CINECA Supercomputing Group

High Performance Systems
User Guide

Supercomputing Group
High Performance Systems Department
CINECA

superc@cineca.it

Edited by:

Gerardo Ballabio
Sigismondo Boschi
Cristiano Calonaci
Carlo Cavazzoni
Andrew Emerson
Claudio Gheller
Roberto Gori
Andrea Tarsi

version 1.2 -1- October 3rd, 2005

L
=
E
E
=]
L3
L]
£
-
E
X
8
LT}




CINECA

Supercomputing Group

Table of Contents

GENEIAl QUIDIE. ...ttt aaaaaaaeens 5
10 £ Yo 11T 4T ) o R 6
Data storage disk areas..........coceecmmmmmmrimiiininnsssssneeeeenn e 7
Information and SUPPOrt........cccerirerrirsssmrrr e 8
Access to the Systems.......cccoovommmmmmiiees 8
X oT oo U Lo [ T T =T o 9
Archive your DATA: Cart.........ccoevmmmmmmrrmnnsiissnsnsmse s ssssssnnnnnes 9
Running applications...........ccceiiiiiiiiimmmmmmrr e 10
Running applications using LSF............cccevvommmmmiinnniinssnnnans 11

101 (= = o3 1117 YR PURRR 11
DEDUG .« et 11
BalCh. .. 12
EXAMPIES. ... 13
LSF and MOUIES......c.ccci et 13
Using installed applications: module........cc.ccccormimmeniiiinnnees 13
High Performance Tools...........cccviiimmmmmmmnnnniinnnsnnsneeens 14
System SPecCific GUIAES. ... 15
SP5 USEE GUIAE. ...ttt e ettt ettt e e e e e e e st anaaaaaeeaaaannans 16
System architecture..........cccccmriiiiiiiiniiiin . 16
Main differences upgrading from SP4 to SP5...........ccceeeeees 17
Y 0] .4 F= g o7 T PRSP 17
Performance reliability............cooooieeiiiieie e 17
LOAAIEVEIET ... ... 17
SOMWANE. ... 17

64 bit development environment............ooocveviiiiiiiee i 17
DiSK SPACE.....cemiiiiiiriiieenis e 18
CoMPIlErS......co i ———— 18
Examples and useful OptioNS..........cooviiieviiiiiiiiee e 18
DOCUMENTALION. ...t e 19
Software intrinSiC diVide.......coooiiiiieie e 19
Parallel programming........ccuuuiinnniiisssssssssssssssnsnnnmnnsnnnnmnnnnnnns 19
VPl ettt ettt 19
OPENMP.....ceeeee ettt e st e e e et e e e e snte e e e eeneeeeeanes 19
Mixed mode: MPI + OpenMP...........cccoiiiiiee e 19
DOCUMENTALION. ... e 19
Running applications..........cccccviiiiiissssmmmsmnsnnnnnsnssees 20
INEEIACTIVE. ..t e e e e e e e e e e e e e e eea e 20

version 1.2

-2- October 3rd, 2005



CINECA

Supercomputing Group

CLX User Guide

XD1 User Guide

version 1.2

Batch: LOadLEVEIEr... ..o 20
LoadLeveler SCrpt SYNTaX.......c.oviiiiiiiiiieiieieei e 21
(D11 o ¥ T o [T o 23
ADX sttt ———— 23

010 | o) G PP PP PP PPOPPPPPIN 23
TOAIVIEW. .. 23
121U To (] 010 T [0 1= = SRR 23
Profilers.... s e 24
[o] oo ) P PP 24
XPPOFHET . e 24
HPM. e e 24

L T 1= T =SOSR 24

RV 22T 0] o PSSR 24
Scientific Libraries.......cccummemmmemeeecisiinsisssssrnn s ennsssanaees 25
S PP RRPRN: 25
S S TR OPRPRR 25
N7 26
.............................................................................................................. 27
System architecture.........cccccmmeiriiiiiiiiiiii s 27
D 1] (=T o T Lo 28
Using installed applications: module...............cccooiiiiiirrnnnnns 28
ComPpilers........oooiiir e ————————— 28
INTEL. et e e e e e e e e e e e aaaaes 28
PG 29
L]\ L U URR 29
Parallel programming........ccuuusiinnsissssssssssssssssssnnnnnnsssnnnnnnnnnnns 30
Default environment...........co i 30
(D11 o W T [o 1] 4V 1 31
Enabling compiler runtime checks. ..., 31
Serial debUGETS. ...ooo i 31
Core file @NalySiS.......eeeeiueiieiiee e 31
Parallel debUQQer. ..o 32
Performance optimization..............cccoooiiimmimmmmmmcnssiiinnnenenns 32
Software profilers: gprof........oeeee i 32
Scientific libraries..........ccoommmmmmmmmmm s ——————— 33
MK e e e e e e e e e e e e et e e e e e e e e e eeaeaeas 33
.............................................................................................................. 34
System architecture...........cccovrrmrrrmmmrnnm e 34
(D117 (=T o T Lo 35
Using installed applications: module..............ccccoiiiiiiirnnnnnns 35
Sequential programming........cccceeessnmmmmmmmmmmrrrrr e ————- 35

-3- October 3rd, 2005



CINECA Supercomputing Group

Parallel programming........cccuuiiinnsiinssssssssssssnnnnnnnnnnnnnnnnnnnnnnns 36

Using the Linux Synchronous Scheduler...........c.cccocoviiiiieiiiee e 36

Scientific libraries........cccccceiiiiiiicccr 36

ACMLL e aae e e aae 36

Using the FPGAS....... s 37

FAQ: Frequently ASKed QUESHIONS...............uuuueeeeeeiiiaaaaeeeeeeeeeeeeeeaeee 38

version 1.2 -4 - October 3rd, 2005



CINECA Supercomputing Group

General guide

version 1.2 -5- October 3rd, 2005



CINECA Supercomputing Group

ssh, scp, sftp ssh, scp, sftp ssh, scp, sftp
SP5 CLX other HPC systems

$CINECA_SCRATCH

$CINECA_SCRATCH $CINECA_SCRATCH

T CINECA_ HOME

Y & » ¥ =

‘ ------ $C IN ECA_DATA
archive

Introduction

CINECA is moving in the direction of giving a common infrastructure to all its High
Performance Systems and to their access, in order to allow an easy use of our resources
and an easy exchangeability among them. The idea is that once a user has access to our
systems, he/she will be able to access any other expecting similar behavior and having
access to shared resources — despite the different applicative characterizations of the
various systems. The basic ingredients for the Infrastructure are then:

- shared resources;
— uniform behavior.

For now the basic shared resources are the shared filesystems with their backup and the
archive facility, but we are working on a larger set of shared services, that are
independent of the present and future High Performance engines that will enter in the
Infrastructure. In the next sections we will present the shared resources and the uniform
behavior exhibited by our Systems, as drawn in the image above.

version 1.2 -6 - October 3rd, 2005



CINECA Supercomputing Group

Data storage disk areas

All CINECA High Performance Systems share a uniform set-up in terms of accessible disk
areas. In particular every system allows access to:

- $CINECA_SCRATCH: temporary work area, local to the system where applications
can benefit from the high bandwidth of a parallel filesystem. Data left in
$CINECA_SCRATCH and not accessed for more than 20 days will be deleted without
notice.
$CINECA_SCRATCH behaves very well when 1/O is performed accessing large blocks
of data. Avoid performing frequent and small 1/O on this area, because it is not well
suited for it. Parallel systems have a lot of distributed memory: use it.

- $CINECA_HOME: permanent storage area shared among all our High Performance
Systems. This area is subjected to daily incremental backups, so it doesn't matter if
data is accidentally deleted and we will keep records of old versions of your data/codes
stored here.

- $CINECA_DATA: permanent storage area shared among all our High Performance
Systems. This area is not backed up, but is potentially much larger than
$CINECA_HOME and data will be never deleted automatically. However data are
preserved from disk failures with some level of data replication: data will be still
accessible even in case of failure of some of the physical disks.

- $HOME: IMPORTANT: Don't use this area for your data. It is where the login
process leaves you and is very small. It is where system and user applications store
their dot-fles and dot-directories (.nwchemrc, .ssh,...) and where users keeps
initialization files local to the systems (.cshrc, .profile,...).

$CINECA_SCRATCH is a shared resource among all the users of a given system;
$CINECA_HOME and $CINECA_DATA are segmented in many different filesystems: one
for any user group.

$HOME has a very small user quota, $CINECA SCRATCH, $CINECA HOME and
$CINECA_DATA do not.

The environment variables $HOME, $CINECA HOME and $CINECA DATA are defined
on all our High Performance Systems, and you can have access to these areas simply
with something like “cd $CINECA HOME”. You are strongly encouraged to use these
environment variables instead of full paths to refer to data in your scripts and codes.

version 1.2 -7 - October 3rd, 2005



CINECA Supercomputing Group

Information and Support

If you are a user of the High Performance Systems at CINECA, it is very important to
receive all the news, information, scheduled downs, software updates, any problems and
so on, about our computing resources. We send any information about our Infrastructure
to the HPC-NEWS mailing list.

You can subscribe to HPC-NEWS sending an email, from the email address you want to

subscribe, to listserv@list.cineca.it with the body (the subject does not matter):
subscribe hpc-news

You can consult the old messages posted to HPC-NEWS in the archive, from the Listserv

web site:
http://list.cineca.it/archives/hpc-news.html

If you are not using our services any more and want to leave the HPC-NEWS list, send an
email, from the email address you want to unsubscribe, to listserv@list.cineca.it with the
body:

unsubscribe hpc-news

If you can not find the needed information in the User Guide and you need support,
contact us at the email address: superc@cineca.it

Please, use this email address and not our personal email addresses for support
requests, in order to get a response as soon as possible.

Access to the Systems

All the High Performance Systems can be accessed with:
e® SSH to have access to the system prompt;
e SCP, SFTP to transfer data from/to the systems;

e FTP occasionally, if scp/sftp do not allow reasonable bandwidth to the specified system.
FTP can be enabled on request, if needed, on any system.

All the systems share the same password and if you change it on one system, it will
changed on all of them (the propagation to all the systems can take up to one hour).

Use the “passwd” command at the system prompt of any system to change the general
password.

On our systems you will login with one of the two shells: bash or tcsh. Contact us if you
need to change your default login shell.

version 1.2 -8- October 3rd, 2005



CINECA Supercomputing Group

Accounting: repi

All our users have a budget in terms of CPU hours on any High Performance System they
have access to. All the systems have a budget, independent of each other.

Every budget has a beginning date and an ending date, within which the budget must be
used.

All the production High Performance Systems of CINECA keep track of the CPU time
(user time) used by the jobs of the users, and the used budget is updated once a day, at
midnight, detracting what has been used in the past 24 hours by the user applications.

Users have access to their accounting record using the “repi” command, available at the
command prompt of the related computing system. In the following table, you can find the
basic options of “repi”:

Command Reported information

repi -ch the total budget, the used budget, the start
date and the end date

repi -h the used budget, day by day

Archive your DATA: cart

On our systems you can archive large amount of data off-line by using "cart" procedures.
Before using them, you may need to contact us in order to be enabled. You can define as
many volumes as you want (imagine them like virtual CDs) and then store data on them.
When you do not need them anymore, you can delete single files or a whole virtual
volume. Find in the following table the cart commands:

Command Action

cart_new vol _nane create a new volume named vol name
(choose whatever you want)

cart _dir show all the defined volumes from the
user
cart_dir vol _nanme show the files stored on the volume

named vol_name

version 1.2 -9- October 3rd, 2005



CINECA Supercomputing Group

Command Action

cart_put vol_name file g5ye the file named "file" in the volume

vol_name

cart_get vol _nane file |ojve the file named "file" from the
volume vol_name

cart_del vol _name file (golete the file named "file" from the
volume vol_name

cart_del vol _nane delete the virtual volume named
vol_name (must be emptied before)

All the cart commands accept the "-?" flag for a short help.

ATTENTION: it is much more efficient to store a few large files than many small ones: use
“tar” to aggregate many small files if needed.

Running applications

Since there are many users in competition for the usage of our High Performance
Systems it is mandatory for the users to submit their production runs using queuing
systems. This guarantees that the access to our resources is as fair as possible.

Briefly, there are 3 different ways to use our High Performance Systems:

- interactive, for minimal testing, interactive operations, data movement, archiving, code
development, compilations, basic debugger usage. The CPU time used by a task is
limited to usually 10 minutes.

- debug, for debugging purposes and to test batch scripts before they are put in
production. Usually you can have access almost immediately up to 4 CPUs for 10
minutes.

- batch, for the production runs. Users must prepare a shell script containing all the
operations that will be executed in batch, once the requested resources have been
freed for it.

In batch, users will have access to the temporary disk area $TMPDIR, that will be created
by the queuing systems just before the start of the execution of the batch script, and
deleted just after its end. If you need to access to work data after the end of the job, we
strongly suggest to create the directory $CINECA_SCRATCH/$USER and to work there.

The common queuing system that we have chosen for all our computing platforms in our

version 1.2 -10 - October 3rd, 2005



CINECA Supercomputing Group

Infrastructure is LSF (Platform, http://www.platform.com). Only SP5 will stay with its native
queuing system, LoadLeveler. See the SP5 documentation for its usage.

Running applications using LSF

Interactive

From the shell session you open on the login node you can not use more than 10 minutes
of cpu time per process. This session is useful to edit, compile and other lightweight
operations.

The execution of any interactive program, other than compilers, editors and other Unix
commands, must be done using LSF (see below), even the interactive runs. To avoid to
overload the login node, also serial runs must be executed reserving free resources with
LSF:

bsub -Is -W 10 program -program-args
With the “Is” flag you specify that this will be an interactive session: input and output
will be connected with the current shell session.

With the flag “W 10" you specify that your job will run at most for 10 minutes (of elapsed
real time). Interactive jobs can not take longer than 10 minutes.
To run a small parallel test:
bsub -Is -n 2 -W 10 mpirun ./test -test-args
“—n 2” means that you need 2 CPUs. If there are many users using debug resources, it
can happen that the 2 CPUs are not immediately available. The command will wait some
minutes, until the required resources become available.
To obtain a batch-interactive shell on one of the compute nodes use a command like:
bsub -Is -n 4 -W 10 tcsh
From the shell just created, you can use mpirun to run parallel tests, debug code, edit
files... Issue “exit” (or type “CTRL-D”) to release the resources granted by LSF before the
end of the 10 minutes.

Attention: You can not at all run parallel programs with mpirun directly from the login node.

Debug

On all the platforms a minimal amount of resources is kept free in order to allow to any
user to debug its codes and to test the scripts before they are put in production. You can
ask at most for 4 CPUs and 10 minutes of time (-n 4 -W 10). Run larger then this are
production runs.

version 1.2 -11 - October 3rd, 2005



CINECA Supercomputing Group

Batch

The main commands you should learn, to use this batch system, are:

bqueues -1 Display queue information

bsub < jobscript Submits the commands contained in “jobscript” or run
bsub command “command” within LSF.
ATTENTION: the input jobscript MUST be redirected
with “<”.
In both cases the initial working directory of the batch job
will be same of where “bsub” was invoked.

bjobs -a Shows submitted jobs
bkill jobid Cancels the job jobid from the queuing system
bhist jobid Display historical information about jobid

The two main resources for user requests are:
- wall clock time: -W <hh:mm> (hours:minutes) or -W <mm> (minutes only)
- number of processors: -n <nn>

You can specify the desired resources both on the command line and inside the script of
bsub, with other options like:

-0 file.out: appends the output to “file.out”

-e file.err: appends the error to “file.err”

-00 file.out -eo file.err: the same, but overwrites the files.

-u mail_address: send email to the specified address when the job finishes.

On command line:
bsub -n 2 -W 6:00 -0 job.out -e job.err < jobscript

Inside the script:

any option specified ad the beginning of the jobscript, after a comment line beginning with
“#BSUB” will be interpreted by bsub, as the options where specified on the command line.
However options specified on the command line, take the precedence over the ones in the

job-script. For example:
#!/bin/tcsh
#BSUB -n 2 -W 2:00
#BSUB -00 %J.out -eo %J.err
. your batch commands ...

version 1.2 -12 - October 3rd, 2005



CINECA Supercomputing Group

The first line specify the shell used to interpret the script (sh if not specified), in the
following line you specify the other options. %J is replaced by LSF with the JOB ID.

If the job is successfully submitted, bsub displays the job ID and the queue to which the
job has been submitted.

For more information, view:
man bsub

Examples
Suppose you want to run the parallel program program.x on 16 processor for 1 hour. If
you want to specify the requests on the bsub command line, you can submit it with the
command:

bsub -n 16 -W 1:00 -oo %J.out -eo %J.err mpirun ./program.Xx

If you prefer to include the requests in a job_script, then the file “job.Isf” will contain:
#BSUB -n 16
#BSUB -W 1:00
#BSUB -00 %J.out
#BSUB -eo0 %J.err
mpirun ./program.x

and you can submit it to the queuing system with the command:
bsub < job.1lsf

LSF and modules

Differently from other queuing systems, LSF inherits the environment from the shell
session from which the you have submitted the job. However it is better to specify all the
needed modules, not loaded by default, at the beginning of the script. If there are possibile
conflicts (like if you need to use the PGI compiler on CLX, while the standard one is
INTEL), start the script with:

module purge

then load all the needed modules.

Using installed applications: module

A basic default environment is already set up by mean of system login configuration files,
but not the applications environment.

Applications need to be initialized, within the scope of the current shell session, by means
of the module command.

With the modules approach, users simply "load" and "unload" modules to control the
environment needed by applications.

version 1.2 -13 - October 3rd, 2005



CINECA Supercomputing Group

The following table contains the basic sub-commands of “module”:

Command Action
modul e avail  ghow the available application modules on the
machine
modul e i st show the modules currently loaded on that shell
session
modul e l0ad |pad the module named application in the current

application , . .
PP shell session, preparing the environment for the

related application.

modul e help ghow specific information and basic help on the
application licati
application

nmodul e purge | nioad all the loaded modules

ATTENTION: Remember to load the needed modules in batch scripts too, before using
the related applications.

High Performance Tools

On all High Performance Systems of CINECA you will find high performance tools for the
effective deployment of the computing resources. In particular, on all the systems you will
have access to:

Fortran77, Fortran90, C, C++ compilers;
the MPI library, standard for the development of parallel computing codes;
symbolic parallel debugger;

an optimized version of the BLAS library (in particular DGEMM - linear algebra matrix-
matrix multiply — can benefit a lot with respect to a straightforward Fortran
implementation).

Look at the system specific guides to find instructions on the use of such and other
optimized tools available on each system.

version 1.2 -14 - October 3rd, 2005



CINECA Supercomputing Group

System Specific Guides

version 1.2 -15 - October 3rd, 2005



CINECA Supercomputing Group

SP5 User Guibe

hostname: sp.sp5.cineca.it
early availability: July 1%, 2005
start of production: July 22" 2005

System architecture

The SP5 is an “IBM SP Cluster 1600”, made of 64 nodes p5-575 interconnected with a
pair of connections to the Federation HPS (High Performance Switch).

Globally the machine has 512 IBM Power5 processors, capable of 4 double precision
floating point operations per clock cycle, and 1.2 TBs of memory. The peak performance
of SP5 is 3.89 TFlops.

A p5-575 node contains 8 SMP processors Power5 at 1.9GHz. 60 nodes have 16GBs of
memory each, 4 nodes have 64GBs each.

The HPS interconnect is capable of a bandwidth of up to 2GB/s unidirectional.

More information about the details of the system at the IBM site:

http://www.ibm.com/servers/eserver/pseries/librarv/sp books

version 1.2 -16 - October 3rd, 2005



CINECA Supercomputing Group

Main differences upgrading from SP4 to SP5

Performance

The Power5 processor has higher clock speed with respect to Power4 and — especially —
larger caches, more registers, higher memory bandwidth (the bottleneck for most of the
scientific applications), lower memory latency. We expect a gain of about +80% for many
applications.

Performance reliability

SP4 was made of 32-way nodes, each made of 4 MCM (Multi Chip Module), giving a
system where memory accesses were not very uniform within the node. On SP5 there are
only 2 MCM per node, more deeply connected, and on the Power5 chip only one of the 2
CPU cores is active. In this way the memory accesses should be more uniform.
Furthermore there is not any need (nor possibility) to partition the nodes, except for
system requirements, that was another source of variation in memory latency from one
node to another on SP4.

Loadleveler

We have put in place a mechanism to avoid the user having to choose and specify the
LoadLeveler class: it will be chosen automatically by the LoadLeveler and any user class
specification will be ignored. This will allow to the users to ignore this annoying detail: you
only need to specify just what you need in term of resources. On our side this will allow to
optimize the usage of resources and keep the waiting time proportional to the required
resources. Users that will try to overtake this mechanism will have their accounts
temporarily disabled.

Software

AIX is still version 5.2 as on SP4 and the compiled executable should still work. However
the Power5 is very different architecturally from Power4, so to obtain the best performance
it can be very useful to re-compile applications with “-qarch=pwr5 -gtune=pwr5” (included
in -0O4).

64 bit development environment

We judge the 64 bit environment now mature: we have put it by default, setting the
environment variable OBJECT_MODE=64. This will allow to

- have no limit nor problems with memory;

version 1.2 -17 - October 3rd, 2005



CINECA Supercomputing Group

- have better performance with MPI collective communications.

To revert to the old behavior unset the environment variable or use “-q32” in you
compilation options.

Disk space

SP5 adheres completely to the CINECA Infrastructure.

$CINECA_HOME and $CINECA_DATA are IBM San FileSystem, with the client running
on the login node, but all the rest of the nodes access SFS via NFS.

$CINECA_SCRATCH is an IBM GPFS filesystem, with high performance, but only if
properly used: avoid reading/writing small blocks of data from GPFS.

$HOME is a NFS filesystems, with low performance and a limited user quota.

Compilers

Fortran77: x|f

Fortran90: xIf90, xIf95

C: cc (extended compatibility), xlc, c89 (ANSI C89), c99 (ISO C99)
C++:xIC

Examples and useful options

Basic Fortran77 compilation & linking:
x1f program.f -o program

Compile & link Fortran90 sources with “.f90” suffix (the standard one for xIf90 is “.F”):
x1f90 -qsuffix=f=f90 program.f90 -o program
Some debugging options. -g=include debug symbols, -C=check bounds of arrays and
strings at run-time:
x1f -g -C program.f -o program
Aggressive optimization. Can lead to modification in the order of the execution of
instructions. Check the results of your code:
x1f -04 -gmaxmem=-1 program.f -o program
Compile only & than link. Aggressive optimization and inlining, also when the code is split
in many source files. Remember: it is very difficult to debug inlined codes — do it only for

production:
x1f -04 -Q -gipa=inline -gmaxmem=-1 -c program.f
x1f -04 -Q -gipa=inline -gmaxmem=-1 -c subroutinel.f

version 1.2 -18 - October 3rd, 2005



CINECA Supercomputing Group

x1f -04 -Q -qgipa=inline -gmaxmem=-1 -c subroutine2.f
x1f -04 -gipa=inline program.o subroutinel.o subroutine2.o0 -o program

Inlining is worthwhile only if the core of your code is made of many calls to small and fast
procedures.

Documentation

Fortran77, Fortran90:

http://www.ibm.com/software/awdtools/fortran/x1fortran/librar
C, C++:
http://www.ibm.com/software/awdtools/vac librar

Software intrinsic divide

The Power5 assembler contains hardware primitives for the operation x/y. Nevertheless
these are not pipelined, and some applications may benefit from the usage of software
alternatives in the main computing core. You have to compile, with the XL Fortran
compiler, with the option “-gqarch=pwr5” (included in -O4) and you will have at disposal
these intrinsic functions doing the work, among the others: SWDIV, SWDIV_NOCHK.

Look at the documentation for more details.

Parallel programming

IBM provides a set of scripts that will add the needed options to allow the generated
executable aware of the POE (Parallel Operating Environment).

MPI

To use the IBM MPI library and runtime just compile with the appropriate parallel compiler:
mpxIf, mpxIf90, mpcc, mpCC

OpenMP

Use the serial compiler with the option: -qgsmp=omp

Mixed mode: MPI + OpenMP

Use the MPI compiler and -gsmp=omp as well.

Documentation

All the documentation related to parallel programming is relative to IBM PE (Parallel

Environment):
http://www.ibm.com/servers/eserver/pseries/librarv/sp books

version 1.2 -19 - October 3rd, 2005



CINECA Supercomputing Group

Running applications

Interactive

You can run interactively a serial program in the standard UNIX way:
./program

However you can run interactively a parallel application with a command like:
poe ./program <program options> <POE options>

This will run the application running a LoadLeveler interactive job.

A typical interactive parallel submission with 4 processors:
poe ./program -procs 4 -nodes 1 -labelio yes

If you get repetitively the message:

ERROR: 0031-123 Retrying allocation .... press control-C to terminate
it means there are not enough resources at this time: another user is allocating the
resources reserved for interactive usage. Just wait and assuming your request is
reasonable, when the interactive resources are freed by the other user, your program will
be run.

More information with “man poe” at the command prompt and in the Parallel Environment

guides at:
http://www.ibm.com/servers/eserver/pseries/librarv/sp_books

Batch: LoadLeveler

Batch jobs are managed by the LoadLeveler. Batch jobs must be submitted using the
“llsubmit” command with a LoadLeveler script file .

The basic LoadLeveler commands:

lslcflug[“ Lm’ submit in batch queue the job described in the file “script.cmd”.
See below for the LoadLeveler scripts syntax
I'1q

Returns information about all the jobs waiting and running in
the queues. In order to see the information about only your
jobs use the command "lig -u $USER"

I1cancel joblist cancels one or more jobs from the queuing system, either

they are IDLE or RUNNING

stsiine return information about the status of the machines

version 1.2 -20 - October 3rd, 2005



CINECA Supercomputing Group

G return information about the status of the queues (called

"classes" by the LoadLeveler)

Users do not specify classes anymore: LoadLeveler will choose the appropriate class for
the user. Any class selection performed by the user will be ignored. On SP5 it will be
possible to submit jobs of the following types:

job type CPUs max wall time max mem/CPU wait time
parallel(*) 2-256 24:00:00 1.7 GB days
parallel, high memory 2-16 24:00:00 7 GB days
serial 1 15 days 10 GB days

Furthermore, the following job types will be particularly favored from the scheduling point
of view:

job type CPUs max wall time max mem/CPU wait time
test/debug 1-4 00:10:00 1.7 GB minutes
serial/parallel, short 1-32 6:00:00 1.7 GB hours
serial, short 1 3 days 4 GB many hours

(*) Jobs larger than 32 CPUs will be run on dedicated nodes.

LoadLeveler script syntax

The LoadLeveler script tells LoadlLeveler what resources are needed by your application
at run time, in particular:

- maximum elapsed time:
#@wal | _clock _Iimt = hh:mmss

- number of tasks (MPI):
#@total _tasks = N

- maximum memory per task:
#@resources = Consumabl eMenory(N nb)

- number of CPUS/threads per task (OpenMP):
#@resources = Consumabl eCpus(N)

ATTENTION: If you need more than 650MBs of memory for a serial job, or more of
650MBs per task for a parallel job, you absolutely MUST explicitly require the memory to
the LoadLeveler with the Consumabl eMenor y keyword

The last LoadLeveler specification is #@ queue. After that you have to write the script,
that will be executed when the submitted job is run.

version 1.2 -21 - October 3rd, 2005



CINECA Supercomputing Group

Example 1: script for a SERIAL job
# @wall _clock |imt = 72:00:00
# @resources = Consunabl eCpus(1) Consunabl eMenory(1000 nb)
# @] ob_type = serial
# @output = job.log
# @error job.err
# @shell / bin/tcsh
#

@ queue
your commands here ...

Example 2: script for a PARALLEL job

# @wall _clock Iimt = 6:00:00

# @resources = Consunabl eCpus(1) Consunabl eMenory(1000 nb)
# @total _tasks = 64

# @job _type = parallel

# @network. MPl = csss, shared, US

# @output = job.log

# @error = job.err

# @shell = /bin/tcsh

# @ queue

your commands here ...
The network can be any of: network.MPI, network.LAPI or network.MPI_LAPI. The
network specification will be overwritten with the best choice by the LoadLeveler.

Example3: script for an OpenMP PARALLEL job
# @wall _clock Iimt = 6:00:00

# @resources = Consumabl eCpus(8) Consunabl eMenory(4 gb)

# @job _type = serial

# @output = job.log

# @error job.err

# @shell [/ bin/tcsh

#

@ queue
your commands here ...

Note that job_type = serial: you must not ask for a parallel job type, since OpenMP does
not use POE.

For more information on LoadLeveler, consult the on-line guide from here:
http://www.ibm.com/servers/eserver/pseries/library/sp_books

but keep in mind that many customizations have been performed on CINECA SP5 and
some of the keywords are not allowed.

version 1.2 -22 - October 3rd, 2005



CINECA Supercomputing Group

Debuggers
dbx

dbx is the standard AIX symbolic debugger. To include symbolic debugger information in
your executables you must compile with the “-g” option.

To run an interactive executable under the control of the debugger:
dbx ./program

To make a “post-mortem” analysis of a core file:
dbx program core

pdbx

pdbx is the symbolic, textual, parallel debugger included with the IBM Parallel
Environment. Remember to compile with “-g” to debug also your parallel codes. pdbx

accepts the same options as poe. e.g.:
pdbx ./program -procs 4 -nodes 1

Totalview

Totalview is the graphic symbolic debugger from ETNUS. To use it you must however
comile with “-g”. Since it is a graphic tool, you need a X11 server or emulator.

To debug a parallel code you must run a command line like this:
totalview poe -a ./program -procs 4 -nodes 1

You will not see immediately your code, because at the very beginning you are debugging
the “poe” executable. press “Go” and wait until poe spawns the copies of your code.

You can find Totalview documentation on the WEB:
http://www.etnus.com/TotalView/index.html

Static debuggers

Two static debuggers are available on IBM SP4. Static debuggers are program which
analyze source code to find problems such as uninitialized variables, argument data type
mismatch and other semantic (not syntax) errors.

When your code is ready and the syntax error free (the compiler compiles it) you can
check your code using these debuggers.

Language Command

C/C++ L

Fortran 77 module load ftnchek
ftnchek

version 1.2 -23 - October 3rd, 2005



CINECA Supercomputing Group

View "man lint" or "man ftnchek" (after module load ftnchek) for information about these
tools.

Profilers

Profiling is the first activity needed to optimize your code. Profiling give you information of
where (in terms of subroutines or code-lines) your code spends the most of its time.

gprof

Basic textual AIX profiler.

Compile your code with the options “-g -pg”:
x1f -g -pg program.f -o program

When you run the code, it will save a sampling file, “gmon.out”. Because of that the
performance of the code is worse, and you can not use profiler data for performance, but
the information is still very useful.

After the end of the execution run:
gprof program gmon.out

Xprofiler

to be confermed and completed

HPM

to be confirmed and completed

MPI_Trace

With MPI_trace you do not profile the executed code, but the MPI library calls.
to be completed

Vampir

With Vampir you have access to very detailed data about the flow of the communications
in MPI codes.

to be completed

version 1.2 -24 - October 3rd, 2005



CINECA Supercomputing Group

Scientific Libraries

ESSL

Highly optimized blas (in particular, dgemm) libraries are inside the essl. The essl contains
also a “sort of” LaPACK: the routines are the same, the name also, but the arguments
differ from the “netlib lapack”. We suggest you use the netlib lapack for highest code
portability, but link using the essl to use the optimized blas subroutines, loading the
relative module (that initialize the environment variables) and adding at link time the

following libraries specifications (remember: THE ORDER IS IMPORTANT):
module load lapack
-L$LAPACK_LIB -1lapack -lessl

The same applies to the pessl, that contains a “sort of” ScaLaPACK:

module load scalapack
-L$SCALAPACK_LIB -1scalapack -1pblas -1blacs -1blacsF77init -lessl

ESSL has also an SMP parallel version, that allows you to use the shared memory
architecture of the single nodes to perform linear algebra operations. This can be a very
straightforward way to parallelize your code: just link with “-lesslsmp”.

By default this will use the same number of threads of the CPUs of the node (8 on sp5).
To reduce the number of threads per task, set the environment variable
“OMP_NUM_THREADS” to the desired number of threads per task, before than running
the application.

For documentation on IBM ESSL and PESSL find information here:
http://www.ibm.com/servers/eserver/pseries/library/sp_books

MASS

MASS (Mathematical Accelerations SubSystem) library is available. It allows the speedup
of codes that make heavy usage of mathematical functions (sin, cos, exp, sqrt, ... ),
especially if used repeatedly, for which a vector version exists. The computations
performed with this library are precise, but do not strictly adhere to the IEEE standard.

To use this library load the relative module and link adding the following library
specifications:

module load mass
-L$MASS_LIB -1mass -lmassv

Find documentation about the MASS library here:
http://www.ibm.com/software/awdtools/mass

version 1.2 -25 - October 3rd, 2005



CINECA Supercomputing Group

NAG

The NAG Fortran Library is a comprehensive collection of Fortran 77 and Fortran 90
routines for the solution of numerical and statistical problems. Presently only the
sequential library is available. To use this library, load the relative module and link adding

one of the following library specifications:
module load nag
-L$NAG_LIB -1lnag
-g64 -L$NAG_LIB -1nagb4
-L$NAG_LIB -1nagsmp
-g64 -L$NAG_LIB -lnag_use_essl64 -lessl
-L$NAG_LIB -1lnag
-L$NAG_LIB -1lnag

Find the documentation of the NAG library below the directory SNAG_DOC or on the web:
http://www.nag.co.uk/numeric/fl/manual /html /FLlibrarymanual.as

version 1.2 -26 - October 3rd, 2005



CINECA Supercomputing Group

CLX User Guibe

hostname: cl.clx.cineca.it
early availability: December 2003

start of production: June 1%, 2004

System architecture

CLX is an IBM Linux Cluster 1350, made (mostly) of 512 2-way IBM X335 nodes. Each
computing node contains 2 Xeon Pentium IV processors. All the compute nodes have
2GB of memory (1GB per processor).

768 processors of CLX are Xeon Pentium IV at 3.06 GHz with 512MB of L2 cache and the
Front Side Bus (FSB) at 533MHz.

256 processors, bought at the beginning of 2005, are Xeon Pentium IV EM64T (Nocona)
at 3.00GHz with 1024MB of L2 cache, the FSB at 800MHz and support Hyper-Threading
Technology.

All the CLX processors are capable of 2 double precision floating point operations per

version 1.2 -27 - October 3rd, 2005



CINECA Supercomputing Group

cycle, using the INTEL SSE2 extensions.
Login and service node processors are at 2.8GHz and have more memory.

All the nodes are interconnected to each other through a Myrinet network
(http://ww. nyri com comnj, capable of a maximum bandwidth of 256MB/s between
each pair of nodes. The core component of the network is a pair of M3-CLOS Myrinet-
2000 switches in CLOS256+256 configuration.

The global peak performance of CLX is of 6.1 TFlops.
The queuing system of CLX is LSF (it was OpenPBS up to Agoust 2005).

Disk space

CLX from Agoust 2005 conforms totally to the CINECA Infrastructure.

Using installed applications: module

Attention: if you use a given set of modules to compile an application, very probably you
will need the same modules to run it, because by default linking is dynamic on linux
systems, and the application will need at runtime the shared libraries of compiler and
libraries. To minimize the number of needed modules at runtime, use static linking to
compile the applications.

Compilers

Available compilers are standard GNU gcc and g77, GNU g95, INTEL and Portland Group

(PGI) compilers. After loading the appropriate module, the command:
man compiler_command

give you the complete list of the flags supported by the compiler.

INTEL

Initialize the environment with one of the module commands:
module load compiler/intel
module load compiler/intel?
module load compiler/intel8

Fortran77 and Fortran90 compiler:
ifort

C and C++ compiler:
icc

version 1.2 -28 - October 3rd, 2005



CINECA Supercomputing Group

Find the documentation of the two compilers respectively in the directories:
$IFORT_DOC
$1Icconoc

Some optimizations we do suggest:

- to align data with cache-line boundaries, tune to Pentium Xeon processor and -O3

optimizations:
-align -tpp7 -03

- to add loop vectorization (SSE/SSEZ2 instructions) to improve loops performance:
-align -tpp7 -03 -xN -ftz
PGI

Initialize the environment with one of the module commands:
module load compier/pgi

The Fortran77, Fortran90, C and C++ compilers are respectively:

pgfa0
pgf77

pgcc
pgCC

Find the documentation of the PGI compilers in the directory:
$PGI_DOC

Some optimizations we do suggest:

- to align data with cache-line boundaries, tune to Pentium Xeon processor and -O3

optimizations:
-Mcache_align -tp p7 -03

best PGl suggested combination:
-Mcache_align -tp p7 -fast

best PGl suggested combination to use loop vectorization (SSE/SSE2 instructions) to

improve loops performance:
-Mcache_align -tp p7 -fastsse

GNU
g77 and gcc are always available but are not the best optimizing compilers.
Optimize with -O2 or -O83.

To try the GNU g95 compiler you have to load the relative module before:
module load compiler/g95

version 1.2 -29 - October 3rd, 2005



CINECA Supercomputing Group

Parallel programming

The parallel programming is mainly based on the MPICH-GM version of MPI (myrinet

enabled MPI). The main four parallel-MP| compilers available are:

mpif90

mpif77

mpicc

mpiCC
for Fortran90, Fortran77, C and C++ respectively. These command names are the same
for all suites of compilers, but they behave differently depending on the module you have

loaded.

In all cases you will run the applications compiled with the parallel compiler with the
command:
mpirun <executable>

Remember: you can use mpirun only within LSF scripts or LSF interactive sessions.

To choose the desired underlying compiler, select the appropriate environment with one of

the commands:

module load mpich/intel
module load mpich/pgi
module load mpich/gnu

Use
module avail

to know what versions are available.

A version of MPICH, especially useful for debugging and for third party codes, is the one
that does not rely on Myrinet protocol, but uses standard TCP/IP instead. The name of the

modules for that version of MPICH are:
mpich-p4/gnu
mpich-p4/intel
mpich-p4/pgi

Default environment

The default environment of CLX has the following loaded modules:
mpich/intel
compiler/intel
In fact the compiler Intel is the best compiler for the HPC. If you need to use another

compiler and MPI version, unload the intel modules, or clean totally the environment with:
module purge

version 1.2 -30 - October 3rd, 2005



CINECA Supercomputing Group

Debugging

Enabling compiler runtime checks
Pay attention: some flags are available only for the Fortran compiler.

INTEL
Compile and link using
-00 -g -traceback -fpstkchk -check bounds -fpe0l

no optimizations, debug info, check array for addressing into correct bounds, floating point
exceptions trap

If at runtime your code dies, then there is a problem. You can run your code using the
debugger or analyze the core (core not available with PGI compilers).

PGl
Compile and link using
-00 -g -C -Ktrap=ovf,divz,inv
no optimizations, debug info, check array for addressing into correct bounds, floating point
exceptions trap
GNU
Compile and link using
-00 -g -Wall -fbounds-check

no optimizations, debug info, high level warning, check array for addressing into correct
bounds

Serial debuggers
Intel
idb -gdb ./executable

see gdb and idb documentation
PGl

pgdbg ./executable
see pgdbg documentation

GNU
gdb ./executable

Core file analysis

Create core ONLY in the /scratch area, to do not exceed your home quota!

version 1.2 -31- October 3rd, 2005



CINECA Supercomputing Group

First, enable core dumping
bash: ulimit -c unlimited
csh/tcsh: limit coredumpsize unlimited

If you are using Intel compiler, set the following environment variable:
bash: export decfort_dump_flag=TRUE
csh/tcsh: setenv decfort_dump_flag TRUE

Run your code and create the core file. To analyze it:

INTEL

idb -gdb ./executable core

GNU

gdb ./executable core

Parallel debugger

totalview is available for debugging parallel codes. Contact us to have permission to use

it and see documentation here
http://www.etnus.com/Documentation

Performance optimization

Software profilers: gprof

In order to check where your code spends most of its time, you can use gprof.
It uses data collected by the -pg compiling option to construct a text display of the
functions within your application (call tree and CPU time spent in every subroutine).

gprof provides quick access to the profiled data, which lets you identify the functions that
are the most CPU-intensive. The text display also lets you manipulate the display in order
to focus on the application's critical areas.

Usage:
compiler_name -pg <optimization flags> -o filename filename.f

run the program filename and get the output profiling file gmon.out Finally perform profiling
gprof filename gmon.out
It is also possible to profile at code line-level (see man gprof for other options). In this case

you must use also the “-g” flag:
compiler_name -g -pg <optimization flags> -o filename filename.f
gprof -annotated-source filename gmon.out

version 1.2 -32 - October 3rd, 2005



CINECA Supercomputing Group

Scientific libraries

MKL

MKL is the Intel Math Kernel Library. It contains a very highly optimized BLAS library,
LaPACK and more Intel highly optimized routines

To compile and link with MKL you need to add the following flags:

compiling:
-I$MKL_INCLUDE

linking:
-L$MKL_LIB -1mkl_lapack -1mkl_ia32 -lguide

Find the MKL documentation on the CLX in $MKL_DCC. You can view the MKL manual on

line with the command:
acroread $MKL_DOC/mklman.pdf

or download and view it locally.

version 1.2 -33 - October 3rd, 2005



CINECA Supercomputing Group

XD1 User Guibe

hostname: xd.xd1.cineca.it
early availability: June 20", 2005

start of production: to be determined

System architecture

XD1 is a “Cray XD1” cabinet, fully populated with 72 2-way nodes, totally 144 AMD 64-bit
Opteron processors at 2.4GHz. Each node has 4GBs of memory (2GBs per processor).

The peak performance of XD1 is of 690 GFlops.

The CPUs of XD1 are interconnected with the Cray RapidArray network, directly attached
to the Opteron processors using the AMD HyperTransport technology. On our system
RapidArrays allow the transfer of data between each pair of nodes at 3.2 GB/s (except for
nodes hosting the FPGAs, where each processor has its own RapidArray connection
giving up to 6.4GB/s) and the key characteristic of this network is the extremely low
latency: 1.7us measured with MPI.

Another key feature of XD1 is the Linux Synchronized Scheduler (LSS): each node runs
its own Linux Kernel, but all the kernels of a set of nodes can be synchronized, in order to
keep the parallel execution of user applications coherent and to improve the scalability. To
use such feature, you must use the command xd1l auncher (see “Parallel Programming”
below).

The last feature of XD1 is that 6 of the nodes are equipped with an additional Rapid Array
connection (giving 6.4GB/s maximum interconnection bandwidth to these nodes) and a

version 1.2 -34 - October 3rd, 2005



CINECA Supercomputing Group

“Xilinx Virtex Il Pro” FPGA (Field Programmable Gate Array), that can be used as co-
processor to speedup significantly some specific applications. We are investigating the
possibilities offered by such specific hardware with HPC applications.

You can find more details about XD1 here:
http://www.crav.com/products/xdl/index.html

and also on the documentation local to the machine, in the directory:

/opt/XD1/documents
Use “acroread” at the command prompt to read it, or download it at your site, but,
ATTENTION, this documentation is covered by Cray Copyright and only users of XD1 can
consult it. Do not redistribute.

Disk space

XD1 at the moment access $SHOME, small, and /scratch, that is larger, but is mounted with
the slow NFS protocol. Do not launch simulations that create large amount of data and
that need an high I/O bandwidth because at now it is not available.

$CINECA_SCRATCH will be based upon LUSTRE as soon as Cray makes it available.

Using installed applications: module

Attention: if you use a given set of modules to compile an application, very probably you
will need the same modules to run it, because by default linking is dynamic on linux
systems, and the application will need at runtime the shared libraries of compiler and
libraries. To minimize the number of needed modules at runtime, use static linking to
compile the applications.

Sequential programming

The best performance compiler is the PGl, that is available by default. The module “pgi”
should be loaded by default (check it with the command “module list”).

The “default” PGI compiler version is set to the most stable one.

The PGI compiler commands:

pgfo0
pgf77

pgcc
pgCC

However the GNU compiler is available without loading any module (gcc, g++, g77), but

version 1.2 -35- October 3rd, 2005



CINECA Supercomputing Group

the PGI compiler optimize much better.

Parallel programming

The parallel programming is mainly based on the MPICH version of MPI customized by
Cray in order to support the Rapid Array interconnect.

To use mpich type:
module load mpich

that defaults to the best stable mpich/PGI available. To use different versions, choose
among the available modules (view them with “module avail”).

Available parallel compilers are:
mpif90
mpif77
mpicc
mpicxx

For Fortran90, Fortran77, C and C++ respectively. To run the application you have

compiled with one of them use:
mpirun ./executable

Remember: you can use mpirun only within LSF scripts or LSF interactive sessions.

Using the Linux Synchronous Scheduler

To use the LSS, you must use the command “xd1launcher” to run the single tasks of an

MPI execution, in this way:
mpirun $XDI1LAUNCHER ./executable

Find more information about xd1launcher with:
man xdllauncher

Scientific libraries

ACML

The AMD Core Math Library (ACML) is a set of numerical routines tuned specifically for
AMDG64 platform processors (including Opteron(TM) and Athlon(TM) 64 ). The routines,
which are available via both FORTRAN77 and C interfaces, include:

» BLAS - Basic Linear Algebra Subprograms (including Sparse Level 1 BLAS);
» LAPACK - A comprehensive package of higher level linear algebra routines;

» FFT - a set of Fast Fourier Transform routines for real and complex data.

version 1.2 -36 - October 3rd, 2005



CINECA Supercomputing Group

To use ACML, load the acml module. Find the needed information typing:
module help acml

After you have loaded the module, you can find on-line ACML documentation in
$ACM._DOC

Using the FPGAs

Only 6 nodes of the XD1 are equipped with FPGA. On these nodes you can both:
- run special applications, interacting with this customizable hardware;
- experiment applications communicating with very high bandwidth among nodes.

)

To address these nodes both interactively and in batch, you must add the option “-R fpga’
to the bsub requests.
EXAMPLE:

To obtain an interactive session on one host containing the FPGA:
bsub -Is -R fpga -W 10 /bin/tcsh

version 1.2 -37 - October 3rd, 2005



CINECA Supercomputing Group

FAQ: Frequently Asked Questions

version 1.2 -38 - October 3rd, 2005



CINECA Supercomputing Group

Questions

FAQ: Frequently ASKed QUESHIONS...............uuuueeeeeeiiiaaaaeeeeeeeeeeeeeeaeee 38
How do | connect 10 CINECA'S SYSIEMS?........eiiiiiiiie ettt sttt e e ee e e e e e e e et ee e e e enneeeeeennreeas 39
Why doesn't the “Mmodule” COMMEANT WOTK?........uueiiiiiieei et a e s s e e e e e s s saeenreeeeeees 39
How do | measure how much time has elapsed for a part of my program?.........ccceeeeeee e e e e 40
What does it mean “Profiling”?.........eee i e e 41
Why did my code die? What is the “COre” fil@7....... e 41
Why did my code die with this message: “Warning: no access to tty (Bad file descriptor)”?.........ccccvvveveeennen. 41
Why did my code die with this message: “error while loading shared libraries...”?........cccccviieiiicinicnen, 41
How can | run many batch jobs, one after the other?...........oo e 42
LSF: The job I have submitted with bsub exits immediately without output. Why?...........coooiiiiiiiiiieee, 43
LoadLeveler: What is the exact usage of the keyword “Job_type™ 7. 43

How do | connect to CINECA's systems?

You must use ssh (secure shell). All current UNIX systems have the ssh client installed by

default. To connect to our system you have to type, at your UNIX prompt:
ssh username@hostname

Once connected you should be able also to use the X11 applications remotely, even if you
are behind a firewall, because ssh intalled on our systems performs the X11-forwarding.

From a Windows system you have to install a Windows ssh client. You can get an Open

client from here:
http://www.openssh.com/windows.html

If you need to export the graphical DISPLAY on a Windows system, you will need an X11
emulator, like Xmanager, Exceed, Xvision and similars.

Why doesn't the “module” command work?
We should have fixed it on all the systems, for both bash and tcsh.
If your login shell is not one of these two, ask us to change it to one of them.

You can check what is your login shell with the command:
echo $SHELL

If it still does not work, avoid using the module initialization script in your job scripts, and
contact us.

version 1.2 -39 - October 3rd, 2005



CINECA Supercomputing Group

How do | measure how much time has elapsed for a part of my program?
Maybe you need to profile your code — see the next question.

If not, and you really need to time a part of your code, remember to use real time clocks,
don't use the “user time” (the cpu time), because it might not take in account for 1/O,
swapping, MPI communications, all events that however contribute to the time elapsed by
your routine. In the following there are some solutions:

Fortran90:

SYSTEM_CLOCK is standard Fortran90, very efficient, since it is a language intrinsic.
integer counti, countf, count_rate
real dt
call system_clock(counti,count_rate)
. work ....
call system_clock(countf)
dt=REAL(countf-counti)/REAL(count_rate)

MPI (both Fortran and C):

MPI_WCLOCK is very portable and general if you are writing an MPI code. However it is
an MPI routine and it has some overhead:
double precision tl1,t2,dt

t1l = MPI_WCLOCK()
. work ...

t2 = MPI_WCLOCK()

deltat = t2-tl1

or
double t1,t2,dt;

tl = MPI_Wclock();
... work ...

t2 = MPI_Wclock();
deltat = t2-t1;

C (UNIX):
If you need timing in C and you are not using MPI, you must avoid the typical routines

time, times, clock, because all of them return the user time, not the real one. To get the
real-time use gettimeofday(), standard UNIX, that is precise up to microseconds:

#include <stddef.h>
#include <sys/time.h>

double tl1,t2,elapsed;

struct timeval tp;
int rtn;

version 1.2 -40 - October 3rd, 2005



CINECA Supercomputing Group

rtn=gettimeofday(&tp, NULL);

t1=(double)tp.tv_sec+(1l.e-6)*tp.tv_usec;
. work ...

rtn=gettimeofday(&tp, NULL);

t2=(double)tp.tv_sec+(1l.e-6)*tp.tv_usec;

elapsed=t2-t1;

What does it mean “profiling”?

When you need to optimize your code, the first information you need is to know in what
part it spends most of its time. The profiler is a tool that comes with all the development
systems. You need to compile the code with a special option (typically -pg), to run it and
than to analyze the profiling data (typically in the file gmon.out) using the profiler (usually
gprof). However profiling usually alters the time elapsed by your code, but the relative
timings are still very useful.

Look at the system specific guides for specific information about specific tools.

Why did my code die? What is the “core” file?

The core file is the snapshot of your application, taken by the Operating System when it

died. The first thing to do is to discover where the application has died:
dbx program.exe core
dbx> where

“dbx” is one of the typical debuggers. You can do it with any (gdb, ddd, pdbx, totalview...).
The “where” instruction tells you exactly in which subroutine stack the execution was
running when it died. If you compiled the application with “-g” you will be able to see the
code lines and to inspect the content of the variables at the time of the dump, with the “p”

debugger command. Furthermore, you will be able to inspect the variables at all the levels
of the stack with the “up” and “down” commands.

Why did my code die with this message: “Warning: no access to tty (Bad file
descriptor)”?

The message is related to the fact that in batch you do not have a terminal, it is harmless,
and it is not the cause of the failure of your job.

Why did my code die with this message: “error while loading shared
libraries...”?

The message means that the executable uses some shared library. When you compile on
Linux systems, the libraries are linked dynamically by default. In fact the executable do not
know where to find libraries that are not in standard places (/lib, /ust/lib,...).

version 1.2 -41 - October 3rd, 2005



CINECA Supercomputing Group

The solution is to properly configure the environment in the job, initializing the modules
and loading any module you needed to compile (of both compiler and libraries) also at
run-time, before invoking the executable in the script.

How can | run many batch jobs, one after the other?

Every queuing system has the possibility to chain many jobs. For LoadlLeveler what you
need is a “multi-step” job and for LSF a so called “job chain”. In the following, the details
related to the different queuing systems.

LSF

Submit the first job
bsub < script_1
Job <1845> is submitted to queue <queue_name>.

Read the JOB_ID (1845) that the command produce, and use it to submit the second job

of the sequence with the option -w “done(previous)”:
bsub -w fone(1845)”< script_2
Job <1846> is submitted to queue <queue_name>.

The second job will start only when the previous one is “done”. To add more jobs, use the

JOB_ID of the second job, to submit the third one:

bsub g parallel w done(1846)”< script_3
Job <1847> is submitted to queue <queue_name>.

then you can continue in this way for all the other jobs of the sequence.
SP5: LoadLeveler

In a typical multi-step job, the various steps are terminated by the #@queue statement.
However you need to tell to the LoadLeveler not to execute all the steps (this is the
standard behavior), but to wait for the completion of the previous one (except for the first)

with the #@dependency keyword. For example:
#@ input = step00.inp
#@ output = step00.out
#@ executable = program00.exe
#@ step_name = step00
#@ queue
###repeat all the options on every step
#@ input = stepOl.inp
#@ output = step0l.out
#@ executable = program0Ol.exe
#@ step_name = stepOl
### with the following dependency you state that the "step00"
### have been completed correctly
#@ dependency = step00 == 0
#@ queue

BEWARE: if you have a shell script following the latest #@queue statement, or anywhere

version 1.2 -42 - October 3rd, 2005



CINECA Supercomputing Group

in the middle, keep in mind that ALL of it will be executed at each step! If you run in this
way, you need to differentiate the various steps by using the appropriate environment
variable: $LOADL_STEP_NAME. Example:

your loadleveler command here

shell = /bin/tcsh

step_name = step00

queue

your loadleveler commands here again
shell = /bin/tcsh

step_name = step0l

dependency = step00 ==

queue

* W
Rt
®

#h*t*h%it#h%
DD HDD

### lo script eseguito e' sempre lo stesso. L'esecuzione
### va quindi differenziata utilizzando la variabile di
### ambiente $LOADL_STEP_NAME (uso uno switch di csh)

echo "performing step *** $LOADL_STEP_NAME ***"

switch ($LOADI_STEP_NAME)
case "step00":
#
# step00 commands here
#
breaksw
case "stepOl":
#
# step0l commands here
#
breaksw
endsw

echo "END of step *** $LOADL_STEP_NAME"
LSF: The job | have submitted with bsub exits immediately without output.
Why?

Very probably you have not redirected your script with “<”: bsub tries to run it as a
command but can not, because the script should not be executable, and even if it was,
eventual #BSUB lines are ignored.

REMEMBER
bsub < jobscript

NOT:
bsub jobscript

LoadLeveler: What is the exact usage of the keyword “job_type”?

“lob_type” valid values are “parallel” or “serial”. You will specify:
#@ job_type = parallel

version 1.2 -43 - October 3rd, 2005



CINECA Supercomputing Group

when your job script contains one or more commands that rely on POE, that is, MPI or
LAPI codes that have been complied with mpxIc, mpxlc... This must be done even if you
will run on only one processor. job_type = parallel tells to the LoadLeveler to interact with
POE.
Otherwise:

#@ job_type = serial
when you do not use POE at all. In this case you will compile your code with xIf, xIc... Note
that you can use this specification also for some kind of parallel jobs, like OpenMP, fork
based,... However intra-node jobs. In this case you will allocate more than one CPU on
one node with the ConsumableCpus specification. You can not use the “total tasks”
keyword if job_type is serial.

version 1.2 -44 - October 3rd, 2005



