as neurons,
are connected to each other in a network. Data are fed into input unit neurons,
and propagated through the network to output unit neurons, where the results
of the computation can be read. A training algorithm strengthens or weakens
the connections between neurons.

Neural systems learn a general solution to a problem from specific examples.
Generally, the more examples there are, the better the solution will be. Neural
systems seem particularly well suited for microarchitectural prediction prob-
lems, since processors execute hundreds of millions of instructions each second,
providing ample learning examples.

3.1 Prediction with Neural Methods

Prediction with neural methods is a rich area of study. Neural methods are
capable of classification, that is, predicting into which set of classes a particu-
lar instance will fall. Suppose a set S is partitioned into n classes, and we are
faced with the problem of determining, for an arbitrary element s € S, in what
class s is. The elements of S have certain features that correlate with their clas-
sifications. An artificial neural network can learn correlations between these
features and the classification. An artificial neural network is a collection of
neurons, some of which receive input and some of which produce output, that
are connected by links. Each link has an associated weight that determines the
strength of the connection [Faucett 1994]. For a classification problem, such as
deciding to which of n classes an input s belongs, there are n output neurons.
In the special case where there are only two classes, there is only one output
neuron. Each neuron computes its output from the sum of its input using an
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activation function. During a training phase, the weights are adjusted using a
training algorithm. The algorithm uses a set of training data, which are ordered
pairs of inputs and corresponding outputs. The neural network learns correla-
tions between the inputs and outputs, and generalizes this learning to other
inputs. To predict which class a new input s is in, we supply s to the input units
of the trained neural network, propagate the values through the network, and
examine the n output neurons. We classify s according to the neuron with the
strongest output. In the special case where n =2 and there is only one output
neuron, we classify s according to whether the output value exceeds a certain
threshold, typically O or 1/2.

3.2 Potential Applications to Microarchitecture

Neural learning methods have the potential to enhance microarchitectural tech-
niques, replacing the more primitive predictors currently used. Some possible
applications are the following.

—Branch Prediction. For dynamic branch prediction, the inputs to a neural
learning method are the binary outcomes of recently executed branches, and
the output is a prediction of whether a branch will be taken. Each time a
branch is executed and the true outcome becomes known, the history that
led to this outcome can be used to train the neural method online to produce
a more accurate result in the future.

—Value Prediction. Neural networks could be used to predict which of a set of
values is likely to be the result of a load operation, enabling speculation on
that value.

—Indirect Branch Prediction. Indirect branches, such as virtual method calls
in object-oriented programs, also need to be predicted. Neural networks could
be used to help predict the targets of such indirect branches.

—Next Trace Prediction. As a natural extension of the branch prediction ca-
pabilities of neural learning techniques, neural networks could be used
to predict which of several possible traces should be fetched from a trace
cache.

—Cache Replacement Policy. Neural networks could be used to implement spe-
cialized cache replacement policies that reduce cache miss rates by adapting
to the program’s access patterns.

It is not trivial to extend our work on branch prediction to these other mi-
croarchitectural problems. Neural learning works best when classifying an in-
put as coming from one of a few classes. Predicting branch directions requires a
single perceptron to classify a pattern as either taken or not taken. Predicting a
value or a branch target would require more than one perceptron for each pre-
diction, as well as an auxiliary table of choices, for example, previously observed
targets or values.

3.3 Neural Learning for Dynamic Branch Prediction

There are several simple neural learning methods that could potentially be used
in a dynamic branch predictor. In particular, the ADALINE neuron [Widrow and
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Hoff, Jr. 19601, Hebb learning [Faucett 1994], and the Block perceptron [Block
1962] are simple methods in which a single neuron is used for computation
and trained with a simple algorithm. We used the SPEC95 benchmarks to com-
pare the accuracy of each of these methods. We also evaluated the accuracy of
a more complex multilayer perceptron with back-propagation [Faucett 1994].
This back-propagation method is representative of commonly used neural net-
works, and it was included solely to explore the limits of neural learning tech-
niques in dynamic branch prediction. Because of its implementation complexity,
there is no way to implement back-propagation in hardware such that a pre-
diction can be produced in just a few cycles.

Our results showed that the perceptron was the most accurate of the four
techniques. We found that Hebb learning yields poor branch prediction accu-
racy due to its inability to learn even simple patterns. We found that ApALINE
yields similar prediction accuracy to the perceptron, but ADALINE requires much
more space. ADALINE neurons are sensitive to a parameter known as the learn-
ing rate; because we found good learning rates to be small (e.g., 0.03), and
because the learning rate is multiplied by the ADALINE output to produce a re-
sult, ADALINE neurons require twice as much space as perceptrons to represent
the weights with sufficient accuracy. Interestingly, we found that the percep-
tron learns faster and yields more accurate prediction than back-propagation.
For instance, on the SPEC95 benchmark 126.gcc, perceptrons achieve a 2.44%
misprediction rate, compared with 3.33% for back-propagation.

Another benefit of perceptrons is that by examining their weights, that is,
the correlations that they learn, it is easy to understand the decisions that they
make. By contrast, a criticism of many neural networks is that it is difficult or
impossible to determine exactly how the neural network is making its decision.
Techniques have been proposed to extract rules from neural networks [Setiono
and Liu 1995], but these rules are not always accurate. Perceptrons do not
suffer from this opaqueness; the perceptron’s decision-making process is easy
to understand as the result of a simple mathematical formula.

4. BRANCH PREDICTION WITH PERCEPTRONS

This section provides the background needed to understand our predictor. We
describe perceptrons, explain how they can be used in branch prediction, and
discuss their strengths and weaknesses. We then describe our basic prediction
mechanism, which is essentially a two-level predictor that replaces the pattern
history table with a table of perceptrons.

4.1 How Perceptrons Work

The perceptron was introduced in 1962 [Rosenblatt 1962] as a way to study
brain function. We consider the simplest of many types of perceptrons [Block
1962], a single-layer perceptron consisting of one artificial neuron connecting
several input units by weighted edges to one output unit. A perceptron learns a
target Boolean function (x4, . .., x,) of n inputs. In our case, the x; are the bits of
a global branch history shift register, and the target function predicts whether a
particular branch will be taken. Intuitively, a perceptron keeps track of positive
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Fig. 2. Perceptron Model. The input values x4, ..., x,, are propagated through the weighted con-
nections by taking their respective products with the weights wq, ..., w,. These products are
summed, along with the bias weight w, to produce the output value y.

and negative correlations between branch outcomes in the global history and
the branch being predicted.

Figure 2 shows a graphical model of a perceptron. A perceptron is represented
by a vector whose elements are the weights. For our purposes, the weights are
signed integers. The output is the dot product of the weights vector, wq_,, and
the input vector, x1_, (x¢ is always set to 1, providing a “bias” input). The output
y of a perceptron is computed as

n
y =wo+ inwi.
i=1
The inputs to our perceptrons are bipolar; that is, each x; is either —1, mean-
ing not taken or 1, meaning taken. A negative output is interpreted as predict
not taken. A nonnegative output is interpreted as predict taken.

4.2 Training Perceptrons

Once the perceptron output y has been computed, the following algorithm is
used to train the perceptron. Let ¢ be —1 if the branch was not taken, or 1 if
it was taken, and let 8 be the threshold, a parameter to the training algorithm
used to decide when enough training has been done.

if sign(yous) # ¢ Or |Your| < 0 then
fori:=0tondo
w; ‘= w; +tx;
end for
end if

Since ¢ and x; are always either —1 or 1, this algorithm increments the ith
weight when the branch outcome agrees with x;, and decrements the weight
when it disagrees. Intuitively, when there is mostly agreement (i.e., positive
correlation), the weight becomes large. When there is mostly disagreement
(i.e., negative correlation), the weight becomes negative with large magnitude.
In both cases, the weight has a large influence on the prediction. When there
is weak correlation, the weight remains close to 0 and contributes little to the
output of the perceptron.
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4.3 Linear Separability

A limitation of perceptrons is that they are only capable of learning linearly
separable functions [Faucett 1994]. To understand the notion of linearly sep-
arable functions, imagine the set of all possible inputs to a perceptron as an
n-dimensional space. The solution to the equation

n
wo + Z x;w; =0

i=1
is a hyperplane (e.g., a line, if n = 2) dividing the space into the set of inputs for
which the perceptron will respond false and the set for which the perceptron will
respond true [Faucett 1994]. A Boolean function over variables x;_, is linearly
separable if and only if there exist values for wy , such that all of the true
instances can be separated from all of the false instances by that hyperplane.
Since the output of a perceptron is decided by the above equation, only linearly
separable functions can be learned perfectly by perceptrons. For instance, a
perceptron can learn the logical AND of two inputs, but not the exclusive-OR,
since there is no line on the Boolean plane separating frue instances of the
exclusive-OR function from false ones.

As we show later, many of the functions describing the behavior of branches
in programs are linearly separable. Also, since we allow the perceptron to learn
over time, it can adapt to the nonlinearity introduced by phase transitions in
program behavior. A perceptron can still give good predictions when learning a
linearly inseparable function, but it will not achieve 100% accuracy. By contrast,
two-level PHT schemes like gshare can learn any Boolean function if given
enough training time.

4.4 Using Perceptrons in Branch Predictors

We can use a perceptron to learn correlations between particular branch out-
comes in the global history and the behavior of the current branch. These cor-
relations are represented by the weights. The larger the weight, the stronger
the correlation, and the more that particular branch in the global history con-
tributes to the prediction of the current branch. The input to the bias weight is
always 1, so instead of learning a correlation with a previous branch outcome,
the bias weight w( learns the bias of the branch, independent of the history.

The processor keeps a table of N perceptrons in fast SRAM, similar to the
table of two-bit counters in other branch prediction schemes. The number of
perceptrons N is dictated by the hardware budget and number of weights,
which itself is determined by the amount of branch history we keep. Special
circuitry computes the value of y and performs the training. We discuss this
circuitry in Section 5. When the processor encounters a branch in the fetch
stage, the following steps are conceptually taken.

1. The branch address is hashed to produce an indexi € 0..N — 1 into the table
of perceptrons.

2. The ith perceptron is fetched from the table into a vector register Py, of
weights.
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3. The value of y is computed as the dot product of P and the global history
register.
4. The branch is predicted not taken when y is negative, or taken otherwise.

5. Once the actual outcome of the branch becomes known, the training algo-
rithm uses this outcome and the value of y to update the weights in P.
6. P is written back to the ith entry in the table.

It may appear that prediction is slow because many computations and SRAM
transactions take place in Steps 1 through 5. However, Section 5 shows that
a number of arithmetic and microarchitectural tricks enable a prediction in a
single cycle, even for long history lengths.

5. DESIGN AND IMPLEMENTATION

This section explores the design space for perceptron predictors and discusses
details of a circuit-level implementation. We then describe two versions of the
perceptron predictor, one that improves accuracy by utilizing both global and
local information, and one that compensates for delay in computing the percep-
tron output.

5.1 Design Space

Given a fixed hardware budget, three parameters need to be tuned to achieve
the best performance: the history length, the number of bits used to represent
the weights, and the threshold.

5.1.1 History Length. Long history lengths can yield more accurate pre-
dictions [Evers et al. 1998] but for a fixed hardware budget they also reduce the
number of table entries, thereby increasing aliasing. In our experiments, the
best history lengths ranged from 4 to 66, depending on the hardware budget.
The perceptron predictor can use more than one kind of history. We have used
both purely global history as well as a combination of global and per-branch
history.

5.1.2 Representation of Weights. The weights for the perceptron predic-
tor are signed integers. Although many neural networks have floating-point
weights, we found that integers are sufficient for our perceptrons, and they
simplify the design. We find that using 8-bit weights provides the best trade-off
between accuracy and hardware budget.

5.1.83 Threshold. The threshold is a parameter to the perceptron training
algorithm that is used to decide whether the predictor needs more training.
5.2 Circuit-Level Implementation

Here, we discuss general techniques that will allow us to implement a quick
perceptron predictor. We then give more detailed results of a transistor-level
simulation.

5.2.1 Computing the Perceptron Output. The critical path for making a
branch prediction includes the computation of the perceptron output. Thus,
the circuit that evaluates the perceptron should be as fast as possible. Several
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properties of the problem allow us to make a fast prediction. Since —1 and 1 are
the only possible input values to the perceptron, multiplication is not needed
to compute the dot product. Instead, we simply add when the input bit is 1
and subtract (add the two’s-complement) when the input bit is —1. In practice,
we have found that adding the one’s-complement, which is a good estimate
for the two’s-complement, works just as well and lets us avoid the delay of a
small carry-propagate adder. This computation is similar to that performed by
multiplication circuits, which must find the sum of partial products that are
each a function of an integer and a single bit. Furthermore, only the sign bit of
the result is needed to make a prediction, so the other bits of the output can be
computed more slowly without having to wait for a prediction. In this article,
we report only results that simulate this complementation idea.

At the circuit level, the perceptron output circuit accepts input signals from
the weights array and from the history register. As weights are read, they are
bitwise exclusive-ORed with the corresponding bits of the history register. If
the ith history bit is set, then this operation has the effect of taking the one’s-
complement of the ith weight; otherwise, the weight is passed unchanged. After
the weights are processed, their sum is found using a Wallace-tree of 3-to-2
carry-save adders [Cormen et al. 19901, which reduces the problem of finding
the sum of n numbers to the problem of finding the sum of two numbers. The
final two numbers are summed with a carry-lookahead adder. The Wallace-tree
has depth O(logn), and the carry-lookahead adder has depth O(logn), so the
computation is relatively quick. The sign of the sum is inverted and taken as
the prediction.

5.2.2 Training. The training algorithm of Section 4.2 can be implemented
efficiently in hardware. Since there are no dependences between loop iterations,
all iterations can execute in parallel. Since in our case both x; and ¢ can only be
—1or 1, the loop body can be restated as “increment w; by 1 if ¢ = x;, and decre-
ment otherwise,” a quick arithmetic operation since the w; are 8-bit numbers.

for each bit in parallel
if t{ = x; then
w; =w; +1
else
w; =w; —1
end if

5.2.3 Circuit-Level Simulation. Using a custom logic design program and
the HSPICE and CACTI 2.0 simulators, we designed and simulated a hardware
implementation of the elements of the critical path for the perceptron predictor
for several table sizes and history lengths. We used CACTI, a cache modeling
tool, to estimate the amount of time taken to read the table of perceptrons, and
we used HSPICE to measure the latency of our perceptron output circuit.

Table I shows the delay of the perceptron predictor for several hardware
budgets and history lengths, simulated with HSPICE and CACTI for 180-nm
process technology. We obtain these delay estimates by selecting inputs de-
signed to elicit the worst-case gate delay. We measure the time it takes for one
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Table I. Perceptron Predictor Delay

History | Table Size | Perceptron Table Total # Clock Cycles
Length (Bytes) Delay (ps) | Delay (ps) | Delay (ps) | @ 833 MHz | @ 1.76 GHz
4 128 811 386 1197 1.0 2.1
7 256 808 411 1219 1.1 2.2
9 512 725 432 1157 1.0 2.0
13 1K 1090 468 1558 1.3 2.7
17 2K 1170 504 1674 1.4 2.9
23 4K 1700 571 2271 1.9 4.0
24 4K 1860 571 2431 2.0 4.3

of the input signals to cross half of Vpp until the time the perceptron predictor
yields a steady usable signal. For a 4 KB hardware budget and history length
of 24, the total time taken for a perceptron prediction is 2.4 nanoseconds. This
works out to slightly less than two clock cycles for a CPU with a clock rate of
833 MHz, the clock rate of the fastest 180-nm Alpha 21264 processor as of this
writing. The Alpha 21264 branch predictor itself takes two clock cycles to de-
liver a prediction, so our predictor is within the bounds of existing technology.
Note that a perceptron predictor with a history of 23 is about 10% faster than
one with a history length of 24; a predictor with 24 weights (23 for history plus
1 for bias) can be organized more efficiently than a predictor with 25 weights,
for reasons specific to our Wallace-tree design.

5.3 Global/Local Perceptron Predictor

As described, the perceptron predictor uses global history information to cor-
relate branch history and branch outcomes, but our predictor can be improved
by incorporating per-branch history as well. For some branches, the outcome
is more strongly correlated with per-branch, or local, history, than with global
history [Yeh and Patt 1991], so many predictors use both types of informa-
tion in making predictions. In particular, alloyed predictors use a PHT index
that is created by concatenating the global history and the local history (along
with some branch address bits). At low hardware budgets, alloyed predictors
are more effective than hybrid predictors that select from between two predic-
tors [McFarling 1993], because hybrids not only require a third choice predictor,
but they partition the hardware into separate global and local components.

Our global [ local version of the perceptron predictor is similar to the alloyed
predictor: a single table of perceptrons is used, but some perceptron input units
receive their input from a global history register, and others receive their input
from a local history register that is maintained for the particular branch being
predicted. Thus, our global/local perceptron considers both global and local
histories together and can achieve higher accuracy than one that only uses
global histories.

5.4 Overriding Perceptron Predictor

A potential problem with any complex predictor is delay, as a branch predictor
ideally operates in a single processor clock cycle. Jiménez et al. [2000] study
a number of techniques for reducing the impact of delay on branch predictors.
For example, a cascading predictor uses a simple predictor to anticipate the
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address of the next branch to be fetched, and it uses a more complex predictor to
begin predicting the anticipated address. If the branch were to arrive before the
complex predictor were finished, or if the anticipated branch address were found
to be incorrect, a small gshare table would be consulted for a quick prediction.
The study shows that a cascading predictor, using two gshare tables, is able to
use the larger table 47% of the time. An alternate solution is to use an overriding
predictor, in which a prediction is initiated by both a quick first-level predictor
and a more complex second-level predictor at the same time. The first-level
predictor gets an immediate prediction, which the second-level predictor can
later override. If the quick prediction is overridden, the actions taken by the
fetch engine are rolled back and restarted with the new prediction, incurring a
small penalty.

The perceptron can be used with either the cascading or overriding schemes.
The overriding strategy is particularly appropriate since, as pipelines continue
to deepen, the cost of overriding a less accurate predictor decreases as a per-
centage of the cost of a full misprediction. Thus, in this article we evaluate an
overriding perceptron predictor, in which a second-level perceptron predictor
is combined with a first-level gshare predictor. When a branch is encountered,
there are four possibilities.

—The first- and second-level predictions agree and are correct. In this case,
there is no penalty.

—The first- and second-level predictions disagree, and the second one is correct.
In this case, the second predictor overrides the first, with a small penalty.
—The first- and second-level predictions disagree, and the second one is incor-
rect. In this case, there is a penalty equal to the overriding penalty from the
previous case as well as the penalty of a full misprediction. Fortunately, the
second predictor is more accurate that the first, so this case is unlikely to

occur.

—The first- and second-level predictions agree and are both incorrect. In this
case, there is no overriding, but the prediction is wrong, so a full misprediction
penalty is incurred.

The Alpha 21264 uses a similar branch predictor, with a slower hybrid branch
predictor overriding a less accurate but faster line predictor [Kessler 1999].
When a line prediction is overridden, the Alpha predictor incurs a single-cycle
penalty, which is small compared to the seven-cycle penalty for a branch mis-
prediction. We present a detailed analysis of these overriding predictors in
Section 6.3.

6. RESULTS AND ANALYSIS

This section compares the perceptron-based predictors against well-known
techniques from the literature. We present three sets of results: the first eval-
uates accuracy at realistic hardware budgets, the second studies the limits of
our approach by considering accuracy at extremely large hardware budgets,
and the third evaluates overall processor performance using IPC as the metric.
We also present analysis to explain why the perceptron predictor performs well.
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Before proceeding, we now describe some methodological points that are
common to all of our experiments. We gather traces using SimpleScalar/Alpha
[Burger and Austin 1997]. Each time the simulator executes a conditional
branch, it records the branch address and outcome in a trace file. The traces are
then fed to a program that simulates the different branch prediction techniques.
Branches in libraries are not profiled.

We use as benchmarks the 12 SPEC 2000 integer programs. We allow each
benchmark to execute 300 million branches, which causes each benchmark
to execute at least one billion instructions. To measure only the steady-state
prediction accuracy, without effects from the benchmarks’ initializations, we
skip the first 50 million branches in the trace. To tune the predictors, we use
the SPEC train inputs; to report misprediction rates, we test the predictors on
the ref inputs.

6.1 Accuracy

We evaluate the accuracy of the perceptron predictor by comparing it first with
four well-known predictors at hardware budgets of 256 bytes to 8 KB, which
reflect the sizes of branch predictors found in commercial microprocessors.

6.1.1 Methodology. We now present our experimental methodology for the
first set of experimental results, describing the predictors that we simulate and
explaining how they were tuned.

6.1.1.1  Predictors Simulated. We simulate the gshare predictor
[McFarling 1993], the bi-mode predictor [Lee et al. 1997], and a combi-
nation gshare and PAg McFarling-style hybrid predictor [McFarling 1993]
similar to that of the Alpha 21264, with all tables scaled exponentially for
increasing hardware budgets. For the perceptron predictor, we simulate
a purely global predictor and a global/local perceptron predictor. For the
global/local perceptron predictor, the extra state used by the table of local
histories was constrained to be within 35% of the hardware budget for the
rest of the predictor, reflecting the design of the Alpha 21264 hybrid predictor.
For the gshare and the perceptron predictors, we also simulate the agree
mechanism [Sprangle et al. 1997], which predicts whether a branch outcome
will agree with a bias bit set in the branch instruction. The agree mechanism
turns destructive aliasing into constructive aliasing, increasing accuracy at
small hardware budgets.

Our methodology differs from our previous work on the perceptron pre-
dictor [Jiménez and Lin 2001], which used traces from x86 executables of
SPEC2000 and only explored global versions of the perceptron predictor. We
find that the perceptron predictor achieves a larger improvement over other
predictors for the Alpha instruction set than for the x86 instruction set. We
believe that this difference stems from the Alpha’s RISC instruction set, which
requires more dynamic branches to accomplish the same work, and which thus
requires longer histories for accurate prediction. Because the perceptron pre-
dictor can make use of longer histories than other predictors, it performs better
for RISC instruction sets.
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Table II. Best History Lengths

Hardware gshare Global Perceptron Global/Local Perceptron

Budget History History Global/Local

(Bytes) Length | # Entries | Length | # Entries History # Entries
128 2 512 4 25 8/2 11
256 1 1K 7 32 10/2 19
512 11 2K 9 51 23/2 19
1K 12 4K 13 73 25/5 33
2K 13 8K 17 113 31/5 55
4K 14 16 K 24 163 34/10 91
8K 15 32K 28 282 34/10 182
16 K 16 64 K 47 348 36/11 341

6.1.1.2 Tuning the Predictors. We tune each predictor for history length
using traces gathered from each of the 12 benchmarks and the train inputs. We
exhaustively test every possible history length at each hardware budget for each
predictor, keeping the history length that yields the lowest arithmetic mean
misprediction rate. For the global/local perceptron predictor, we exhaustively
test each pair of history lengths such that the sum of global and local history
lengths is at most 50. For the agree mechanism, we set bias bits in the branch
instructions using branch biases learned from the train inputs.

For the global perceptron predictor, we find, for each history length, the value
of the threshold by using an intelligent search of the space of values, pruning
areas of the space that give poor performance. We reuse the same thresholds
for the global/local and agree perceptron predictors.

Table IT shows the results of the history length tuning. We find an interesting
relationship between history length and threshold: the best threshold 6 for a
given history length £ is always exactly 8 = |1.93h + 14]. This is because adding
another weight to a perceptron increases its average output by some constant,
so the threshold must be increased by a constant, yielding a linear relationship
between history length and threshold. Through experimentation, we determine
that using eight bits for the perceptron weights yields the best results.

6.1.2 Impact of History Length on Accuracy. One of the strengths of the
perceptron predictor is its ability to consider much longer history lengths than
traditional two-level schemes, which helps because highly correlated branches
sometimes occur at a large distance from each other [Evers et al. 1998]. Any
global branch prediction technique that uses a fixed amount of history infor-
mation will have an optimal history length for a given set of benchmarks. As
we can see from Table II, the perceptron predictor works best with much longer
histories than the gshare predictor. For example, with a 4 KB hardware budget,
gshare works best with a history length of 14, the maximum possible length for
gshare. At the same hardware budget, the global perceptron predictor works
best with a history length of 24.

6.1.3 Misprediction Rates. Figure 3 shows the arithmetic mean of mispre-
diction rates achieved with increasing hardware budgets on the SPEC 2000
benchmarks. At a 4 KB hardware budget, the global perceptron predictor has
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Fig.3. Hardware budget versus prediction rate on SPEC 2000. This graph shows the misprediction
rates of various predictors as a function of the hardware budget.

a misprediction rate of 4.6%, an improvement of 26% over gshare at 6.2% and
an improvement of 15% over a 6 KB bimode at 5.4%. When both global and
local history information are used, the perceptron predictor still has superior
accuracy. A global/local hybrid predictor with the same configuration as a 3,712
byte version of the Alpha 21264 predictor has a misprediction rate of 5.2%. A
global/local perceptron predictor with 3,315 bytes of state has a misprediction
rate of 4.5%, representing a 14% decrease in misprediction rate over the Alpha
hybrid. The agree mechanism improves accuracy, especially at small hardware
budgets. With a small budget of only 750 bytes, the global/local perceptron
predictor achieves a misprediction rate of 5.9%, which is less than the mis-
prediction rate of a gshare predictor with five times the hardware budget, and
about the same as the misprediction rate of a gshare/agree predictor with a
2 KB budget. Figure 4 shows the misprediction rates of two PHT-based meth-
ods and two perceptron predictors on the SPEC 2000 benchmarks for hardware
budgets of 4 KB and 16 KB.

6.2 Accuracy at Large Hardware Budgets

As transistor densities continue to increase dramatically, it makes sense to ex-
plore much larger hardware budgets for branch predictors. Evers’ [2000] thesis
explores the design space for multicomponent hybrid predictors using large
hardware budgets, from 18 to 368 KB. Thus, to understand the limits of our
approach, we compare the global/local perceptron predictor with Evers’ mul-
ticomponent hybrid predictor, which to date is the most accurate known fully
dynamic predictor.

6.2.1 Methodology. Evers’ [2000] multicomponent hybrid predictor uses
a McFarling-style chooser to select between two other McFarling-style hybrid
predictors. The first hybrid component joins a gshare that uses a short history
to a gshare that uses a long history. The other hybrid component consists of
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Fig. 4. Misprediction rates for individual benchmarks. These charts show the misprediction rates
of global perceptron, gshare, and bimode predictors at hardware budgets of 4 KB and 16 KB.

a PAs hybridized with a loop predictor, which is capable of recognizing regular
looping behavior even for loops with long trip counts.

We simulate Evers’ multicomponent predictors using the same configura-
tion parameters given in his thesis. At the same set of hardware budgets, we
simulate a global/local version of the perceptron predictor. Due to the huge de-
sign space, we do not tune this large perceptron predictor as exhaustively as we
do for the smaller hardware budgets. Instead, we tune for the best global history
length on the SPEC train inputs, and then for the best fraction of global versus
local history at a single hardware budget, extrapolating this fraction to the en-
tire set of hardware budgets. As with our previous global/local perceptron exper-
iments, we allocate 35% of the hardware budgets to the table of local histories.
The configurations of these large perceptron predictors are given in Table III.
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Table III. Configurations for Large Budget Perceptron

Predictors
Size Global Local # #
(KB) | History | History | Perceptrons | Local Histories
18 38 14 280 2,048
30 40 14 428 4,096
53 50 18 519 8,192
98 54 19 1093 8,192
188 64 23 1652 16,384
368 66 24 3060 32,768
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Fig. 5. Hardware budget versus misprediction rate for large predictors.

6.2.2 Results. Figure 5 shows, for the SPEC 2000 integer benchmarks, the
arithmetic mean misprediction rates of Evers’ multicomponent predictor and
the global/local perceptron predictor. The perceptron predictor outperforms the
multicomponent predictor at every hardware budget, with the misprediction
rates converging as the hardware budget increases. Both predictors reach low
misprediction rates at the 368 KB hardware budget. The perceptron predic-
tor is slightly more accurate at 3.52% than the multicomponent predictor at
3.62%. Of course, power and delay issues may preclude the use of such huge
predictors.

These results provide evidence that the perceptron predictor is currently
the most accurate fully dynamic branch predictor. We must emphasize that
we have not exhaustively tuned either the multicomponent or the perceptron
predictors because of the huge computational challenge. Nevertheless, there is
a clear separation between the misprediction rates of the multicomponent and
perceptron predictors, and between the perceptron and all other predictors we
have examined at lower hardware budgets.
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6.3 IPC

We have seen that the perceptron predictor is highly accurate but has a multi-
cycle delay associated with it. If the delay is too large, overall performance
may suffer as the processor stalls waiting for predictions. We now evaluate the
perceptron predictor in terms of overall processor performance, measured in
IPC and taking into account predictor access delay.

6.3.1 Methodology. To evaluate overall processor performance, we com-
pare an overriding perceptron predictor (see Section 5.4) against the overrid-
ing hybrid predictor of the Alpha 21264. In each case, we use as a first-level
predictor a simple 256-entry Smith predictor [Smith 1981], that is, a simple one-
level table of two-bit saturating counters indexed by branch address. This fast
predictor roughly simulates the line predictor of the overriding Alpha predic-
tor, and it achieves an arithmetic mean accuracy of 85.0%, which is consistent
with the accuracy quoted for the Alpha line predictor [Kessler 1999]. For the
second-level predictor, we simulate both the global/local perceptron predictor
and the Alpha hybrid predictor, which both incur a single-cycle penalty when
they override the Smith predictor.

Since performance is dependent on clock rate, we consider two processor
configurations. One configuration uses a moderate clock rate that matches the
latest Alpha processor, and the other approximates the more aggressive clock
rate and deeper pipeline of the Intel Pentium 4. We again simulate the 12 SPEC
2000 integer benchmarks, this time allowing each benchmark to execute two
billion instructions.

The details of the overriding predictors depend on clock rate assumptions,
so for each of the two clock rates, we first describe our predictor configurations
and then report on simulated IPC.

6.3.2 Moderate Clock Rate Simulations. Our moderate clock rate simula-
tions use an 833-MHz clock, which matches that of the fastest Alpha processor
in 180-nm technology. We also simulate the seven-cycle misprediction penalty
of the Alpha 21264. At this clock rate, both the perceptron predictor and Alpha
hybrid predictor deliver a prediction in two clock cycles.

We use a perceptron predictor that has 133 perceptrons and uses a history
length of 23. Although our simulations show that a history length of 24 is the
most accurate at this hardware budget, a history length of 23 gives much the
same accuracy while being 10% faster. We have observed that the ideal ratio
of per-branch history bits to total history bits is roughly 20%, so rather than
tune this predictor exhaustively, we use 19 bits of global history and 4 bits of
per-branch history from a table of 1,024 histories. The total state required for
this predictor is 3,704 bytes, approximately the same as the 3,712 bytes used
by the Alpha hybrid predictor.

We also simulate a 2,048-entry non-overriding gshare predictor for reference.
This gshare uses less state since it operates in a single cycle; note that this
is the amount of state allocated to the branch predictor in the HP-PA/RISC
8500 [Lesartre and Hunt 1997], which uses a clock rate similar to that of the
Alpha.
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Fig. 6. IPC for overriding perceptron and hybrid predictors. This chart shows the IPCs yielded
by gshare, an Alpha-like hybrid, and global/local perceptron predictor given a seven-cycle mispre-
diction penalty. The hybrid and perceptron predictors have a two-cycle latency and are used as
overriding predictors with a small Smith predictor.

Figure 6 shows the IPC for each of the predictors. Even though there is a
penalty when the overriding Alpha and perceptron predictors disagree with
the Smith predictor, their increased accuracies more than compensate for this
effect, achieving higher IPCs than a single-cycle gshare. The perceptron pre-
dictor yields a harmonic mean IPC of 1.65, which is higher than the overriding
predictor at 1.59, which itself is higher than gshare at 1.53.

6.3.3 Aggressive Clock Rate Simulations. The current trend in microarchi-
tecture is to create deeply pipelined microprocessors, sacrificing some IPC for
the ability to use much higher clock rates. For instance, the Intel Pentium 4
uses a 20-stage integer pipeline at a clock rate of 1.76 GHz. In this situation,
one might expect the perceptron predictor to yield poor performance, since it
requires so much time to make a prediction relative to the short clock period.
We thus present results for a more aggressively clocked microarchitecture that
has characteristics of the Pentium 4. We show, in fact, that the perceptron pre-
dictor can improve performance even more than in the previous case, because
the benefits of low misprediction rates are greater.

At a 1.76-GHz clock rate, the perceptron predictor described above would
take four clock cycles: one to read the table of perceptrons and three to propagate
signals to compute the perceptron output. Pipelining the perceptron predictor
will allow us to get one prediction each cycle, so that branches that come close
together don’t have to wait until the predictor is finished predicting the previous
branch. The Wallace-tree for this perceptron has seven levels. With a small
cost in latch delay, we can pipeline the Wallace-tree in four stages: one to read
the perceptron from the table, another for the first three levels of the tree,
another for the second three levels, and a fourth for the final level and the
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Fig. 7. IPC for overriding perceptron and hybrid predictors with long pipelines. This chart shows
the IPCs yielded by gshare, a hybrid predictor, and a global/local perceptron predictor with a large
misprediction penalty and high clock rate.

carry-lookahead adder at the root of the tree. The new perceptron predictor
operates as follows.

1. When a branch is encountered, it is immediately predicted with a small
Smith predictor. Execution continues along the predicted path.

2. Simultaneously, the local history table and perceptron tables are accessed
using the branch address as an index.

3. The circuit that computes the perceptron output takes its input from the
global and local history registers and the perceptron weights.

4. Four cycles after the initial prediction, the perceptron prediction is avail-
able. If it differs from the initial prediction, instructions executed since
that prediction are squashed and execution continues along the other
path.

5. When the branch executes, the corresponding perceptron is quickly trained
and stored back to the table of perceptrons.

We use a misprediction penalty of 20 cycles, which simulates the long pipeline
of the Pentium 4. The Alpha overriding hybrid predictor is conservatively scaled
to take three clock cycles, and the overriding perceptron predictor takes four
clock cycles. The 2,048-entry gshare predictor is unmodified.

Figure 7 shows the performance results for this aggressive clock rate. Even
though the perceptron predictor takes longer to make a prediction, it still yields
the highest IPC in all benchmarks because of its superior accuracy. The per-
ceptron predictor yields an IPC of 1.48, which is 5.7% higher than that of the
hybrid predictor at 1.40.
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branch was mispredicted, 0 otherwise. Over time, this statistic tracks how quickly each predictor
learns. The perceptron predictor achieves greater accuracy earlier than the other two methods.

6.4 Training Times

To compare the training speeds of the perceptron predictor with PHT methods,
we examine the first 100 times each branch in each of the SPEC 2000 bench-
marks is executed (for those branches executing at least 100 times). Figure 8
shows the average accuracy of each of the 100 predictions for each of the static
branches with a 4 KB hardware budget. The average is weighted by the relative
frequencies of each branch.

The perceptron method learns more quickly than gshare or bimode. For the
perceptron predictor, training time is independent of history length. For tech-
niques such as gshare that index a table of counters, training time depends
on the amount of history considered; a longer history may lead to a larger
working set of two-bit counters that must be initialized when the predictor is
first learning the branch. This effect has a negative impact on prediction rates,
and at a certain point, longer histories begin to hurt performance for these
schemes [Michaud et al. 1997]. As we show in the next section, the perceptron
prediction does not have this weakness, as it always does better with a longer
history length.

6.5 Advantages of the Perceptron Predictor

We hypothesize that the main advantage of the perceptron predictor is its ability
to make use of longer history lengths. Schemes such as gshare that use the
history register as an index into a table require space exponential in the history
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Fig. 9. History length versus performance. This graph shows how accuracy for gshare and the
perceptron predictor improves as history length is increased. The perceptron predictor is able to
consider much longer histories with the same hardware budget.

length, whereas the perceptron predictor requires space linear in the history
length.

To provide experimental support for our hypothesis, we simulate gshare and
the perceptron predictor at a 64 KB hardware budget, where the perceptron
predictor normally outperforms gshare. However, by only allowing the percep-
tron predictor to use as many history bits as gshare (18 bits), we find that gshare
performs better, with a misprediction rate of 4.83% compared with 5.35% for
the perceptron predictor. The inferior performance of this crippled predictor is
likely due to increased destructive aliasing, as perceptrons are larger, and thus
fewer, than gshare’s two-bit counters.

Figure 9 shows the result of simulating gshare and the perceptron predic-
tor with varying history lengths on the SPEC 2000 benchmarks. Here, we use
a 4 MB hardware budget to allow gshare to consider longer history lengths
than usual. As we increase history length, gshare becomes more accurate until
it degrades slightly at 18 bits and then runs out of bits (since gshare requires
resources exponential in the number of history bits). By contrast, the perceptron
predictor’s accuracy only improves with longer histories. With this unrealisti-
cally large hardware budget, gshare performs best with a history length of 17,
where it achieves a misprediction rate of 3.4%. The perceptron predictor is best
at a history length of 48, where it achieves a misprediction rate of 2.9%.

6.6 Impact of Linearly Inseparable Branches

In Section 4.3 we pointed out a fundamental limitation of perceptrons that
perform offline training: they cannot learn linearly inseparable functions. We
now explore the impact of this limitation on branch prediction.
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Fig. 10. Linear separability versus accuracy at a 4 KB budget. For each benchmark, the leftmost
bar shows the number of linearly separable dynamic branches in the benchmark, the middle bar
shows the misprediction rate of gshare at a 4 KB hardware budget, and the right bar shows the
misprediction rate of the perceptron predictor at the same hardware budget.

To relate linear separability to branch prediction, we define the notion of
linearly separable branches. Let h, be the most recent n bits of global branch
history. For a static branch B, there exists a Boolean function fz(h,) that best
predicts B’s behavior. It is this function, fg, that all branch predictors strive to
learn. If fp is linearly separable, we say that branch B is a linearly separable
branch; otherwise, B is a linearly inseparable branch.

Theoretically, offline perceptrons cannot predict linearly inseparable bran-
ches with complete accuracy, whereas PHT-based predictors have no such lim-
itation when given enough training time. Does gshare predict linearly insepa-
rable functions better than the perceptron predictor? To answer this question,
we compute fg(h14) for each static branch B in our benchmark suite and test
whether the functions are linearly separable.

Figure 10 shows the misprediction rates for each benchmark for a 4 KB
budget, as well as the percentage of dynamically executed branches that are
linearly inseparable. For each benchmark, the bar on the left shows the mis-
prediction rate of gshare, and the bar on the right shows the misprediction
rate of a global perceptron predictor. Each bar also shows, using shading, the
portion of mispredictions due to linearly inseparable branches and linearly sep-
arable branches. We observe two interesting features of this chart. First, most
mispredicted branches are linearly inseparable, so linear inseparability corre-
lates highly with unpredictability in general. Second, although it is difficult
to determine whether the perceptron predictor performs worse than gshare on
linearly inseparable branches, we do see that the perceptron predictor outper-
forms gshare in all cases except for 186. crafty, the benchmark with the highest
fraction of linearly inseparable branches.
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Fig. 11. Classifying the advantage of the perceptron predictor. Each datapoint is the average
difference in misprediction rates of the perceptron predictor and gshare (on the x-axis) for those
branches (on the y-axis). Above the x-axis, the perceptron predictor is better on average. Below
the x-axis, gshare is better on average. For linearly separable branches, our predictor is on average
more accurate than gshare. For inseparable branches, our predictor is sometimes less accurate for
branches that require short histories, and it is more accurate on average for branches that require
long histories.

Some branches require longer histories than others for accurate predic-
tion, and the perceptron predictor often has an advantage for these branches.
Figure 11 shows the relationship between this advantage and the required
history length, with one curve for linearly separable branches and one for in-
separable branches. The y-axis represents the advantage of our predictor, com-
puted by subtracting the misprediction rate of the perceptron predictor from
that of gshare. We sorted all static branches according to their “best” history
length, which is represented on the x-axis. Each datapoint represents the av-
erage misprediction rate of static branches (without regard to execution fre-
quency) that have a given best history length. We use the perceptron predictor
in our methodology for finding these best lengths: using a perceptron trained
for each branch, we find the most distant of the three weights with the greatest
magnitude. This methodology is motivated by the work of Evers et al. [1998]
who show that most branches can be predicted by looking at three previous
branches. As the best history length increases, the advantage of the perceptron
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predictor generally increases as well. We also see that our predictor is more ac-
curate for linearly separable branches. For linearly inseparable branches, our
predictor generally performs better when the branches require long histories,
and gshare sometimes performs better when branches require short histories.

Linearly inseparable branches requiring longer histories, as well as all lin-
early separable branches, are always better predicted with the perceptron pre-
dictor. Linearly inseparable branches requiring fewer bits of history are better
predicted by gshare. Thus, the longer the history required, the better is the per-
formance of the perceptron predictor, even on the linearly inseparable branches.

6.7 Additional Advantages of the Perceptron Predictor

6.7.1 Assigning Confidence to Decisions. Our predictor can provide a con-
fidence level in its predictions that can be useful in guiding hardware specu-
lation. The output y of the perceptron predictor is not a Boolean value, but a
number that we interpret as taken if y > 0. The value of y provides important
information about the branch since the distance of y from 0 is proportional to
the certainty that the branch will be taken [Jiménez and Walsh 1998]. This
confidence can be used, for example, to allow a microarchitecture to specula-
tively execute both branch paths when confidence is low, and to execute only
the predicted path when confidence is high. Some branch prediction schemes
explicitly compute a confidence in their predictions [Jacobsen et al. 1996], but in
our predictor this information comes for free. We have observed experimentally
that the probability that a branch will be taken can be accurately estimated as
a linear function of the output of the perceptron predictor.

6.7.2 Analyzing Branch Behavior with Perceptrons. Perceptrons can be
used to analyze correlations among branches. The perceptron predictor assigns
a weight to each bit in the branch history. When a particular bit is strongly
correlated with a particular branch outcome, the magnitude of the weight is
higher than when there is less or no correlation. Thus, the perceptron predictor
learns to recognize the bits in the history of a particular branch that are impor-
tant for prediction, and it learns to ignore the unimportant bits. This property
of the perceptron predictor can be used with profiling to provide feedback for
other branch prediction schemes. For example, the methodology that we use in
Section 6.6 could be used with a profiler to provide path length information to
the variable length path predictor [Stark et al. 1998].

7. CONCLUSIONS

In this article we have introduced a new branch predictor that uses neural learn-
ing techniques—the perceptron in particular—as the basic prediction mecha-
nism. The key advantage of perceptrons is their ability to use long history
lengths without requiring exponential resources. These long history lengths
lead to extremely high accuracy. In particular, for the SPEC 2000 integer bench-
marks, our new global/local perceptron has 36% fewer mispredictions than a
McFarling-style hybrid predictor, which is the most accurate known predictor
that has been implemented in silicon. Our global/local perceptron is also more
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accurate than the multicomponent predictor of Evers et al., which was previ-
ously the most accurate known predictor in the literature.

A potential weakness of perceptrons is their increased computational com-
plexity when compared with two-bit counters, but we have shown how a per-
ceptron predictor can be implemented efficiently with respect to both area and
delay. In particular, we believe that the most feasible implementation is the
overriding perceptron predictor, which uses a simple Smith predictor to pro-
vide a quick prediction that can be later overridden. For an aggressive 1.76-GHz
clock rate, this overriding predictor provides an IPC improvement of 5.7% over
a McFarling-style hybrid predictor. Another weakness of perceptrons is their
inability to learn linearly inseparable functions, but we have shown that this
is a limitation of existing branch predictors as well.

This article has also shown that there is benefit to considering longer history
lengths than those previously considered. Variable length path branch predic-
tion considers history lengths of up to 23 [Stark et al. 1998], and a study of the
effects of long branch histories on branch prediction only considers lengths up
to 32 [Evers et al. 1998]. We have found that additional performance gains can
be found for branch history lengths of up to 66.

Finally, perceptrons have interesting characteristics that open up new av-
enues for future work. As noted in Section 6.7, perceptrons can also be used
to guide speculation based on branch prediction confidence levels, and percep-
tron predictors can be used in recognizing important bits in the history of a
particular branch.
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