
[1]

A Restructuring Algorithm for CUDA

M. A. Al-Mouhamed and A. H. Khan
King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia
{mayez, ahkhan}@kfupm.edu.sa

Abstract—Graphic processing Units (GPUs) are gaining
ground in high-performance computing. CUDA (an extension
to C) is most widely used parallel programming framework
for general purpose GPU computations. However, the task of
writing optimized CUDA program is complex even for
experts. We present a method for restructuring loops into an
optimized CUDA kernels based on a 3-step algorithm which
are loop tiling, coalesced memory access, and maximizing
machine utilization. For this we identify the GPU constraints
for maximum performance such that the memory usage
(global memory and shared memory), number of blocks, and
number of threads per block. In addition we identify the
condition for maximizing utilization of the GPU resources.
We also establish the relationships between the influencing
parameters and propose a method for finding possible tiling
solutions with coalesced memory access that best meets the
identified constraints. We also present a simplified algorithm
for restructuring loops and rewrite them as an efficient
CUDA Kernel. The execution model of synthesized kernel
consists of uniformly distributing the kernel threads to keep
all cores busy while transferring a tailored data locality which
is accessed using coalesced pattern to amortize the long
latency of the secondary memory. In the evaluation, we
implement some simple applications using the proposed
restructuring strategy and evaluate the performance in terms
of execution time and GPU throughput.

Keywords: CUDA, GPU, Parallel Programming, Compiler
Transformations, directive-based language, source-to-source
compiler, GPGPU

I. INTRODUCTION

Massively Parallel computing has obtained prominence
through advances in implementing massive multithreading
and recent improvements in its programming [1, 2, 3].
Recent development in Graphic Processing Units (GPUs)
has opened a new challenge in harnessing their computing
power as a new general purpose computing paradigm.
Strong implications are expected on computational science
and engineering, especially in the area of discrete numerical
simulation [4].

Modern GPUs use multiple streaming multiprocessors
(SMs) with potentially hundreds of cores, fast context
switching, and high memory bandwidth to tolerate ever-
increasing latencies to main memory by overlapping long-
latency loads in stalled threads with useful computation in
other threads [5]. The Compute Unified Device
Architecture (CUDA) is a simple C-like interface proposed
for programming NVIDIA GPUs. However, porting
applications to CUDA remains a challenge to average

programmers. CUDA places on the programmer the burden
of packaging GPU code in separate functions, of explicitly
managing data transfer between the host and GPU
memories, and of manually optimizing the utilization of the
GPU memory [3].

Performance study of general-purpose GPU
programming have been reported [6] for applications such
as SRAD structured grid, back-propagation unstructured
grid, data encryptions standard, Needleman – Wunsch
dynamic programming, and k-means data mining.
Impressive speedups ranging from 2.9 to 35 for the above
applications have been achieved over single threaded
programs. Some limitations have also been reported when
the available parallelism is semi-static. A CUDA
implementation for the gravitational N-body simulations
using GPU is reported [7]. The GPU performs force
calculation and updating, while the host CPU performs the
predictor, corrector, and integration steps. Implementation is
based on two direct N-body integration codes, using the 4th
order predictor-corrector Hermite integrator with block
time-steps, and one Barnes-Hut tree-code, which uses a
second order leapfrog integration. The above
implementation merely maps the computation of pairwise
particle interactions onto the GPU which makes the time-
consuming updating of the neighbor lists on the CPU a
bottleneck since synchronization and frequent data transfer
between CPU and GPU.

CUDA programming requires an expert level
understanding of the memory hierarchy and execution
model to reach peak performance. Even for experts,
rewriting a program to exploit the architecture in achieving
high speedup can be tedious and error prone. Several high-
level interfaces [1, 2, 3] has been proposed to perform
source-to-source translation based on programmer defined
pragmas or annotations to generate CUDA programs with
less burden to the programmers. Most execution of a
scientific program is spent on loops. Compiler analysis and
compiler optimizations have been proposed to make the
execution of loops faster. CUDA-lite [1] is an
experimental enhancement to CUDA that allows
programmers to deal only with global memory with
transformations to leverage the complex memory
hierarchy. A set of annotations describing certain properties
of the data structures and code regions designated for GPU
execution are proposed. The tool analyze the code along
with these annotations and determine if the memory
bandwidth can be conserved and latency can be reduced by
utilizing any special memory types and/or by massaging

[2]

memory access patterns. Upon detection of an opportunity,
CUDA-lite performs the transformations and code
insertions needed. Authors claim the tool produces code
with performance comparable to hand-coded versions.

A framework for source-to-source translation of
standard OpenMP applications into CUDA-based code is
proposed [2]. It has two phases: (1) a compile-time
optimization techniques which applied parallel loop-swap
and loop-collapsing, and (2) an OpenMP to GPGPU
translation system. In the later step, partitioning and data
mapping are used to convert work-sharing OpnMp
constructs into kernel with defaults block size and number
of blocks. Shared data are mapped to global memory.
Thread private data are replicated and allocated on global
memory for each thread. Private data are mapped to register
banks assigned for each thread. Evaluation uses Jacobi, and
SPMUL, and two NAS OpenMP Parallel Benchmarks (EP
and CG). It is reported a performance improvements of up
to 50x over the un-optimized translation (up to 328x over
serial on a CPU.

A high-level directive-based compiler (hiCUDA) [3] is
proposed to ease the task of writing CUDA programs. The
compiler translates a hiCUDA program to a CUDA
program using a computation model and a data model in
which programmers allocate and de-allocate memory on the
GPU and move data between the host memory and the GPU
memory. Evaluation of five CUDA benchmarks (MM, CP,
SAD, TPACF, RPES) shows that the provided simplicity
and flexibility come at no expense to performance as
execution times is within 2% of that of the hand-written
CUDA version.

A source-to-source compiler transformation (CUDA-
CHiLL) [8] aims at alleviating the need for understanding
memory hierarchy and execution model in writing
optimized CUDA programs. It proposes a source-to-source
transformation based on the polyhedral program
transformation and ChiLL framework which is capable of
composing transformations while preserving the correctness
of the program at each step. The authors claims that
optimizing the BLAS library routines yields results
comparable to hand-tuned versions in some cases and
outperforming hand-tuned in other cases.

In this paper we present a method for restructuring loops
into an optimized CUDA kernels based on a 3-step
algorithm which are loop tiling, coalesced memory access,
and maximizing machine utilization. For this we identify
the GPU constraints for maximum performance such that
the memory usage (global memory and shared memory),
number of blocks, and number of threads per block. In
addition we identify the condition for maximizing
utilization of the GPU resources. We also establish the
relationships between the influencing parameters and
propose a method for finding possible tiling solutions with
coalesced memory access that best meets the identified
constraints. We also present a simplified algorithm for
restructuring loops and rewrite them as an efficient CUDA
Kernel. The execution model of synthesized kernel consists
of uniformly distributing the kernel threads to keep all cores

busy while transferring a tailored data locality which is
accessed using coalesced pattern to amortize the long
latency of the secondary memory. In the evaluation, we
implement some simple applications using the proposed
restructuring strategy and evaluate the performance in terms
of execution time and GPU throughput.

This paper is organized as follows. Section 2 presents some
analysis of GPU that is critical for performance tuning.
Section 3 presents a proposed approach for restructuring
algorithm for CUDA. Section 4 presents the evaluation of
applications and comments on execution times and
throughput. Finally, Section 5 concludes about this work.

II. BACKGROUND

Ideal GPU applications have large data sets, high
parallelism (data parallelism), and minimal dependency
between data elements [9].

A. GPU Architecture

It is organized into an array of highly threaded
Streaming Multiprocessors (SMs). Each SM has a number
of Streaming Processors (SPs) that share control logic and
instruction cache. The total number of SMs in a device and
SPs per SM can vary from one generation of GPUs to
another generation. Each GPU currently comes with up to 4
GB of graphics double data rate (GDDR) DRAM referred to
as global memory. These GDDR DRAMs differ from the
system DRAMs on the CPU motherboard in that they are
essentially the frame buffer memory that is used for
graphics. For graphics applications, they hold video images,
and texture information for three-dimensional (3D)
rendering, but for computing they function as very-high-
bandwidth, off-chip memory, though with somewhat more
latency than typical system memory. A general-purpose
random access, readable and writable off-chip Global
Memory (GM) visible to all threads in all blocks is
provided. GM is the slowest of the available memory
spaces, requiring hundreds of cycles, and is not cached.
Each SP has a shared memory (ShM) which is on-chip,
readable and writable, and visible to all threads running
within SM and as fast as register access. However, ShM is
very small in size compared to GM. Table 1 shows some
published features of some popular GPUs.

 Table 1: Some features for some NVIDEA GPUs.

[3]

GM is linked to the GPU device through a very large
data path of 512-bits wide. Through such a bus width,
sixteen consecutive 32-bits (4 bytes) words can be fetched
from global memory in a single cycle. The on-chip memory
resource includes register files (16K per SM, see Table 1),
shared memory (16KB or more per SM). To hide the long
off-chip memory access latency, a high number of threads
are supported to run concurrently. The threads are grouped
in blocks which will be scheduled to SMs dynamically on
the availability of each SM. These threads follow the single-
program multiple-data (SPMD) program execution model.
Within a block, threads are grouped in 32-thread
instructions called warps, where each warp is being
executed in the single-instruction multiple-data (SIMD)
manner within some SP.

B. CUDA Execution Model

A CUDA program is a unified source code
encompassing both the host and the device code. It consists
of one or more phases that are executed on either the host
(CPU) or a device that is a GPU. The phases that exhibit
rich amount of data parallelism are implemented in the
device code. The device code is written using ANSI C
extended with keywords for labeling data-parallel
functions, called kernels, and their associated data
structures [10].

Figure 1 shows the execution hierarchy of a typical CUDA
kernel function on a device. Each kernel initiates a set of
blocks defined by the programmer as grid dimension with
number of threads to be executed within each block while
invoking the device kernel function. Now, the block
scheduler dynamically schedules each thread block to one
SM based on the availability of resources within SM [1].
An SM can handle at most 8 blocks at a time as we have 8
SPs within each SM (see Table 1). Also, the possible
number of concurrent blocks per SM depends on the
number of warps per block, number of registers per block,
and the shared memory usage per block. These constraints
will be developed in Section IV. An SM has a limited
number of resources in terms of warps scheduling,
registers, and the shared memory which are to be
partitioned among the scheduled blocks in each SM. For
many GPUs (Table 1), each SM can handle 32 warps at a
time. Each SM has 32 KB registers and 16 KB of shared
memory.

SM manages threads ids and threads execution. Threads
within a block cooperate within SM using ShM while
threads in different blocks cannot cooperate, not even using
GM since the blocks are scheduled to different SMs
dynamically by the scheduler. The data transfer between
different blocks can be done by separate invocation of the
kernel which will be serialized. So, in case of recurrence in
application space, the whole recurrence must be contained
in each single thread because serialization is controlled
only by defining different kernels. Thus in the case of a
recurrence, we may end up with a few very coarse threads,
a situation that might lead to low GPU utilization which is
discussed in details in Section IV.

SP1 SP2

SP3 SP4

SP5 SP6

Kernel

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block N ………

SM 1 SM 2 SM 3 SM 4 SM 30 ………

Figure 1: CUDA Kernel Execution Hierarchy

Each SM schedules one warp at a time with zero
overhead warp and thread scheduling (using Scoreboard as
a warp instruction scheduling). The warp is the unit of
thread scheduling in SMs. Each warp consists of 32 threads
of consecutive thread ids. In the case of higher dimensional
kernels, warps will be retrieved from blocks according to
the row major numbering. As warps executes in SIMD
fashion, if there is a high latency exception such as loading
data from GM or storing results to GM then the whole
warp must be suspended and its context if preserved.

The major bottleneck to achieving performance while
using CUDA is the memory bandwidth and latency. The
GPU provides several different memories with different
behaviors and performance that can be leveraged to
improve memory performance. The transfer of data
between GM and ShM is explicitly programmed by the
user. A DMA operation is initiated by the SM whenever it
finds one or more threads within a warp to perform such a
long latency memory transfer operations (accessing global
memory) and schedule another warp (ready to execute) to
the SP [10]. This mechanism of filling the latency of
expensive operations with work from other threads is often
referred to as latency hiding.

GM is partitioned into segments of size equal to 32, 64
or 128 bytes (see Table 1) and aligned to this size. The
elements in one segment can be accessed by a single
memory transaction. By considering the largest segment
size of 128 bytes and also the data path of 512 bits, the
compiler issues a single load/store instruction for 16
consecutive elements accessed by 16-threads (half warp) to
reduce the number of memory transactions of global
memory. So, the performance of memory transfers can
incredibly be improved through the use of coalesced global
memory accesses that is accessing a regular pattern of
consecutive elements by a half warp (16 threads) based on
some conditions [1]. Therefore, if SPs are kept busy
executing through warp switching then the whole transfer
between GM and ShM is hidden by some execution which
implies that the parallel program time does not account for
such an expensive memory transfer. Since, shared memory
is very small in size so we have to perform some loop
transformation such as loop tiling, a mechanism to adjust

[4]

loop execution to match with underlying machine or
memory system, to make the availability of enough data for
the warp per SP.

III. A RESTRUCTURING ALGORITHM FOR CUDA

In this section we proposed a CUDA kernel
restructuring algorithm, a general strategy to achieve
maximum possible performance by better utilization of the
machine. In CUDA, the worker threads are identified by
thread ID and being organized by blocks which are
identified by block ID. This identification is used in a kernel
to define a mapping of computations to threads (workers).
An array of any dimension is accessed as a linear memory
which is allocated in a row-major order. The objective of
having multi-dimensional blocks of threads is to ease the
mapping of computation results to the worker threads.

The proposed restructuring algorithm aimed at
generating efficient CUDA kernels. It is based on
following guidelines:

1. Tiling the code so that the aggregate data locality of a

tile (block of threads) is fetched, and being small
enough to fit, onto ShM prior to computations instead
of direct load form GM, no matter whether using
coalesced access or non-coalesced access.

2. Exploring different ways of mapping computations to
threads to favor coalesced global memory access while
loading from and/or storing into GM.

3. Increase thread granularity to amortize the ratio of data
transfer per computation without having some SM
being idle, i.e. low utilization of the available SMs and
the SPs within each SM.

4. Reduce (1) the number of local variables (register use)
and (2) block size, to avoid reducing the number of
blocks that can handled by SM at a time which may
affect overall GPU utilization.

5. Use kernel block size greater than or equal to tile size
such that each thread in a block loads one element of a
tile into ShM. This reduces instruction fetch and
processing overhead of load instruction since the
device perform one instruction fetch for a block of
threads which is in SIMT manner.

The proposed algorithm is based on the three key

concepts that are explained in detail in following
subsections.

A. Tiling

In CUDA the programmer has to explicitly transfer data
from slow low-level GM which is visible by all SMs to a
fast high-level shared memory ShM within each SM. Tiling
the code is to account for the small ShM capacity. The
execution style is based on transferring small amount of
data followed by data processing. While transforming the
code, it is required to perform proper calculation of
effective address of array elements (results) based on the
workers identifiers which are the block ID and thread ID. It
is required to design an algorithm/mechanism that can be
used to apply loop tiling on any CUDA program with

proper memory hierarchy optimizations. Tiling is guided by
the following steps:

1. Identification of proper tile size to be stored in shared
memory based on the limited capacity of ShM per
CUDA kernel block based on determining the tile size
based on matching overall tile data locality with tShM
capacity.

2. Loop transformations and proper identification of range
of outer and inner loops.

3. Effective address calculations of the array elements to
be accessed within the loop iterations (see coalesced
access).

4. Boundary check for avoiding the out of bound array
index access.

5. Synchronization among loading of data into ShM,
execution of operations, and storing the results back
into GM.

B. Coalesced Global Memory Access

In this section, the objective is to restructure the code so
that at execution warps access to GM is done according to
a coalesced access pattern to amortize the excessive access
cost. Fetching a group of data elements which are stored in
distinct memories (coalesced access) is critical to amortize
the high cost of accessing GM compared to the speed of the
logic. The key idea is to determine all possible mapping

In CUDA a 1-D kernel having NW threads is represented
as a set of N blocks each has W elements. To assign some
work to each individual thread, each kernel thread is
identified by the block b to which it belongs to and some
offset t, i.e. thid = b.W + t or as a vector thid = (b, t)N,W
,where 0 bN-1 and 0 tW-1. Suppose we have a 2-D
array of U.V computation results which are stored using
row-major scheme as U rows and V columns, the address
of the element in row r and column c is EA= (r,c)U,V = r. U
+ c, where 0 rU-1 and 0 cV-1. Assigning a thread
(worker) to compute a result requires defining a mapping
from the thread IDs onto the results so that when the
SPMD program is run, each thread uses its own ID in the
code to determine the result that it must compute. The
mapping of threads IDs onto the result address admits a
few possible mapping solutions for EA = (r,c)u,v as
computes:

1. EA = ((b, t)N,W ,

 c)U,V | N.W=U, each thread has one
loop to compute V results, no coalesced access,

2. EA = (r, (b, t)N,W)U,V | N.W=V, each thread has one
compute U results, coalesced access,

3. EA = ((b, t’)N,W ,

 (b’, t)N,W)U,V | N.W’=U and
N’.W=V, each thread has two loops (denoted by ’) to
computes (U.V)/(N.W) results, coalesced access,

[5]

4. EA = ((b’, t)N’,W ,
 (b, t’)N,W)U,V | N’.W=U and

N.W’=V, each thread has two loops (denoted by ’) to
computes (U.V)/(W.N) results, coalesced access.

Note that a coalesced access takes place only when the

offset, or second component of EA, is mapped to the thread
index, i.e. identified by offset t. The reason is that warps
are formed by successive thread IDs for any dimension, i.e.
according to row major organization. Table 2 shows the
possible mappings of CUDA for 1-D and 2-D kernels
(blocks and threads) to a 2-D array of results of size space
N.W. Similar approach is used for higher dimension
kernels.

Table 2: Possible 1-D and 2-D Kernel mapping to a 2-D
Array of results

C. Maximizing Utilization

Within each SM, ShM is partitioned among active
blocks which are assigned to SM for simultaneous
execution. Therefore the tile sizes must be selected such that
the tile data locality that must be loaded into ShM does not
constrain the maximum number of active blocks which can
be assigned to an SM at a time.

The block size must be chosen greater than or equal to tile
size such that each thread in a block loads one element of a
tile into ShM. This will reduce instruction fetch and
processing overhead of load instruction since the device
perform one instruction fetch for a block of threads which
is in SIMT manner. On the other hand, too large block
sizes must be avoided limiting the number of active blocks
per SM. The number of active blocks must be no less than
the number of SPs in any given SM to avoid limiting the
number of active threads per SM. In the case of such
limitation, cores utilization will be reduced because SM
maps an active block as an execution unit to each SP.
Active Blocks can be calculated using equation (1):

)2.1(

)1.1(

,

)1(

,min

,min

min

































































resultoneforloadtoElementsDataofNumber

SizeElementDataSizeTileBlockPerMemoryShared

WarpPerThreads

BlockPerThreads
BlockPerWarps

Here

SMperSPs
BlockperMemoryShared

SMperMemoryShared

SMperSPs
BlockperWarp

SMperWarp

BlocksActive

For example, if Threads Per Block = 256, Tile Size = 16 x
16 = 256, Data Element Size = 4 bytes, and Number of
Data Elements to load for one result = 2 (as in case of
Matrix Multiply) then the Active Blocks = 4. Suppose
Warps Per SM = 32, Shared Memory Per SM = 16384, and
SPs Per SM = 8. Therefore the number of active blocks that
can be handled by an SM at a given time is:

 
 

4
8

4
min

8.8min

8,4min
min

8,
2048

16384
min

8,
8

32
min

min

204824256

8
32

256

































































BlocksActive

BlockPerMemoryShared

BlockPerWarps

Since within each SM only one block is assigned to
each SP, therefore, the Utilization (U) of SM is determined
by the ratio of number of active blocks assigned to an SM
over the number of SPs in SM:

)*/(

/

SPperSMckWarpperBloWarpperSM

SPperSMksActiveBlocU 

In the previous example the utilization of the GPU will be
U=4/8=0.5. In other words, only one SP out of 2 will be
active in the computation of the Kernel described in the
above example.

In the case the number of warps in a given block exceeds
the maximum (k) that can be handled at any given time by
the SP, the execution of these warps will be serialized by
the SP. Thus each SP will have to run for a number of
small cycles (S-Cycles) working in order to complete
processing of its assigned block. In each small cycle SP
executes k warps while switching from one warp to another
whenever there a running warp encounters a high-latency
exception such as a load or store dealing with GM. Since
the warp executes in SIMD mode, the duration of each

[6]

small cycle (k warps) depends on the thread granule size
and the number of load and store within each thread.

To expose to peak performance, the application threads
must be massively and uniformly spread over the SMs so
that the only performance saturation comes from mapping
the application to the GPU. Furthermore, peak performance
will be expected because all the SM and SPs are involved
in the execution. To identify the conditions for peak
performance, one can analyze the repetition cycles occurs
during the kernel execution. Since, there are two levels of
kernel block scheduling in the device. The blocks are first
scheduled to be executed on each SM and then each SM
schedules these blocks to multiple SPs within the SM. We
termed the repetitions due to first scheduling as large
cycles (L-Cycles) and the repetitions due to second
scheduling as small cycles (S-Cycles).

 
)3(

.

/,

)2(










SMperWarpsMax

SMperSPsBlockperWarps
CyclesS

SizeTileSpaceSizenApplicatioSMperBlocksKernelHere

SMperSPs

SMperBlocksKernel
CyclesL

These repetitions should satisfy the following
conditions to achieve peak performance:

1. Divides L-Cycles into integer number of S-Cycles
2. L-Cycles should be greater than or equal to 1
3. S-Cycles should be greater than 1
4. The ratio of L-Cycles to S-Cycles should be

minimum
In our experiments for Matrix Multiply, we found the

following repetitions (Table 3) at their peak performance.
Here, W/B = Warps Per Block, B/SM = Blocks Per SM.

D. Proposed CUDA Restructuring Algorithm

The proposed restructuring algorithm is based on the
following steps:

Step 1: Analyze the granule size in the loop body and the
data locality needed and determine thread granule size:

a. Thread Granule Size: carry out loop
distribution/fusion or statement distribution/fusion
to control the thread granule: the number of
load/store, number of arithmetic operations, and
the needed data locality

b. Carry out statement distribution if statement has
too many arithmetic operations or requiring too
many locality

c. Might carry out the opposite of the above steps in
the case of too fine granule size of very limited
locality

Step 2: Tile the resulting loop (or loops) by generating all
possible tiled loop arrangements and select one or more
tiled arrangements with coalesced memory access.

Step 3: Determine the best possible combination of
Threads per block (TPB) and the Tile Size(TS) to get the
maximum utilization of the machine resources. For thread
granule size = 1, TPB = TS. We need to generate all
possible TPB and TS, and their respective Warps Per Block
(WPB) and Shared Memory Per Block (ShMPB) using the
equation (1.1 and 1.2).

a. Identify Active Blocks using equation (1) for each
of the combination of TPB and TS

b. Select the combinations which gives the maximum
Active Blocks

Find out L-Cycles and S-Cycles of the selected
combinations. The combination of TPB and TS which
satisfies all four conditions of repetitions, as identified in
section IV.C, is expected to give the best performance.

IV. PERFORMANCE EVALUATION

A. Non-Coalesced Vs Coalesced Global Memory Access

Figure 2 shows the comparison of application performance
in terms of throughput (GFLOPS). There is a significant
performance improvement of the application if tile is first
loaded into shared memory from global memory with
coalesced global memory access and do the computations
in shared memory. As in coalesced global memory access,
threads in half warp (16 threads) access consecutive
memory locations in one cycle so reducing the memory
accesses by a factor of (1/16 = 0.0625). In ideal case, the
execution time by using coalesced global memory access
should reduce to (1-0.0625) * 100 = 93.75%. In our
experiments, we have got (1 – 0.11973/0.98727) x 100 =
87.87% reduction in execution time (i.e. improvement in
throughput) for N = 262144 which is approximately equal
to the ideal with very slight overhead of 5.88%.

Figure 2: Matrix Multiplication using Shared Memory with (a) Non-
Coalesced Global Memory Access and (b) Coalesced Global Memory
Access.

[7]

B. Computation using Shared Memory Vs Global
Memory

Figure 3 shows the performance, in terms of throughput
(GFLOPS), comparison of matrix multiplication by
computation using global memory and computation using
shared memory with non-coalesced load from global
memory. Our experimental results as shown in figure 2 and
3 shows that computation using shared memory is faster
than the computations using global memory that is loading
registers directly from global memory is slower than the
loading data from global memory to shared memory and
then to registers. It means that the latency of loading data
from global memory to registers is much more than the
latency from global memory to shared memory plus the
latency from shared memory to registers.

Figure 3: Matrix Multiplication using Computations with (a) Global
Memory and (b) Shared Memory

Figure 4: Matrix Scaling with different Thread Granularities

ShMRLGMShMLGMRL

gisterstoMemorySharedfromLatencyLoadingDataShMRL

MemorySharedtoMemoryGlobalfromLatencyLoadingDataGMShML

gisterstoMemoryGlobalfromLatencyLoadingDataGMRL



Re:

:

Re:

C. Different Thread Granule Size

Figure 4 shows the performance, in terms of throughput
(GFLOPS), comparison of matrix scaling application that
is multiplying each element of a matrix by an arbitrary
value. Since, the ratio of load and compute for this
application is 1:1 which means that to do one operation a
thread has to load one element. So, increasing thread
granule size will not be beneficial. The increase in
throughput depends on the application itself, it will not be
achieved by increasing the thread granule size. The
application which has low ratio of load to computation will
give higher throughput than the application which has high
value of this ratio.

D. Block Sizes Comparison

Figure 5 shows the application performance comparison
in terms of throughput (GFLOPS). The results show that
increase in number of threads per block may decrease the
performance by restricting the concurrent number of blocks
per SM (reducing SM capacity utilization). For block
dimension 16 x 16, one block contains 256 threads implies
256/32 = 8 warps/block (Here, 32 is the number of threads
per warp) that is one SM can have 32/8 = 4 blocks at a time
(Here, 32 is the maximum number of warps per SM).
While for block dimension 22 x 22, one block contains 484
threads implies 484/32 = 16 warps/block that is one SM
can have 32/16 = 2 blocks at a time. Since, SM maps each
block to one SP for execution so in this case the application
use only 2 out of 8 SPs per SM that is (2/8)*100 = 25%
utilization. Also, in the case, the workload per SP is also

Figure 5: Matrix Multiplication using only global memory with different
number of threads per block (a) 16 x 16 = 256 threads/block and (b) 22 x

22 = 484 threads /block

[8]

increasing from 8 warps to 16 warps while decreasing the
concurrent threads per SM from 1024 to 968. This reduces
the overall performance of the application.

E. Memory Usage per Block

Figure 6 shows the performance, in terms of throughput
(GFLOPS), comparison of matrix scaling application. In
these experiments, we used different tile size to be loaded
into shared memory that is different shared memory
allocation per block. By using some profiling information
provided by the compiler, it seems that there is some
compiler overhead (32 bytes) associated in terms of shared
memory allocation. Also, the shard memory is allocated to
a block in multiples of the shared memory allocation unit
that is 512 bytes. For Tile Size = 16 x 16 to load two tiles
(one for source and one for target) having each element of
4 bytes, shared memory allocation per block is (16 x 16 x 2
x 4) + 32 = 2080 bytes implies actual shared memory
allocation = 2560 bytes that is 512 x 5. Since, the shared
memory is partitioned among the blocks per SM so in the
case the concurrent blocks per SM is 16384/2560 = 6.4
implies 6 blocks/SM but due to maximum warps limit (32
warps/SM) only 4 blocks (1 block = 8 warps) will be
scheduled to one SM at a time. For Tile Size = 32 x 32,
shared memory allocation per block is (32 x 32 x 2 x 4) +
32 = 8224 bytes implies actual shared memory allocation =
8704 bytes that is 512 x 17. So in this case the concurrent
blocks per SM is 16384/8704 = 1.88 implies only 1
block/SM will be scheduled to one SM at a time. This
reduces the SM capacity utilization which in response
reduces the overall performance of the application. The
results also show that the computation using shared
memory saturates the device at number of blocks = 512 in
the application that is throughput decreases after this
threshold. Here, the peak throughput achieved at N = 8192
and TPB =16 that is 8192/16 = 512 blocks. We may have
the same pattern for TPB = 32 if use larger space size (N)
but we could not run our experiments for N > 16384 due to

Figure 6: Matrix Scaling using different size of shared memory per block
(a) TPB = 32, 32 x 32 x 2 x 4 = 8KB and (b) TPB = 16, 16 x 16 x 2 x 4 =

2 KB

limited global memory of 4 GB. For N = 16384 (214) to
load two matrices having each element of 4 bytes, 214 x 2 x 2
x 22 = 2 x 230 = 2 GB < 4 GB while for N = 32768 (215), 215

x 2 x 2 x 22 = 8 x 230 = 8 GB > 4 GB.

V. CONCULSION

We presented a restructuring algorithm to optimize a
CUDA program based on three key concepts: Tiling,
Coalesced Global Memory Access and Maximizing
Utilization. The execution model of synthesized kernel
consists of uniformly distributing the kernel threads to keep
all cores busy while transferring a tailored data locality
which is accessed using coalesced pattern to amortize the
long latency of the secondary memory. In the evaluation,
we implement some simple applications using the proposed
restructuring strategy and evaluated the performance in
terms of execution time and GPU throughput. Obtained
results were analyzed in view of proposed optimization
parameters which reinforces the proposed restructuring.

ACKNOWLEDGMENT

We thank King Fahd University of Petroleum and
Minerals and the Department of Information and Computer
Science for access to its GPU computers.

REFERENCES
[1] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDA-lite:

Reducing GPU programming complexity. International Workshop
on Languages and Compilers for Parallel Computing (LCPC), 2008.

[2] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and
Optimization, Proc. 14th ACM SIGPLAN Symp. on Prin. and Prac.
of Parallel Programming, 2009.

[3] Tianyi David Han and Tarek S. Abdelrahman, “hiCuda: A high-level
Directive-based Language for GPU Programming”, GPGPU’09,
March 8, 2009.

[4] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr uger, A.
Lefohn, and T. Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80-113, March
2007.

[5] K. Mueller, F. Xu, and N. Neophytou. Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography? SPIE Electronic Imaging 2007, Computational
Imaging , Keynote, 2007.

[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Kevin Skadron, “A Performance Study of General-Purpose
Applications on Graphics Processors Using CUDA”, in The First
Workshop on General Purpose Processing on Graphics Processing
Units, 2007.

[7] R. Belleman, J. Bedorf, S.P. Zwart, High performance direct
gravitational N-body simulations on graphics processing units – II:
an implementation in CUDA, New Astronomy 13 (2) (2008) 103–
112.

[8] Gabe Rudy, “CUDA-CHiLL: A Programming Language Interface
for GPGPU Optimizations And Code Generation”, MS Thesis,
School of Computing, University of Utah, USA, August 2010.

[9] Asanovic K., Bodik R., Demmel J., Keaveny T., Keutzer K.,
Kubiatowicz J., Morgan N., Patterson D., Sen K., Wawrzynek J.,
Wessel D., Yelick K.: “A View of Parallel Computing Landscape”,
Communications of ACM 52(10) (2009) 56-67.

[10] David B. Kirk and Wen-mei W. Hwu, “Programming Massively
Parallel Processors: A Hands-on Approach”, Published by Elsevier
Inc. ISBN: 978-0-12-381472-2, 2011.

