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Abstract 
This paper addresses a purely software-based solution 

to the multiprocessor cache coherence problem by 
structuring an operating system to provide for  the 
coherence of its own data while exporting coherent 
memory to user processes. 

Also covered are the results of a proof-of-concept port 
of Mach 3.0, using the principles in this paper, to a 
prototype of the IBM Shared Memory System POWER14TM, 
a Shared Memory Cluster. This is believed to be the first 
implementation of a commercial operating system on a 
non-cache coherent machine and required the development 
of a software technique to detect coherence violations. 
Benchmark results show that on the four CPU system this 
solution provides a throughput increase of up to 3.9 times 
that of a single processor. 

1. Introduction 

1.1 The Cache Coherence Problem 

The use of private caches in a multiprocessor ( M P )  
creates the cache coherence (CC) problem. When a 
processor first references a data item, the memory block 
(typically 16 to 256 bytes) that contains it is loaded into its 
cache. Subsequent references to data items are satisfied 
from the cached copy. Thc CC problem occurs when two 
or more processors, using their private caches, share 
changeable data. A data staleness problem results when a 
processor’s access to shared data is satisfied from a cached 
copy of a memory block which has been modified by other 
processors since it was last loaded. A data integrity 
problem occurs (in copy-back schemes where the entire 
memory block is copid back to memory) when two 
processors modify different variables that reside in the 
same memory block; regardless of the order in which the 
cached blocks are copied back to real memory, the correct 
value of both variables will not be reflected. 

Solutions to the CC problem are categorized by the 
memory models they support. These describe how, when, 
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and for which shared data items memory accesses are 
synchronized. 

The strongest model, and the one most commonly and 
naturally assumed by programmers, is the one provided by 
uniprocessor systems. The execution of instructions in 
cooperating processes are interleaved -- memory changes 
caused by one instruction are immediately and consistently 
“seen” by all others. Multiprocessors which preserve this 
uniprocessor image of memory access coordination are 
defined by Lamport [Lam791 to be sequentially consistent 
and conforms to the strongly ordered memory access 
model. Until recently this was the only model that was 
provided by Symmetric Multiprocessors (SMPs) .  

The weakest model, which we will call unordered, 
provides no access synchronization between multiple 
processors that access shared memory. 

Although there are other models that fall between these 
such as the weakly-ordered model [DSB86] (used in the 
Convex SPP) and the release consistency model 
[Gha+90] (used in the Stanford DASH system [Len+90]). 
this paper deals only with the two extremes where the 
operating system is adapted for execution on an unordered 
multiprocessor while providing a strongly ordered memory 
model to users. 

1.2 Shared Memory Clusters 

The Shared Memory Cluster (SMC) is emerging as an 
architectural base for Massively Parallel Processing (MPP) 
systems. SMCs are multiprocessors typified by their 
support for memory models that aren’t strongly ordered. 
The weakened memory model enhances the scalability of 
SMCs. The processing elements (PES) can be off-the-shelf 
uniprocessor chips with private caches that buffer 
loa4store accesses to both private memory and a common 
pool of shared memory. This pool can be centralized as in 
the IBM Shared Memory System POwER/4TM [IBM93] or 
distributed as in the Convex SPP. 

86 Proceedings of the Twenty-Seventh Annual Hawaii 
International Conference on System Sciences, 1994 

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore.  Restrictions apply.



1 3  IBM Shared Memory System POWEN4 

The IBM Shared Memory System POWEW4 combines 
four IBM POWER RISC processors into a single system. 
Each processor has private access to one local memory 
card (from 16 to 128 MB) and an IBM Micro Channel I/O 
Bus. In addition, each processor has shared access via a 
non-blocking switch, to up to 896 MB of shared memory 
(without cache coherence controls) and an Atomic 
Complex that provides semaphore operations for 
serialization and interprocessor communications. Figure 1 
shows the system overview. 

I Memory Interconnection I 

Shared Memory 

Figure 1. IBM Shared Memory System POWEN4 

Each PE in the POwER/4 has an 8KB instruction cache 
and a 32KB data cache. The data cache is four-way set 
associative with 512 cache blocks of 64 bytes each. The 
cache management operations are those provided by the 
unmodified PES. These include instructions to: 

Invalidate an address. The contents of the cache block 
containing the address are discarded. 

Store an address. The cache block is copied to real 
memory. 

Flush an address. The cache block is invalidated after it 
has been stored if it was dirty. 

Synchronize cache. This instruction &lays until all of 
the in-flight store and flush operations have completed. 

2. User Data Coherence 

While it may be possible to rewrite all applications to 
run on an unordered model, our goal was to be able to run 
existing applicruions which were written assuming a 
strongly ordered model of memory. 

2.1 Coherence Conditions 

Coherence of memory accesses requires that all 
accesses to shared memory always retrieve the result of the 
latest write to that memory. When caches are being used, 
the following Coherence Conditions will provide memory 
coherence: 
1. 

2. 

3. 

4. 

5 .  

Multiple processors can have read access to the Same 
memory block provided no processor has write access. 
At any one time only one processor can have write 
access to a specific memory block. 
A modified memory block is stored to real memory 
before another processor receives an access right for 
that memory block. 
A processor’s fust access to a memory block that has 
been modified by a different processor is satisfied from 
real memory, not from its cache. 
If a processor is executing with write access to a 
memory block, then it can also have read access; but 
no other processor can have read or write access to that 
memory block. 

2.2 Page Coherence 

The Coherence Conditions require that accesses to 
shared memory on one processor change the way in which 
memory is cached and accessed by other processors. For 
example, if processor A is reading a shared memory block 
and processor B attempts to write to that memory block, 
we must prevent processor A from reading again until the 
write from processor B is stored back from processor B’s 
cache into shared memory. In addition, processor A’s 
cached version must be invalidated to force the next 
reference to get a new copy of the modified data from 
memory. 

We can use the page table to control the access to 
memory that is shared between user programs. On the 
POwER/4,64 memory blocks (64 bytes each) are wholly 
contained in each page (4KB). Each processor maintains 
its access level to each page as either None, Read Only 
(WO), or ReaWrite 0. Figure 2 shows the 
per-processor state diagram for each shared user page. 

SharedRead and Shared. Write are synchronous 
requests that are sent to the other processors that may have 
the shared page mapped Processors that receive a 
Shared.Reud notification for a page they have mapped as 
R/W must store the page’s memory blocks and reduce all 
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Figure 2. Per-Processor Page Access State Diagram 
for Coherence of Shared User Pages 

access on their processor to WO before replying. A 
processor that receives a Shared.Wrife must flush the page 
if it is mapped R/W, then reduce all access to None before 
replying. 

Thus in our example, both processor A and processor B 
initially have no access to the shared data. When 
processor A attempts to read the data, a page fault occurs. 
The operating system sends a SharedRead request to other 
processors, changes its page table to allow read access, and 
resumes execution of the user program on processor A. 
Later when processor B tries to write into the shared data, 
a page fault occurs on processor B. The operating system 
sends a Shared. Write request to other processors. 
Processor A invalidates its cache copy of the shared data, 
and changes its page table to deny further access to the 
shared data. Processor B waits for the reply from 
processor A and then changes its page table to allow write 
access to the shared data. If processor A reads the data 
again, it will again fault, sending a SharedRead request to 
processor B which will store the shared data from its cache 
into memory, reducing the allowed access in its page table 
to read access. Processor A waits for the reply from 
processor B and then changes its page table to also allow 
read access to the shared data. 

2.3 Performance 

Providing cache coherence via the page protection 
mechanism has two drawbacks compared to hardware 
solutions (which are memory block-based). First, the 
latency for software page fault handling is higher than the 
latency for hardware coherence schemes because of the 

context switching required for handling the 
page/protection fault. In addition, if page tables are 
maintained in local memory that can only be accessed 
from the owning processor, messages must be used, further 
increasing the overhead. 

Second, false sharing increases since the shared unit 
size increases EK891 from a memory block (64 bytes) to 
a page (4K). As an example, consider a pair of 
cooperating processes, executing on different processors, 
sharing data that resides in two different memory blocks 
that are in the same page. Assume that one process is 
updating data in one memory block while the other is 
simultaneously updating data in the other memory block. 
In a hardware coherent environment no coherence logic is 
invoked since the operations are in different memory 
blocks. But in the page-based environment, each access 
will likely cause a page fault since the updates are taking 
place to the same page. Ownership (or the right to write to 
the page) could switch back and forth between the two 
processors on every access - sometimes called the 
“Ping-Pong” effect. 

One technique to reduce the “Ping-Pong” effect is to 
provide a processing window during which time access to 
the page won’t be taken away. Any other processes 
faulting during this window would be delayed. 

Application awareness of the memory block size (in 
this environment the size of a page) can be used to reduce 
the “Ping-Pong” effect (LF921 and the coherence overhead 
[AH91][JD92]. Applications which manipulate rows or 
columns of a matrix in parallel on different processors can 
allocate the units of work in multiples of the page size to 
reduce the cost of software coherence. 

3. OS Coherence 

3.1 Mach 3.0 Microkernel 

For this project, we decided to modify an existing 
operating system to run on a prototype for the IBM Shared 
Memory System POWER/4. The operating system was 
Mach 3.0 from Carnegie-Mellon University. The Mach 3.0 
system [Acc+86] was selected because of the manageable 
size of its multiprocessor-enabled microkemel and the 
pre-existence of a port to a (uniprocessor) IBM FUSC 
S ystem/6OOO. 

At the hean of a Mach-based operating system is the 
Mach microkemel which executes on the bare hardware 
and exports a machine independent interface to its users. 
What are normally considered the typical operating system 
services are layered above the Mach microkemel as a set 
of servers that run in user mode. Since servers provide 
most of the tradtional system services, porting an 
“operating system” that runs on Mach to a different 
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platform is simplified because the Mach microkemel itself 
hides most of the machine dependencies. 

Mach provides BSD functionality via a user level server 
-- a single Mach task with multiple threads. Since user 
tasks receive a coherent view of memory (Section 2). the 
BSD server can run unmodified on a SMC -- only the 
microkemel must be adapted to execute with non-coherent 
memory, reducing the amount of work to be done. Figure 
3 shows the relationship between the microkemel and its 
user tasks. 

BSD Server BSD Processes *- 
User Mode 

a a 
A 

Kernel Mode 

Mach 3.0 Microkernel 

Figure 3. Mach 3.0 Structure 

3.2 Thread-Based Model 

The microkemel was adapted to non-coherent memory 
by adhering to the Coherence Conditions listed above with 
one major exception. The microkemel is structured as a 
set of kernel threads which may execute on different 
processors. For the microkemel, each thread is considered 
a separate-processor for the Coherence Conditions. 

3.3 Mach Access to Shared Data 

Processes that cooperate by sharing data, even on 
coherent machines, must do so in a way that guarantees 
data integrity. Mach has been designed to run on multiple 
processors and uses locks to provide mutual exclusion for 
critical sections [Bla+91]. Mach uses different locks for 
different data items. This allows a high degree of 
parallelism since the same critical section can be executing 
simultaneously on different processors against different 
instantiations of a data structure. 

3.4 Preserving Data Integrity 

The Coherence Conditions require controlling access to 
individual memory blocks. Since Mach uses locks for 

mutual exclusion, the data items protected by a specific 
lock cannot reside in the same memory block with data 
protected by a different lock. Specifically, shared data 
items are partitioned by their access (in Mach's case, 
locking) protocol; data items protected by exactly the same 
protocol form a partition. Items in the same partition can 
be packed into the same memory block(s) and any one 
memory block cannot contain data from multiple 
partitions. Although there are optimizations to allow some 
of these partitions to be combined', this solution is 
reasonably efficient and is easy to compute. 

Many data items are partitioned naturally by categories 
that more broadly describe how they are accessed. These 
categories also define the options available for placement 
in private or shared memory and the most restrictive 
protection that can be assigned. Table 1 summarizes these 
issues. 

An example of the process used to partition the shared 
data by access protocol (the R/W Multiple Threads 
category) comes from the zone structure used in the kernel. 
The zone structure manages a pool of quickly allocatable 
kernel memory. One zone structure is allocated for each 
pool. Figure 4 shows the some  for the zone structure (as 
modified for memory block partitioning). 

Access to all the members in part A is protected by 
locking either zone-S-lock (a Mach simple lock) or 
zone-C-lock (a complex lock) based on whether the 
memory for this zone is pageable. So the members in part 
A, all having the same access protocol, form one partition. 
In Mach, a complex lock contains a simple lock to protect 
its data structures, so zone-C-lock (section B) is in a 
partition by itself. Finally, next-zone (section C) is a link 
field that joins together all of the instantiated zone 
structures. The queue header and the next-zone fields 
from all the zone structures are protected by a separate 
lock and form a third partition. 

Each instantiation of a zone requires the allocation of 
three memory blocks. The MBLOCK-PAD macros have 
been inserted in the structure to allocate enough space to 
force the next element to a memory block boundary. This 
assumes that the structure is block aligned. To enforce this 
alignment, the internal Mach memory allocation routines 
were changed to always allocate memory on memory 
block boundaries. 

Partitions of statically allocated external variables must 
also be memory block aligned and separated. To 
accomplish this requires an extension to the C 

1. Consider a system with two locks, LA and LB, where some data items 
are protected only by LA, some by L,, and the remainder by holding LA 
and LB simultaneously. The data is partitioned into three sets labeled PA. 
PB, and PAB, respectively. Let Pm,. PAeb PAB3 be any partitioning of 
PAB. Then an optimization for this system is PA U PMl, Pm2, PB U PABY 
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ypedef struct zone ( 

struct slock zone-S-lock; /* generic lock */ 
int count; /* Number of elements used now*/ 
vm-offset-t free-elements; 
vm-size-t cur-size; 
vm-size-t max-size; 
vm-size-t elem-size; 

5, vm-size-t alloc-size; 
boolean-t doing-alloc; /* is zone expanding now? */ 
char 
unsigned int 

/* current memory utdization */ 
/* how large can this zone grow */ 
/* size of an element */ 
/* size used for more memory */ 

*mne-name;/* a name for the mne */ 

pageable : 1, 
sleepable : 1, 
exhaustible :1, 
collectable : 1, 
expandable : 1 ; 

/* zone pageable? */ 
/* sleep if empty? */ 
/* merely retum if empty? */ 
/* garbage collect empty pgs */ 
I* expand zone? */ 

_. 

MBLOCK-PAD(sizeof(struct slock) + ... + sizeof(int)) 
I B lock-data-t zone-C-lock; /* Lock for pageable zones */ 
L 

MBLOCK-PAD(sizeof(1ock-data-t)) 
I c struct zone *next-zone; /* Link for all-zones list */ 

1 *zone-t; 
I 

Figure 4. The Mach zone structure 

progranming language that allows alignment requirements 
to be specified and passed to the loader (as in GNU CC). 
Since this was not available in the compiler being used for 
the port. all extemal declarations of shared data were 
changed to definitions and moved to assembly code files 
where alignment facilities could be used. 

3.5 Preventing Data Staleness 

Flushing Strategy: The approach used in this project 
allows data to remain in the cache between critical section 
executions. Each time a critical section is entered, shared 
data is flushed before it is touched, forcing the next 
reference to come from memory. Modified data is stored 
to memory prior to leaving the critical section thus 
ensuring that a valid copy exists should it be needed on 
another processor. This approach was used because it 
could be (but hasn‘t been) extended to have staleness 
“awareness”, much like the Version Verifrcation Scheme 
proposed by Tartalja and Milutinovic [TM91], which 
could be used to avoid the flush when cached copies aren’t 
stale. 

Static Data: Some of the shared data accessed within a 
critical section may be static in nature. When the lock 
protecting the data is instantiated, the addresses and 
lengths of these regions are well known and don’t change. 

Data 
Category 
Read Only 
Constants 

Read Only 
After 
Initializatior 

Write one 
processor 
Read same 
processor 

Write one 
processor, 
Read many 

R/W Single 
Thread 

R/w 
Multiple 
Threads 

Memory 
Placement 

Local 

Shared 

Local 

Shared 

Local if 
thread 
cannot 

migrate. 
Shared 

otherwise 

Shared 

Virtual 
Storage 

Mapping 

WO 

WO 

R/w 
owner, 

None for 
others 

R/w 
owner, 
WO for 
others 

R/W on 
active 

processor, 
None on 
others 

Partitioning 

Unpartitioned 
WO data can be 

distributed 
across 

all other 
partitions. 

One per 
processor 

One per thread 

By access 
protocol 

Table 1. Management of Kernel Data 

The Mach functions used for initializing locks were 
changed to include the specification of up to two data areas 
which are recorded in the lock structure itself. The lock 
and unlock functions were changed so that these areas 
were flushed and stored appropnately. 

Dynamic Data: Some of the data associated with locks 
is dynamic in nature, changing as the state of the system 
changes. A common example is a lock protecting a queue 
header (static) and all the queue chain fields of those 
structures llnked on the queue (dynamic). There are two 
approaches for managing the coherence of dynamic data. 
The first, which we call the encupsdated approach, is to 
ensure all the data is coherent as part of the lock 
manipulation, much llke the lock’s static data. This 
requires an awareness of the structuring of the shared data, 
which could be provided by a routine(s) whose address is 
passed when the lock is initdued. Its address would be 
maintained in the lock’s data structure, and it would be 
invoked as the lock is manipulated. This would be similar 
to a virtual method in an object oriented language. 

The advantage of the encapsulated approach is that it is 
tied to the data structures rather than the program logic. 
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When adapting existing systems for cache coherence, 
intrusion into the programming logic is minimized and 
logic changes don’t affect the methods that maintain 
coherence. The disadvantage of this approach is that all of 
a lock’s shared data is made coherent every time the lock is 
used, even though in many cases, only a small portion of 
the data is manipulated in any one critical section. 

Another approach, which we call the distributed 
approach (the one used in this project), is to insert the 
cache management calls in-line with the code that touches 
the shared data. Each critical section will have statements 
added to invalidate shared data before it is referenced and 
to store data that has been mdfied. 

The advantage of the distributed approach is that only 
those pieces of data that are actually touched while the 
lock is held are made coherent. A disadvantage of the 
distributed approach is that it is prone to over-flushing the 
data that is modified. The most common cause of this 
over-flushing is that subroutines may not be aware that 
some of the data that they touch may already be coherent, 
requiring it to also ensure its coherence. 

3.6 Other Issues 

The goal of this project was to determine the feasibility 
of adapting an operating system to a non-coherent 
environment and to roughly measure performance. This 
allowed for design trade-offs that would be unacceptable 
in a production environment but that had little impact on 
our results. 

Taskmhread Binding: Mach extends the Unix process 
model by separating it into a task with possibly multiple 
threads. The thread is the unit of scheduling. Each thread 
has its own state that contains such things as its instruction 
counter, registers, and stack. The task is the basic unit of 
resource allocation, and collects the common state for its 
threads. A task includes a paged virtual address space and 
protected access to system resources, including its memory 
mapping (all of a task’s threads share the same virtual 
storage mapping), processors, and port capabilities. The 
traditional notion of a Unix process is represented by a task 
with a single thread. 

The changes to the machine dependent code for 
multiprocessor execution were minimized by a design 
decision that restricts all threads from the same user task to 
execute on the same processor. In a system supporting 
only BSD “processes”, this design decision only impacts 
the BSD single server, which is the only user task with 
multiple threads. 

Thread Migration: In Mach, user threads are free to 
migrate between processors. We changed Mach changed 
so that whenever a new task is created, a processor is 
selected (via round-robin) to which all threads created 
under the task are bound. This means that there is no load 

balancing built into this implementation. Threads are 
assigned permanently to a specific processor (threads are, 
however, dispatched on the “master processor” for some 
portion of 40 processing). The mechanism to reassign a 
task and its threads to a different processor was 
implemented, but no policy was developed to cause the 
reassignment to occur. 

These restrictions don’t hold for kemel threads, some of 
which are bound to the “master” processor while others are 
free to migrate. 

Thread migration is a problem in a non-cache coherent 
machine. The kemel’s shared data that is protected by 
simple locks will remain coherent (threads can’t yield or 
block while holding a simple lock -- so they can’t be 
migrated while accessing this data). Kernel threads that 
can migrate can lose coherence to other types of data (e.g. 
data protected by complex locks, data on their stack). 

For this reason, the kemel has been modified to keep 
track of the last processor on which each thread executes. 
Each time a thread is dispatched, this is examined, and if 
the thread has migrated, a message is sent to the previous 
processor. Both the previous and the current processors 
invoke a routine to flush the entire contents of their data 
caches. This guarantees coherence. 

YO Management: Each processor in the POWER14 
system has non-shared access to its own 40 bus. It would 
have been feasible, but difficult, to merge all the 
processors’ devices into a global device name space. 
Instead, only the devices from one processor, called the 
“master”, are made visible. All 40 operations are 
funneled through the “master”. 

This implementation allowed the device drivers and 
interrupt handlers to execute, for the most part, without 
change. Stubs were added to the device drivers to bind the 
calling thread to the master until the U0 is queued, at 
which time the thread is returned to its previous state, 
bound again to its previous processor if appropriate. 

4. Cache Violation Detection 

4.1 naditional Tools 

When the system fails in such a way that a coherence 
problem is suspected, locating the problem is usually a 
matter of reviewing all the code that deals with the 
(possibly) incoherent data structure, looking for failures to 
flush or store. Unfortunately, it’s often difficult to 
determine the cause. By the time the problem manifests 
itself in a failure, the source of incoherence may be very 
hard to identify. 

An on-line debugger may be of little value for 
determining the type and source of the failure. The 
execution of the debugger can interfere with the cache 
state, hiding the fact that a stale cache line caused a 
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problem. Several times in debugging a problem the only 
approach to isolating the failure was to modify the source 
code to report the execution time values of data and to 
rebuild the kernel. 

During the first three months of testing only three 
coherence problems were resolved. It became clear that it 
might take years of work before the modified system 
would run. When the fourth problem appeared, a decision 
was made to either develop some tools and techniques to 
enhance debugging, or to abandon the project. 
Fortunately, a mechanism that could be used to detect 
coherence “violations” was developed. 

4.2 Violation Detection 

The foundation for our mechanism for detecting cache 
violations is the “promotion”, through macros, of the 
memory block siLe to be the same as the page size. 
Memory allocations occur on page boundanes. Partitions 
that were private to a memory block now occupy an entire 
page. Since most partitions fit into a single memory block, 
this results in internal fragmentation of 98% (63/64). 
Low-level operating system code was written which 
maintains state information for every page (partition) of 
shared kernel data. This code is called by the macros that 
are used to invoke the cache management operations and 
manipulates page table access and state information for the 
shared data being flushed. Page table access to these pages 
is controlled, as in the page coherence model, on either a 
thread or a processor basis so that accesses to this data 
cause program traps. These traps are handled by low-level 
code which checks and maintains the state of the shared 
data, reporting inconsistencies as cache (protocol) 
violations. 

Thread-Based Detection: The first tool developed 
maintains state information on a per-thread basis. Each 
thread’s initial access to shared data pages is set to None. 
The macros used to invalidate and store sections of data 
were modified so that state information could be 
maintained about their use. At page fault time, the state is 
examined to ensure that the thread flushed the data, then its 
access is set to either WO or R/W based on the type of 
fault. When a block is stored, the thread’s access is 
changed to WO. 

State transitions for one thread’s access to a page cause 
the system to examine, and possibly modify, other threads’ 
states, reporting violations as appropriate. Consider an 
example where thread, invalidates some data and then 
blocks waiting for some event. If in the interim another 
thread invalidates and mohfies this data, the state 
information for thread, is reset. If thread, is resumed and 
touches the data (without another invalidate), a violation 
will be reported. In all, there are 41 types of protocol 
violations that can be detected in this scheme. Those 

interested in seeing the page state transition diagram for 
this facility are referred to [Roc93]. 

Probably the most significant benefit of this scheme is 
its ability to detect most, but not all, protocol violations 
when running on a uniprocessor. The strength of this 
mechanism is that those violations it can detect are reliably 
reported whenever they occur. 

The most significant limitation of the thread-based 
mechanism is that it has no awareness of locks and the data 
they protect. It does not always detect protocol failures 
that involve the improper sequencing of locking and 
coherence operations. This is a significant class of 
problems that was revealed only by implementing the 
Processor-Based detection as described in the next Section. 

Processor-Based Detection: After further testing using 
the thread-based detection scheme revealed no more 
problems, the system was moved to the prototype machine. 
Unfortunately, the system still suffered what appeared to 
be data coherence problems. Recognizing that some 
classes of problems may have gone undetected by 
thread-based detection, a processor-based detection 
scheme was developed. 

In this mechanism each processor maintains 
information on a per-page basis. Whenever a processor’s 
access level to a page increases (None + R/O + R/W) it 
sends a Cross Inquiry IPC message to the other processors. 
The receiving processors check to see if this page has been 
modified since it was last stored, and if so, a violation is 
reported (by both the sender and the receiver). This is one 
example of the 10 dfferent protocol violations that can be 
detected using this scheme. 

4.3 Violation Detection Results 

The effort expended to develop the testing environment 
was well spent. Thirty coherence problems were detected 
and resolved in the three weeks of testing that were 
required before the test cases ran cleanly. Some were of 
such an obscure nature that it is doubtful that they would 
have been found otherwise. 

This environment required an average of 0.5 days to 
identify and resolve one problem compared to an average 
of one month using “traditional” debugging methods. For 
the 30 problems detected, this represents a savings of 29.5 
months. 

A result of the internal 
fragmentation is that kernel data requires 64 times as much 
real memory. This required changing the kernel memory 
pools and increasing the real memory of the test machine 
to 64MB. The size of the kernel image grew from 480- 
to 3.6MB. 

Performance: The performance of the system with 
violation detection enabled is abysmal; most operations are 
approximately 1,OOO times slower. This results from the 
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page faulting activity. Each time a thread is dispatched, all 
the kernel data is mapped to None. The first reference to a 
page causes a page fault. If the first reference to a page is a 
read, then the page is mapped R/O, which causes the first 
write access to cause a fault as well. When an invalidate is 
issued, the page access is set to None, and the thread could 
begin faulting again. Every time a thread suspends or 
blocks, the status of the pages it touched are examined to 
determine whether or not they have been stored back to 
real memory. In addition, the access to each kernel page is 
set to None to prepare the state for the next thread. 

With the violation detection facility enabled, it took 
over three days to boot the system to a login prompt. For 
this reason it was necessary to add a facility to turn on the 
violation detection at will, rather than automatically at 
boot time. Each time the system was booted, the detection 
code was turned on only after it progressed to the point 
reached in the previous debugging session. 

5. Effort 

The most effort of this project (five person-months) was 
spent on the Mach microkemel (machine independent) 
code, categorizing the data and adding the appropriate 
flushing logic. The original 95,000 source lines in release 
MK67 required 4,000 new and modified lines of code. Of 
these, 2,754 were cache flushing macros and 140 were 
padding macros used for aligning data in 30 different data 
structures. There were 82 different locks defined which 
represents a measure of the partitioning requirements. No 
count of the total number of external variable definitions 
was made, but 483 of them were moved to assembly 
source files to accomplish correct virtual storage mapping 
and correct memory block alignment and grouping. 

Approximately four person-months of effort went into 
changes to the machine dependent code. The original port 
did not support multiprocessing systems, and most of the 
effort was spent here. The original base of 30,821 lines of 
code grew to 40,023; an increase of 9,202 lines. Of these, 
297 were cache flushing macros. There were 140 variable 
definitions that were moved to assembler files. 

Developing the cache violation detection facility 
required approximately one month of effort. Of this, three 
weeks were needed to develop the thread-based model; 
one week for adding the processor-based code. The effort 
resulted in approximately 1,300 lines of C code. 

The testing phase lasted approximately four months. 
Most of this was time spent on the POWEFt/4 Prototype 
prior to the implementation of the violation detection code 
(three months). After the detection code was developed, 
three weeks were spent testing on a uniprocessor, and one 
week was spent on the multiprocessor. 

There is little chance that this project would have been 
completed without the development of the detection 
tools. Cache coherence bugs do not lend themselves to 
resolution through conventional debugging techniques. 

6. Performance 

6.1 Benchmarks 

Two benchmarks were used to measure the 
performance of the operating system. Since the primary 
objective of the project was to demonstrate correct 
function and not performance, a random selection from the 
SPEC benchmark suite was made. 

The Espresso benchmark executes espresso 2.3, an 
integer benchmark from U.C. Berkeley, using the input file 
bca.in. Li is a CPU intensive benchmark implementing a 
Lisp interpreter, based on XLISP 1.6 and written in C. 
Version 1.0 of Li, developed at Sun Microsystems, was 
used. 

Since runs with each combination of the four processors 
were desired, and since no load balancing policy was 
implemented in the system, each benchmark consisted of a 
shell script that executes, in the background, twelve 
instances of the same program. 

6.2 Base vs. Multiprocessor Enabled Code 

The data structures and operations needed to run on a 
multiprocessor (the locks, flushing and so on) are written 
as macros in Mach. By changing preprocessor definitions, 
it is possible to “compile out” all the code that is necessary 
only when executing on a MP, producing a uniprocessor 
version of the system. An interesting measurement 
compares this uniprocessor version of the operating system 
(labeled UP) with the version that has been enabled for 
cache coherence and multiprocessor support (labeled M p )  
running on a the same uniprocessor. The UP version can 
take advantage of the fact that it is running on a 
uniprocessor. It does not need to perform any locking, 
flushing, and IPC queueing operations. Table 2 shows the 
results of executing both benchmarks on an IBM RISC 
System/6OOO model 530 with 128MB of real memory. 

The real fields represent the elapsed (wall clock) time 
for the benchmark. The user and sys fields show the 
accumulated amount of CPU time directly spent executing 
the job as divided between user mode and kernel (system) 
mode. The CPU Share field is calculated as real / (user + 
sys) and represents the portion of the CPU cycles available 
for the duration of the benchmark that were used directly 
in the execution of the jobs. 

This comparison shows that the MP version provides 
overall throughput of between 2/3 and 3/4 that of the 
unmodified (UP) version. The most significant change 
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Li (Lisp Espresso (bcah) System/6000 Interpreter) 
Model 530 

real (secs.) 228.5 338.5 
user (secs.) 220.3 243.4 

-61.3 sys (secs.) 

4,301.6 5,550.6 
4,229.4 4,698.9 

., 67.0 . 765.7 

I 3:49 I 5:39 11 1:11:41 I 1:32:31 real 
(hh: mm :ss) 

Table 2. Unmodified (UP) vs. Modified (MP) On a 
Uniprocessor 

between the two systems is the sys component. It 
represents the time this task was executing the kemel code 
which, of course, was modified for cache coherence and 
multiprocessor support. This is a factor of twelve larger 
for the M P  system. Although no instrumentation was 
included which would help quantify the causes of the 
increase, there are several contributing factors: 

Locking operations. The UP version has locks and 
locking operations “compiled out“ of the kemel. The MP 
version does not. Each lock/unlock operation requires 
acquiring a (simulated) semaphore, flushing the cache line 
containing the lock. testing the lock’s value, setting the 
lock value. storing the cache line. rind releasing the 
semaphore . 

Cache misses. When the kemel first accesses shared 
kemel data after acquiring the appropriate lock, it flushes it 
to eliminate the possibility of stale data, This 
unfortunately guarantees that the next access will be a 
cache miss. 

Cache store with synchronize. Before the kemel 
releases a lock it must store any changes to real memory 
and synchronize the operation to be sure the lock is 
released only after the data is stored. This is an even 
longer operation than required as a result of a cache miss. 

MP code. The Inter-Processor Communication (IPC) 
code is not disabled when only running on a uniprocessor. 
Any requests that need broadcasting are still added to the 
IPC queue. Of course, the item is immediately dequeued 
since the count field will be zero, but the overhead of 
building and queueing is still there. 

6.3 Scalability 

The processor-based model implemented for user tasks 
does not lend itself to low overhead, concurrent accessing 
of shared data for cooperating processes. The cache cross 
interrogate (XI) protocols require less overhead when 
implemented in hardware rather than software (no context 

switching). The unit of protection is a page (rather than a 
cache block for hardware-based coherence schemes) 
which can lead to more XI mffic because of a higher 
incidence of false sharing. 

The system, therefore, was measured for its scalability 
in a throughput environment using the two benchmarks 
described earlier. It is of value to note that even though the 
programs that comprise the benchmark are not themselves 
cooperating user processes, the BSD single server does 
share memory with user tasks. Each task has a three page 
data area that it shares with the BSD server. The server 
task and the emulator code in the user task share this area 
in R/W mode in an effort to reduce message passing 
through the kemel. 

Table 3 shows the results of executing these 
benchmarks on the POWEW4 Prototype machine 
configured as a 1, 2, 3, and 4-way multiprocessor. Each 
processor had 64MB of local memory with access to 
128MB of shared memory. 

The most significant results from these benchmarks is 
that the system appears to scale well as a batch throughput 
machi ne. 

As mentioned earlier, there is no load balancing policy 
implemented for the system; tasks are assigned 
permanently to a specific processor for the duration of their 
execution. This means that in each of the configurations, 
one of the processors is not only executing the Same 
number of benchmark jobs as the others, but in addition, it 
is executing all of the BSD server code. Since the 
benchmark is not considered complete until all twelve jobs 
are finished, there is some amount of time near the end of 
the benchmark where all the processors, except the one 
that’s running the BSD server, are idle. The availability of 
this excess capacity has not been included in the 
throughput analysis. 

7. Conclusions 

The most significant result of this project is that it 
demonstrates that an existing multiprocessor operating 
system can be molfied to function correctly on a 
non-cache coherent multiprocessor that caches shared data 
while exporting a coherent, strongly ordered, symmetric 
multiprocessor view to users. Not only can it be 
accomplished, but it required only 14 person-months of 
effort to complete. 

The second most significant result comes from the 
potentd scalability of the resulting system. On a four 
processor SMC the system provides between 3.26 and 3.94 
times the throughput of a single processor. That the 
system performs so well is especially promising since 
there was no priority given to efficiency issues during the 
development. Once the system was running, no effort was 
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POWEW4 Espresso 
Prototype lCPU I 2 CPUS I 3CPUs I 4CPUs lCPU 2 CPUS 

9,015.5 

Li 
3CPUs 4CPUs 
6,127.3 4,635.6 real (secs.) 

user (secs.) 
sys (secs.) 

12,229.2 I 12261.6 I 12,360.0 
1,005.3 528.5 382.1 308.5 18,264.3 
660.3 646.5 646.7 653.1 12,504.2 
199.3 241.6 25 1.3 259.2 4,029.0 4,711.5 

2:30:16 
188% I 286% I 375% 

5,267.8 5,055.2 
1:4207 1:17:16 

I I I 1 I 1  I I I 

Speed UP 1.00 I 1.90 2.63 I 3.26 11 1.00 I 2.03 I 2.98 I 3.94 

Table 3. Benchmark - Multiprocessor Results 

real (hh:mm:ss) 
CPU Share 

made to tune it or to bias the results by selective reporting. 
The benchmarks themselves were randomly selected. 

A major conclusion of this effort is that although it is 
possible to construct a system that tolerates non-cache 
coherent hardware, it is nearly impossible to test it without 
access violation detection assistance. In our case, we 
developed software techniques that were sufficient, but the 
elongated execution times were so severe that it would be 
difficult to do thorough testing without special hardware 
assistance. 

We have shown that an N-way SMC can be made to 
appear to the user as an N-way symmetric multiprocessor. 
More generally, for scalability or redundancy purposes, 
these N processors can be subset into M partitions with 
each partition executing as a symmetric multiprocessor, 
forming an M-node cluster. 

16:45 8:49 6:22 5:09 5:04:24 
86% 168% 235% 2%% 91% 
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