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Abstract—Graphic processing Units (GPUs) are gaining 
ground in high-performance computing. CUDA (an extension 
to C) is most widely used parallel programming framework 
for general purpose GPU computations. However, the task of 
writing optimized CUDA program is complex even for 
experts. We present a method for restructuring loops into an 
optimized CUDA kernels based on a 3-step algorithm which 
are loop tiling, coalesced memory access, and maximizing 
machine utilization. For this we identify the GPU constraints 
for maximum performance such that the memory usage 
(global memory and shared memory), number of blocks, and 
number of threads per block. In addition we identify the 
condition for maximizing utilization of the GPU resources. 
We also establish the relationships between the influencing 
parameters and propose a method for finding possible tiling 
solutions with coalesced memory access that best meets the 
identified constraints. We also present a simplified algorithm 
for restructuring loops and rewrite them as an efficient 
CUDA Kernel. The execution model of synthesized kernel 
consists of uniformly distributing the kernel threads to keep 
all cores busy while transferring a tailored data locality which 
is accessed using coalesced pattern to amortize the long 
latency of the secondary memory. In the evaluation, we 
implement some simple applications using the proposed 
restructuring strategy and evaluate the performance in terms 
of execution time and GPU throughput.  

Keywords: CUDA, GPU, Parallel Programming, Compiler 
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I. INTRODUCTION 

Massively Parallel computing has obtained prominence 
through advances in implementing massive multithreading 
and recent improvements in its programming [1, 2, 3]. 
Recent development in Graphic Processing Units (GPUs) 
has opened a new challenge in harnessing their computing 
power as a new general purpose computing paradigm. 
Strong implications are expected on computational science 
and engineering, especially in the area of discrete numerical 
simulation [4].  
 
Modern GPUs use multiple streaming multiprocessors 
(SMs) with potentially hundreds of cores, fast context 
switching, and high memory bandwidth to tolerate ever-
increasing latencies to main memory by overlapping long-
latency loads in stalled threads with useful computation in 
other threads [5].  The Compute Unified Device 
Architecture (CUDA) is a simple C-like interface proposed 
for programming NVIDIA GPUs. However, porting 
applications to CUDA remains a challenge to average 

programmers. CUDA places on the programmer the burden 
of packaging GPU code in separate functions, of explicitly 
managing data transfer between the host and GPU 
memories, and of manually optimizing the utilization of the 
GPU memory [3]. 
 

Performance study of general-purpose GPU 
programming have been reported [6] for applications such 
as SRAD structured grid, back-propagation unstructured 
grid, data encryptions standard, Needleman – Wunsch 
dynamic programming, and k-means data mining. 
Impressive speedups ranging from 2.9 to 35 for the above 
applications have been achieved over single threaded 
programs. Some limitations have also been reported when 
the available parallelism is semi-static. A CUDA 
implementation for the gravitational N-body simulations 
using GPU is reported [7]. The GPU performs force 
calculation and updating, while the host CPU performs the 
predictor, corrector, and integration steps. Implementation is 
based on two direct N-body integration codes, using the 4th 
order predictor-corrector Hermite integrator with block 
time-steps, and one Barnes-Hut tree-code, which uses a 
second order leapfrog integration.  The above 
implementation merely maps the computation of pairwise 
particle interactions onto the GPU which makes the time-
consuming updating of the neighbor lists on the CPU a 
bottleneck since synchronization and frequent data transfer 
between CPU and GPU.   

CUDA programming requires an expert level 
understanding of the memory hierarchy and execution 
model to reach peak performance. Even for experts, 
rewriting a program to exploit the architecture in achieving 
high speedup can be tedious and error prone. Several high-
level interfaces [1, 2, 3] has been proposed to perform 
source-to-source translation based on programmer defined 
pragmas or annotations to generate CUDA programs with 
less burden to the programmers. Most execution of a 
scientific program is spent on loops. Compiler analysis and 
compiler optimizations have been proposed to make the 
execution of loops faster.  CUDA-lite [1] is an 
experimental enhancement to CUDA that allows 
programmers to deal only with global memory with 
transformations to leverage the complex memory 
hierarchy. A set of annotations describing certain properties 
of the data structures and code regions designated for GPU 
execution are proposed. The tool analyze the code along 
with these annotations and determine if the memory 
bandwidth can be conserved and latency can be reduced by 
utilizing any special memory types and/or by massaging 
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memory access patterns. Upon detection of an opportunity, 
CUDA-lite performs the transformations and code 
insertions needed. Authors claim the tool produces code 
with performance comparable to hand-coded versions. 
 

A framework for source-to-source translation of 
standard OpenMP applications into CUDA-based code is 
proposed [2]. It has two phases: (1) a compile-time 
optimization techniques which applied parallel loop-swap 
and loop-collapsing, and (2) an OpenMP to GPGPU 
translation system. In the later step, partitioning and data 
mapping are used to convert work-sharing OpnMp 
constructs into kernel with defaults block size and number 
of blocks. Shared data are mapped to global memory. 
Thread private data are replicated and allocated on global 
memory for each thread. Private data are mapped to register 
banks assigned for each thread. Evaluation uses Jacobi, and 
SPMUL, and two NAS OpenMP Parallel Benchmarks (EP 
and CG). It is reported a performance improvements of up 
to 50x over the un-optimized translation (up to 328x over 
serial on a CPU. 

A high-level directive-based compiler (hiCUDA) [3] is 
proposed to ease the task of writing CUDA programs. The 
compiler translates a hiCUDA program to a CUDA 
program using a computation model and a data model in 
which programmers allocate and de-allocate memory on the 
GPU and move data between the host memory and the GPU 
memory. Evaluation of five CUDA benchmarks (MM, CP, 
SAD, TPACF, RPES) shows that the provided simplicity 
and flexibility come at no expense to performance as 
execution times is within 2% of that of the hand-written 
CUDA version. 

A source-to-source compiler transformation (CUDA-
CHiLL) [8] aims at alleviating the need for understanding 
memory hierarchy and execution model in writing 
optimized CUDA programs. It proposes a source-to-source 
transformation based on the polyhedral program 
transformation and ChiLL framework which is capable of 
composing transformations while preserving the correctness 
of the program at each step. The authors claims that 
optimizing the BLAS library routines yields results 
comparable to hand-tuned versions in some cases and 
outperforming hand-tuned in other cases. 

In this paper we present a method for restructuring loops 
into an optimized CUDA kernels based on a 3-step 
algorithm which are loop tiling, coalesced memory access, 
and maximizing machine utilization. For this we identify 
the GPU constraints for maximum performance such that 
the memory usage (global memory and shared memory), 
number of blocks, and number of threads per block. In 
addition we identify the condition for maximizing 
utilization of the GPU resources. We also establish the 
relationships between the influencing parameters and 
propose a method for finding possible tiling solutions with 
coalesced memory access that best meets the identified 
constraints. We also present a simplified algorithm for 
restructuring loops and rewrite them as an efficient CUDA 
Kernel. The execution model of synthesized kernel consists 
of uniformly distributing the kernel threads to keep all cores 

busy while transferring a tailored data locality which is 
accessed using coalesced pattern to amortize the long 
latency of the secondary memory. In the evaluation, we 
implement some simple applications using the proposed 
restructuring strategy and evaluate the performance in terms 
of execution time and GPU throughput.  

This paper is organized as follows. Section 2 presents some 
analysis of GPU that is critical for performance tuning. 
Section 3 presents a proposed approach for restructuring 
algorithm for CUDA. Section 4 presents the evaluation of 
applications and comments on execution times and 
throughput. Finally, Section 5 concludes about this work.    

II. BACKGROUND 

Ideal GPU applications have large data sets, high 
parallelism (data parallelism), and minimal dependency 
between data elements [9]. 

A. GPU Architecture 

It is organized into an array of highly threaded 
Streaming Multiprocessors (SMs). Each SM has a number 
of Streaming Processors (SPs) that share control logic and 
instruction cache. The total number of SMs in a device and 
SPs per SM can vary from one generation of GPUs to 
another generation. Each GPU currently comes with up to 4 
GB of graphics double data rate (GDDR) DRAM referred to 
as global memory. These GDDR DRAMs differ from the 
system DRAMs on the CPU motherboard in that they are 
essentially the frame buffer memory that is used for 
graphics. For graphics applications, they hold video images, 
and texture information for three-dimensional (3D) 
rendering, but for computing they function as very-high-
bandwidth, off-chip memory, though with somewhat more 
latency than typical system memory. A general-purpose 
random access, readable and writable off-chip Global 
Memory (GM) visible to all threads in all blocks is 
provided. GM is the slowest of the available memory 
spaces, requiring hundreds of cycles, and is not cached. 
Each SP has a shared memory (ShM) which is on-chip, 
readable and writable, and visible to all threads running 
within SM and as fast as register access. However, ShM is 
very small in size compared to GM. Table 1 shows some 
published features of some popular GPUs.   

 
                  Table 1: Some features for some NVIDEA GPUs.  
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GM is linked to the GPU device through a very large 
data path of 512-bits wide. Through such a bus width, 
sixteen consecutive 32-bits (4 bytes) words can be fetched 
from global memory in a single cycle. The on-chip memory 
resource includes register files (16K per SM, see Table 1), 
shared memory (16KB or more per SM). To hide the long 
off-chip memory access latency, a high number of threads 
are supported to run concurrently. The threads are grouped 
in blocks which will be scheduled to SMs dynamically on 
the availability of each SM. These threads follow the single-
program multiple-data (SPMD) program execution model. 
Within a block, threads are grouped in 32-thread 
instructions called warps, where each warp is being 
executed in the single-instruction multiple-data (SIMD) 
manner within some SP.  

B. CUDA Execution Model 

A CUDA program is a unified source code 
encompassing both the host and the device code. It consists 
of one or more phases that are executed on either the host 
(CPU) or a device that is a GPU. The phases that exhibit 
rich amount of data parallelism are implemented in the 
device code. The device code is written using ANSI C 
extended with keywords for labeling data-parallel 
functions, called kernels, and their associated data 
structures [10]. 

 
Figure 1 shows the execution hierarchy of a typical CUDA 
kernel function on a device. Each kernel initiates a set of 
blocks defined by the programmer as grid dimension with 
number of threads to be executed within each block while 
invoking the device kernel function. Now, the block 
scheduler dynamically schedules each thread block to one 
SM based on the availability of resources within SM [1]. 
An SM can handle at most 8 blocks at a time as we have 8 
SPs within each SM (see Table 1). Also, the possible 
number of concurrent blocks per SM depends on the 
number of warps per block, number of registers per block, 
and the shared memory usage per block. These constraints 
will be developed in Section IV. An SM has a limited 
number of resources in terms of warps scheduling, 
registers, and the shared memory which are to be 
partitioned among the scheduled blocks in each SM. For 
many GPUs (Table 1), each SM can handle 32 warps at a 
time. Each SM has 32 KB registers and 16 KB of shared 
memory. 

SM manages threads ids and threads execution. Threads 
within a block cooperate within SM using ShM while 
threads in different blocks cannot cooperate, not even using 
GM since the blocks are scheduled to different SMs 
dynamically by the scheduler. The data transfer between 
different blocks can be done by separate invocation of the 
kernel which will be serialized. So, in case of recurrence in 
application space, the whole recurrence must be contained 
in each single thread because serialization is controlled 
only by defining different kernels. Thus in the case of a 
recurrence, we may end up with a few very coarse threads, 
a situation that might lead to low GPU utilization which is 
discussed in details in Section IV. 
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Figure 1: CUDA Kernel Execution Hierarchy 

 

Each SM schedules one warp at a time with zero 
overhead warp and thread scheduling (using Scoreboard as 
a warp instruction scheduling). The warp is the unit of 
thread scheduling in SMs. Each warp consists of 32 threads 
of consecutive thread ids. In the case of higher dimensional 
kernels, warps will be retrieved from blocks according to 
the row major numbering. As warps executes in SIMD 
fashion, if there is a high latency exception such as loading 
data from GM or storing results to GM then the whole 
warp must be suspended and its context if preserved. 

The major bottleneck to achieving performance while 
using CUDA is the memory bandwidth and latency. The 
GPU provides several different memories with different 
behaviors and performance that can be leveraged to 
improve memory performance. The transfer of data 
between GM and ShM is explicitly programmed by the 
user. A DMA operation is initiated by the SM whenever it 
finds one or more threads within a warp to perform such a 
long latency memory transfer operations (accessing global 
memory) and schedule another warp (ready to execute) to 
the SP [10]. This mechanism of filling the latency of 
expensive operations with work from other threads is often 
referred to as latency hiding.  

GM is partitioned into segments of size equal to 32, 64 
or 128 bytes (see Table 1) and aligned to this size. The 
elements in one segment can be accessed by a single 
memory transaction. By considering the largest segment 
size of 128 bytes and also the data path of 512 bits, the 
compiler issues a single load/store instruction for 16 
consecutive elements accessed by 16-threads (half warp) to 
reduce the number of memory transactions of global 
memory. So, the performance of memory transfers can 
incredibly be improved through the use of coalesced global 
memory accesses that is accessing a regular pattern of 
consecutive elements by a half warp (16 threads) based on 
some conditions [1]. Therefore, if SPs are kept busy 
executing through warp switching then the whole transfer 
between GM and ShM is hidden by some execution which 
implies that the parallel program time does not account for 
such an expensive memory transfer. Since, shared memory 
is very small in size so we have to perform some loop 
transformation such as loop tiling, a mechanism to adjust 
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loop execution to match with underlying machine or 
memory system, to make the availability of enough data for 
the warp per SP. 

III. A RESTRUCTURING ALGORITHM FOR CUDA 

In this section we proposed a CUDA kernel 
restructuring algorithm, a general strategy to achieve 
maximum possible performance by better utilization of the 
machine. In CUDA, the worker threads are identified by 
thread ID and being organized by blocks which are 
identified by block ID. This identification is used in a kernel 
to define a mapping of computations to threads (workers). 
An array of any dimension is accessed as a linear memory 
which is allocated in a row-major order. The objective of 
having multi-dimensional blocks of threads is to ease the 
mapping of computation results to the worker threads.   

The proposed restructuring algorithm aimed at 
generating efficient CUDA kernels. It is based on 
following guidelines: 

 
1. Tiling the code so that the aggregate data locality of a 

tile (block of threads) is fetched, and being small 
enough to fit, onto ShM prior to computations instead 
of direct load form GM, no matter whether using 
coalesced access or non-coalesced access.   

2. Exploring different ways of mapping computations to 
threads to favor coalesced global memory access while 
loading from and/or storing into GM.  

3. Increase thread granularity to amortize the ratio of data 
transfer per computation without having some SM 
being idle, i.e. low utilization of the available SMs and 
the SPs within each SM.  

4. Reduce (1) the number of local variables (register use) 
and (2) block size, to avoid reducing the number of 
blocks that can handled by SM at a time which may 
affect overall GPU utilization. 

5. Use kernel block size greater than or equal to tile size 
such that each thread in a block loads one element of a 
tile into ShM. This reduces instruction fetch and 
processing overhead of load instruction since the 
device perform one instruction fetch for a block of 
threads which is in SIMT manner.  

 
The proposed algorithm is based on the three key 

concepts that are explained in detail in following 
subsections. 

A. Tiling 

In CUDA the programmer has to explicitly transfer data 
from slow low-level GM which is visible by all SMs to a 
fast high-level shared memory ShM within each SM. Tiling 
the code is to account for the small ShM capacity. The 
execution style is based on transferring small amount of 
data followed by data processing. While transforming the 
code, it is required to perform proper calculation of 
effective address of array elements (results) based on the 
workers identifiers which are the block ID and thread ID. It 
is required to design an algorithm/mechanism that can be 
used to apply loop tiling on any CUDA program with 

proper memory hierarchy optimizations. Tiling is guided by 
the following steps:   

1. Identification of proper tile size to be stored in shared 
memory based on the limited capacity of ShM per 
CUDA kernel block based on determining the tile size 
based on matching overall tile data locality with tShM 
capacity.  

2. Loop transformations and proper identification of range 
of outer and inner loops. 

3. Effective address calculations of the array elements to 
be accessed within the loop iterations (see coalesced 
access). 

4. Boundary check for avoiding the out of bound array 
index access. 

5. Synchronization among loading of data into ShM, 
execution of operations, and storing the results back 
into GM.  

B. Coalesced Global Memory Access 

In this section, the objective is to restructure the code so 
that at execution warps access to GM is done according to 
a coalesced access pattern to amortize the excessive access 
cost. Fetching a group of data elements which are stored in 
distinct memories (coalesced access) is critical to amortize 
the high cost of accessing GM compared to the speed of the 
logic.  The key idea is to determine all possible mapping   
 
In CUDA a 1-D kernel having NW threads is represented 
as a set of N blocks each has W elements. To assign some 
work to each individual thread, each kernel thread is 
identified by the block b to which it belongs to and some 
offset t, i.e.  thid = b.W + t or as a vector thid = ( b, t)N,W 
,where 0 bN-1 and 0 tW-1. Suppose we have a 2-D 
array of U.V computation results which are stored using 
row-major scheme as U rows and V columns, the address 
of the element in row r and column c is EA= (r,c)U,V = r. U 
+ c, where 0 rU-1 and 0 cV-1. Assigning a thread 
(worker) to compute a result requires defining a mapping 
from the thread IDs onto the results so that when the 
SPMD program is run, each thread uses its own ID in the 
code to determine the result that it must compute. The 
mapping of threads IDs onto the result address admits a 
few possible mapping solutions for EA = (r,c)u,v  as 
computes:  
 
1. EA = (( b, t)N,W ,

 c)U,V | N.W=U,  each thread has one 
loop to compute V results, no coalesced access, 
 

2. EA = (r, ( b, t)N,W )U,V  | N.W=V, each thread has one 
compute U results, coalesced access, 

 
3. EA =  (( b, t’)N,W ,

 ( b’, t)N,W )U,V  | N.W’=U and 
N’.W=V, each thread has two loops (denoted by ’) to 
computes (U.V)/(N.W) results, coalesced access, 
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4. EA =  (( b’, t)N’,W ,
 ( b, t’)N,W )U,V | N’.W=U and 

N.W’=V, each thread has two loops (denoted by ’) to 
computes (U.V)/(W.N) results, coalesced access. 

 
Note that a coalesced access takes place only when the 

offset, or second component of EA, is mapped to the thread 
index, i.e. identified by offset t. The reason is that warps 
are formed by successive thread IDs for any dimension, i.e. 
according to row major organization. Table 2 shows the 
possible mappings of CUDA for 1-D and 2-D kernels 
(blocks and threads) to a 2-D array of results of size space 
N.W. Similar approach is used for higher dimension 
kernels. 

 

 
 

Table 2: Possible 1-D and 2-D Kernel mapping to a 2-D 
Array of results  

 

C. Maximizing Utilization 

Within each SM, ShM is partitioned among active 
blocks which are assigned to SM for simultaneous 
execution. Therefore the tile sizes must be selected such that 
the tile data locality that must be loaded into ShM does not 
constrain the maximum number of active blocks which can 
be assigned to an SM at a time. 

The block size must be chosen greater than or equal to tile 
size such that each thread in a block loads one element of a 
tile into ShM. This will reduce instruction fetch and 
processing overhead of load instruction since the device 
perform one instruction fetch for a block of threads which 
is in SIMT manner. On the other hand, too large block 
sizes must be avoided limiting the number of active blocks 
per SM. The number of active blocks must be no less than 
the number of SPs in any given SM to avoid limiting the 
number of active threads per SM. In the case of such 
limitation, cores utilization will be reduced because SM 
maps an active block as an execution unit to each SP. 
Active Blocks can be calculated using equation (1):  
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For example, if Threads Per Block = 256, Tile Size = 16 x 
16 = 256, Data Element Size = 4 bytes, and Number of 
Data Elements to load for one result = 2 (as in case of 
Matrix Multiply) then the Active Blocks = 4. Suppose 
Warps Per SM = 32, Shared Memory Per SM = 16384, and 
SPs Per SM = 8. Therefore the number of active blocks that 
can be handled by an SM at a given time is:  
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Since within each SM only one block is assigned to 
each SP, therefore, the Utilization (U) of SM is determined 
by the ratio of number of active blocks assigned to an SM 
over the number of SPs in SM: 
 

)*/(

/

SPperSMckWarpperBloWarpperSM

SPperSMksActiveBlocU 
 

 
In the previous example the utilization of the GPU will be 
U=4/8=0.5. In other words, only one SP out of 2 will be 
active in the computation of the Kernel described in the 
above example.  
 
In the case the number of warps in a given block exceeds 
the maximum (k) that can be handled at any given time by 
the SP, the execution of these warps will be serialized by 
the SP.  Thus each SP will have to run for a number of 
small cycles (S-Cycles) working in order to complete 
processing of its assigned block. In each small cycle SP 
executes k warps while switching from one warp to another 
whenever there a running warp encounters a high-latency 
exception such as a load or store dealing with GM. Since 
the warp executes in SIMD mode, the duration of each 
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small cycle (k warps) depends on the thread granule size 
and the number of load and store within each thread.   
 

To expose to peak performance, the application threads 
must be massively and uniformly spread over the SMs so 
that the only performance saturation comes from mapping 
the application to the GPU. Furthermore, peak performance 
will be expected because all the SM and SPs are involved 
in the execution. To identify the conditions for peak 
performance, one can analyze the repetition cycles occurs 
during the kernel execution. Since, there are two levels of 
kernel block scheduling in the device. The blocks are first 
scheduled to be executed on each SM and then each SM 
schedules these blocks to multiple SPs within the SM. We 
termed the repetitions due to first scheduling as large 
cycles (L-Cycles) and the repetitions due to second 
scheduling as small cycles (S-Cycles).  
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These repetitions should satisfy the following 
conditions to achieve peak performance: 

 
1. Divides L-Cycles into integer number of S-Cycles 
2. L-Cycles should be greater than or equal to 1 
3. S-Cycles should be greater than 1 
4. The ratio of L-Cycles to S-Cycles should be 

minimum 
In our experiments for Matrix Multiply, we found the 

following repetitions (Table 3) at their peak performance. 
Here, W/B = Warps Per Block, B/SM = Blocks Per SM. 
 

D. Proposed CUDA Restructuring Algorithm 

 
The proposed restructuring algorithm is based on the 
following steps: 

 
Step 1: Analyze the granule size in the loop body and the 
data locality needed and determine thread granule size: 
 

a. Thread Granule Size: carry out loop 
distribution/fusion or statement distribution/fusion 
to control the thread granule: the number of 
load/store, number of arithmetic operations, and  
the needed data locality 

b. Carry out statement distribution if statement has 
too many arithmetic operations or requiring too 
many locality 

c. Might carry out the opposite of the above steps in 
the case of too fine granule size of very limited 
locality 
 

Step 2: Tile the resulting loop (or loops) by generating all 
possible tiled loop arrangements and select one or more 
tiled arrangements with coalesced memory access. 
 
Step 3: Determine the best possible combination of 
Threads per block (TPB) and the Tile Size(TS) to get the 
maximum utilization of the machine resources. For thread 
granule size = 1, TPB = TS. We need to generate all 
possible TPB and TS, and their respective Warps Per Block 
(WPB) and Shared Memory Per Block (ShMPB) using the 
equation (1.1 and 1.2). 
 

a. Identify Active Blocks using equation (1) for each 
of the combination of TPB and TS 

b. Select the combinations which gives the maximum 
Active Blocks 

Find out L-Cycles and S-Cycles of the selected 
combinations. The combination of TPB and TS which 
satisfies all four conditions of repetitions, as identified in 
section IV.C, is expected to give the best performance. 

IV. PERFORMANCE EVALUATION 

A. Non-Coalesced Vs Coalesced Global Memory Access 

 
Figure 2 shows the comparison of application performance 
in terms of throughput (GFLOPS). There is a significant 
performance improvement of the application if tile is first 
loaded into shared memory from global memory with 
coalesced global memory access and do the computations 
in shared memory. As in coalesced global memory access, 
threads in half warp (16 threads) access consecutive 
memory locations in one cycle so reducing the memory 
accesses by a factor of (1/16 = 0.0625). In ideal case, the 
execution time by using coalesced global memory access 
should reduce to (1-0.0625) * 100 = 93.75%. In our 
experiments, we have got (1 – 0.11973/0.98727) x 100 = 
87.87% reduction in execution time (i.e. improvement in 
throughput) for N = 262144 which is approximately equal 
to the ideal with very slight overhead of 5.88%. 
 

        
Figure 2: Matrix Multiplication using Shared Memory with (a) Non-
Coalesced Global Memory Access and (b) Coalesced Global Memory 
Access. 
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B. Computation using Shared Memory Vs Global 
Memory 

Figure 3 shows the performance, in terms of throughput 
(GFLOPS), comparison of matrix multiplication by 
computation using global memory and computation using 
shared memory with non-coalesced load from global 
memory. Our experimental results as shown in figure 2 and 
3 shows that computation using shared memory is faster 
than the computations using global memory that is loading 
registers directly from global memory is slower than the 
loading data from global memory to shared memory and 
then to registers. It means that the latency of loading data 
from global memory to registers is much more than the 
latency from global memory to shared memory plus the 
latency from shared memory to registers. 
 

 

          
 
 
Figure 3: Matrix Multiplication using Computations with (a) Global 
Memory and (b) Shared Memory 

 
 
 

          
 

Figure 4: Matrix Scaling with different Thread Granularities 
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C. Different Thread Granule Size 

Figure 4 shows the performance, in terms of throughput 
(GFLOPS), comparison of matrix scaling application that 
is multiplying each element of a matrix by an arbitrary 
value. Since, the ratio of load and compute for this 
application is 1:1 which means that to do one operation a 
thread has to load one element. So, increasing thread 
granule size will not be beneficial. The increase in 
throughput depends on the application itself, it will not be 
achieved by increasing the thread granule size. The 
application which has low ratio of load to computation will 
give higher throughput than the application which has high 
value of this ratio. 

D. Block Sizes Comparison 

Figure 5 shows the application performance comparison 
in terms of throughput (GFLOPS). The results show that 
increase in number of threads per block may decrease the 
performance by restricting the concurrent number of blocks 
per SM (reducing SM capacity utilization). For block 
dimension 16 x 16, one block contains 256 threads implies 
256/32 = 8 warps/block (Here, 32 is the number of threads 
per warp) that is one SM can have 32/8 = 4 blocks at a time 
(Here, 32 is the maximum number of warps per SM). 
While for block dimension 22 x 22, one block contains 484 
threads implies 484/32 = 16 warps/block that is one SM 
can have 32/16 = 2 blocks at a time. Since, SM maps each 
block to one SP for execution so in this case the application 
use only 2 out of 8 SPs per SM that is (2/8)*100 = 25% 
utilization. Also, in the case, the workload per SP is also 

 
 

           
 
Figure 5: Matrix Multiplication using only global memory with different 
number of threads per block (a) 16 x 16 = 256 threads/block and (b) 22 x 

22 = 484 threads /block 
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increasing from 8 warps to 16 warps while decreasing the 
concurrent threads per SM from 1024 to 968. This reduces 
the overall performance of the application. 

E. Memory Usage per Block 

Figure 6 shows the performance, in terms of throughput 
(GFLOPS), comparison of matrix scaling application. In 
these experiments, we used different tile size to be loaded 
into shared memory that is different shared memory 
allocation per block. By using some profiling information 
provided by the compiler, it seems that there is some 
compiler overhead (32 bytes) associated in terms of shared 
memory allocation. Also, the shard memory is allocated to 
a block in multiples of the shared memory allocation unit 
that is 512 bytes. For Tile Size = 16 x 16 to load two tiles 
(one for source and one for target) having each element of 
4 bytes, shared memory allocation per block is (16 x 16 x 2 
x 4) + 32 = 2080 bytes implies actual shared memory 
allocation = 2560 bytes that is 512 x 5. Since, the shared 
memory is partitioned among the blocks per SM so in the 
case the concurrent blocks per SM is 16384/2560 = 6.4 
implies 6 blocks/SM but due to maximum warps limit (32 
warps/SM) only 4 blocks (1 block = 8 warps) will be 
scheduled to one SM at a time. For Tile Size = 32 x 32, 
shared memory allocation per block is (32 x 32 x 2 x 4) + 
32 = 8224 bytes implies actual shared memory allocation = 
8704 bytes that is 512 x 17. So in this case the concurrent 
blocks per SM is 16384/8704 = 1.88 implies only 1 
block/SM will be scheduled to one SM at a time. This 
reduces the SM capacity utilization which in response 
reduces the overall performance of the application. The 
results also show that the computation using shared 
memory saturates the device at number of blocks = 512 in 
the application that is throughput decreases after this 
threshold. Here, the peak throughput achieved at N = 8192 
and TPB =16 that is 8192/16 = 512 blocks. We may have 
the same pattern for TPB = 32 if use larger space size (N) 
but we could not run our experiments for N > 16384 due to  
 

         
Figure 6: Matrix Scaling using different size of shared memory per block 
(a) TPB = 32, 32 x 32 x 2 x 4 = 8KB and (b) TPB = 16, 16 x 16 x 2 x 4 = 

2 KB 

 

limited global memory of 4 GB. For N = 16384 (214) to 
load two matrices having each element of 4 bytes, 214 x 2 x 2 
x 22 = 2 x 230 = 2 GB < 4 GB while for N = 32768 (215), 215 

x 2 x 2 x 22 = 8 x 230 = 8 GB > 4 GB. 

V. CONCULSION  

We presented a restructuring algorithm to optimize a 
CUDA program based on three key concepts: Tiling, 
Coalesced Global Memory Access and Maximizing 
Utilization. The execution model of synthesized kernel 
consists of uniformly distributing the kernel threads to keep 
all cores busy while transferring a tailored data locality 
which is accessed using coalesced pattern to amortize the 
long latency of the secondary memory. In the evaluation, 
we implement some simple applications using the proposed 
restructuring strategy and evaluated the performance in 
terms of execution time and GPU throughput. Obtained 
results were analyzed in view of proposed optimization 
parameters which reinforces the proposed restructuring.   
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