
Operating System Support for Shared Memory Clusters

Ronald L. RockholdSt James L. PetersonS

$ IBM Corporation. Advanced Workstations and Systems, Austin, TX
t Florida Institute of Technology. Melbourne, FL

Abstract
This paper addresses a purely software-based solution

to the multiprocessor cache coherence problem by
structuring an operating system to provide for the
coherence of its own data while exporting coherent
memory to user processes.

Also covered are the results of a proof-of-concept port
of Mach 3.0, using the principles in this paper, to a
prototype of the IBM Shared Memory System POWER14TM,
a Shared Memory Cluster. This is believed to be the first
implementation of a commercial operating system on a
non-cache coherent machine and required the development
of a software technique to detect coherence violations.
Benchmark results show that on the four CPU system this
solution provides a throughput increase of up to 3.9 times
that of a single processor.

1. Introduction

1.1 The Cache Coherence Problem

The use of private caches in a multiprocessor (M P)
creates the cache coherence (CC) problem. When a
processor first references a data item, the memory block
(typically 16 to 256 bytes) that contains it is loaded into its
cache. Subsequent references to data items are satisfied
from the cached copy. Thc CC problem occurs when two
or more processors, using their private caches, share
changeable data. A data staleness problem results when a
processor’s access to shared data is satisfied from a cached
copy of a memory block which has been modified by other
processors since it was last loaded. A data integrity
problem occurs (in copy-back schemes where the entire
memory block is copid back to memory) when two
processors modify different variables that reside in the
same memory block; regardless of the order in which the
cached blocks are copied back to real memory, the correct
value of both variables will not be reflected.

Solutions to the CC problem are categorized by the
memory models they support. These describe how, when,

1060-3425/94 $3.00 0 1994 IEEE

and for which shared data items memory accesses are
synchronized.

The strongest model, and the one most commonly and
naturally assumed by programmers, is the one provided by
uniprocessor systems. The execution of instructions in
cooperating processes are interleaved -- memory changes
caused by one instruction are immediately and consistently
“seen” by all others. Multiprocessors which preserve this
uniprocessor image of memory access coordination are
defined by Lamport [Lam791 to be sequentially consistent
and conforms to the strongly ordered memory access
model. Until recently this was the only model that was
provided by Symmetric Multiprocessors (SMPs) .

The weakest model, which we will call unordered,
provides no access synchronization between multiple
processors that access shared memory.

Although there are other models that fall between these
such as the weakly-ordered model [DSB86] (used in the
Convex SPP) and the release consistency model
[Gha+90] (used in the Stanford DASH system [Len+90]).
this paper deals only with the two extremes where the
operating system is adapted for execution on an unordered
multiprocessor while providing a strongly ordered memory
model to users.

1.2 Shared Memory Clusters

The Shared Memory Cluster (SMC) is emerging as an
architectural base for Massively Parallel Processing (MPP)
systems. SMCs are multiprocessors typified by their
support for memory models that aren’t strongly ordered.
The weakened memory model enhances the scalability of
SMCs. The processing elements (PES) can be off-the-shelf
uniprocessor chips with private caches that buffer
loa4store accesses to both private memory and a common
pool of shared memory. This pool can be centralized as in
the IBM Shared Memory System POwER/4TM [IBM93] or
distributed as in the Convex SPP.

86 Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

1 3 IBM Shared Memory System POWEN4

The IBM Shared Memory System POWEW4 combines
four IBM POWER RISC processors into a single system.
Each processor has private access to one local memory
card (from 16 to 128 MB) and an IBM Micro Channel I/O
Bus. In addition, each processor has shared access via a
non-blocking switch, to up to 896 MB of shared memory
(without cache coherence controls) and an Atomic
Complex that provides semaphore operations for
serialization and interprocessor communications. Figure 1
shows the system overview.

I Memory Interconnection I

Shared Memory

Figure 1. IBM Shared Memory System POWEN4

Each PE in the POwER/4 has an 8KB instruction cache
and a 32KB data cache. The data cache is four-way set
associative with 512 cache blocks of 64 bytes each. The
cache management operations are those provided by the
unmodified PES. These include instructions to:

Invalidate an address. The contents of the cache block
containing the address are discarded.

Store an address. The cache block is copied to real
memory.

Flush an address. The cache block is invalidated after it
has been stored if it was dirty.

Synchronize cache. This instruction &lays until all of
the in-flight store and flush operations have completed.

2. User Data Coherence

While it may be possible to rewrite all applications to
run on an unordered model, our goal was to be able to run
existing applicruions which were written assuming a
strongly ordered model of memory.

2.1 Coherence Conditions

Coherence of memory accesses requires that all
accesses to shared memory always retrieve the result of the
latest write to that memory. When caches are being used,
the following Coherence Conditions will provide memory
coherence:
1.

2.

3.

4.

5 .

Multiple processors can have read access to the Same
memory block provided no processor has write access.
At any one time only one processor can have write
access to a specific memory block.
A modified memory block is stored to real memory
before another processor receives an access right for
that memory block.
A processor’s fust access to a memory block that has
been modified by a different processor is satisfied from
real memory, not from its cache.
If a processor is executing with write access to a
memory block, then it can also have read access; but
no other processor can have read or write access to that
memory block.

2.2 Page Coherence

The Coherence Conditions require that accesses to
shared memory on one processor change the way in which
memory is cached and accessed by other processors. For
example, if processor A is reading a shared memory block
and processor B attempts to write to that memory block,
we must prevent processor A from reading again until the
write from processor B is stored back from processor B’s
cache into shared memory. In addition, processor A’s
cached version must be invalidated to force the next
reference to get a new copy of the modified data from
memory.

We can use the page table to control the access to
memory that is shared between user programs. On the
POwER/4,64 memory blocks (64 bytes each) are wholly
contained in each page (4KB). Each processor maintains
its access level to each page as either None, Read Only
(WO), or ReaWrite 0. Figure 2 shows the
per-processor state diagram for each shared user page.

SharedRead and Shared. Write are synchronous
requests that are sent to the other processors that may have
the shared page mapped Processors that receive a
Shared.Reud notification for a page they have mapped as
R/W must store the page’s memory blocks and reduce all

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

(Send Shared.Readj / \ (Send Shored.Write)

I / \ \
Shared.Wri& Shared.Wrire

Unvolidare the page) (Flush the page) A-
SharedAead (Store the page)

Wnte Fault

3
i Sen d Shared. Wri re)

Figure 2. Per-Processor Page Access State Diagram
for Coherence of Shared User Pages

access on their processor to WO before replying. A
processor that receives a Shared.Wrife must flush the page
if it is mapped R/W, then reduce all access to None before
replying.

Thus in our example, both processor A and processor B
initially have no access to the shared data. When
processor A attempts to read the data, a page fault occurs.
The operating system sends a SharedRead request to other
processors, changes its page table to allow read access, and
resumes execution of the user program on processor A.
Later when processor B tries to write into the shared data,
a page fault occurs on processor B. The operating system
sends a Shared. Write request to other processors.
Processor A invalidates its cache copy of the shared data,
and changes its page table to deny further access to the
shared data. Processor B waits for the reply from
processor A and then changes its page table to allow write
access to the shared data. If processor A reads the data
again, it will again fault, sending a SharedRead request to
processor B which will store the shared data from its cache
into memory, reducing the allowed access in its page table
to read access. Processor A waits for the reply from
processor B and then changes its page table to also allow
read access to the shared data.

2.3 Performance

Providing cache coherence via the page protection
mechanism has two drawbacks compared to hardware
solutions (which are memory block-based). First, the
latency for software page fault handling is higher than the
latency for hardware coherence schemes because of the

context switching required for handling the
page/protection fault. In addition, if page tables are
maintained in local memory that can only be accessed
from the owning processor, messages must be used, further
increasing the overhead.

Second, false sharing increases since the shared unit
size increases EK891 from a memory block (64 bytes) to
a page (4K). As an example, consider a pair of
cooperating processes, executing on different processors,
sharing data that resides in two different memory blocks
that are in the same page. Assume that one process is
updating data in one memory block while the other is
simultaneously updating data in the other memory block.
In a hardware coherent environment no coherence logic is
invoked since the operations are in different memory
blocks. But in the page-based environment, each access
will likely cause a page fault since the updates are taking
place to the same page. Ownership (or the right to write to
the page) could switch back and forth between the two
processors on every access - sometimes called the
“Ping-Pong” effect.

One technique to reduce the “Ping-Pong” effect is to
provide a processing window during which time access to
the page won’t be taken away. Any other processes
faulting during this window would be delayed.

Application awareness of the memory block size (in
this environment the size of a page) can be used to reduce
the “Ping-Pong” effect (LF921 and the coherence overhead
[AH91][JD92]. Applications which manipulate rows or
columns of a matrix in parallel on different processors can
allocate the units of work in multiples of the page size to
reduce the cost of software coherence.

3. OS Coherence

3.1 Mach 3.0 Microkernel

For this project, we decided to modify an existing
operating system to run on a prototype for the IBM Shared
Memory System POWER/4. The operating system was
Mach 3.0 from Carnegie-Mellon University. The Mach 3.0
system [Acc+86] was selected because of the manageable
size of its multiprocessor-enabled microkemel and the
pre-existence of a port to a (uniprocessor) IBM FUSC
S ystem/6OOO.

At the hean of a Mach-based operating system is the
Mach microkemel which executes on the bare hardware
and exports a machine independent interface to its users.
What are normally considered the typical operating system
services are layered above the Mach microkemel as a set
of servers that run in user mode. Since servers provide
most of the tradtional system services, porting an
“operating system” that runs on Mach to a different

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

platform is simplified because the Mach microkemel itself
hides most of the machine dependencies.

Mach provides BSD functionality via a user level server
-- a single Mach task with multiple threads. Since user
tasks receive a coherent view of memory (Section 2). the
BSD server can run unmodified on a SMC -- only the
microkemel must be adapted to execute with non-coherent
memory, reducing the amount of work to be done. Figure
3 shows the relationship between the microkemel and its
user tasks.

BSD Server BSD Processes *-
User Mode

a a
A

Kernel Mode

Mach 3.0 Microkernel

Figure 3. Mach 3.0 Structure

3.2 Thread-Based Model

The microkemel was adapted to non-coherent memory
by adhering to the Coherence Conditions listed above with
one major exception. The microkemel is structured as a
set of kernel threads which may execute on different
processors. For the microkemel, each thread is considered
a separate-processor for the Coherence Conditions.

3.3 Mach Access to Shared Data

Processes that cooperate by sharing data, even on
coherent machines, must do so in a way that guarantees
data integrity. Mach has been designed to run on multiple
processors and uses locks to provide mutual exclusion for
critical sections [Bla+91]. Mach uses different locks for
different data items. This allows a high degree of
parallelism since the same critical section can be executing
simultaneously on different processors against different
instantiations of a data structure.

3.4 Preserving Data Integrity

The Coherence Conditions require controlling access to
individual memory blocks. Since Mach uses locks for

mutual exclusion, the data items protected by a specific
lock cannot reside in the same memory block with data
protected by a different lock. Specifically, shared data
items are partitioned by their access (in Mach's case,
locking) protocol; data items protected by exactly the same
protocol form a partition. Items in the same partition can
be packed into the same memory block(s) and any one
memory block cannot contain data from multiple
partitions. Although there are optimizations to allow some
of these partitions to be combined', this solution is
reasonably efficient and is easy to compute.

Many data items are partitioned naturally by categories
that more broadly describe how they are accessed. These
categories also define the options available for placement
in private or shared memory and the most restrictive
protection that can be assigned. Table 1 summarizes these
issues.

An example of the process used to partition the shared
data by access protocol (the R/W Multiple Threads
category) comes from the zone structure used in the kernel.
The zone structure manages a pool of quickly allocatable
kernel memory. One zone structure is allocated for each
pool. Figure 4 shows the some for the zone structure (as
modified for memory block partitioning).

Access to all the members in part A is protected by
locking either zone-S-lock (a Mach simple lock) or
zone-C-lock (a complex lock) based on whether the
memory for this zone is pageable. So the members in part
A, all having the same access protocol, form one partition.
In Mach, a complex lock contains a simple lock to protect
its data structures, so zone-C-lock (section B) is in a
partition by itself. Finally, next-zone (section C) is a link
field that joins together all of the instantiated zone
structures. The queue header and the next-zone fields
from all the zone structures are protected by a separate
lock and form a third partition.

Each instantiation of a zone requires the allocation of
three memory blocks. The MBLOCK-PAD macros have
been inserted in the structure to allocate enough space to
force the next element to a memory block boundary. This
assumes that the structure is block aligned. To enforce this
alignment, the internal Mach memory allocation routines
were changed to always allocate memory on memory
block boundaries.

Partitions of statically allocated external variables must
also be memory block aligned and separated. To
accomplish this requires an extension to the C

1. Consider a system with two locks, LA and LB, where some data items
are protected only by LA, some by L,, and the remainder by holding LA
and LB simultaneously. The data is partitioned into three sets labeled PA.
PB, and PAB, respectively. Let Pm,. PAeb PAB3 be any partitioning of
PAB. Then an optimization for this system is PA U PMl, Pm2, PB U PABY

89

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

ypedef struct zone (

struct slock zone-S-lock; /* generic lock */
int count; /* Number of elements used now*/
vm-offset-t free-elements;
vm-size-t cur-size;
vm-size-t max-size;
vm-size-t elem-size;

5, vm-size-t alloc-size;
boolean-t doing-alloc; /* is zone expanding now? */
char
unsigned int

/* current memory utdization */
/* how large can this zone grow */
/* size of an element */
/* size used for more memory */

mne-name;/ a name for the mne */

pageable : 1,
sleepable : 1,
exhaustible :1,
collectable : 1,
expandable : 1 ;

/* zone pageable? */
/* sleep if empty? */
/* merely retum if empty? */
/* garbage collect empty pgs */
I* expand zone? */

_.

MBLOCK-PAD(sizeof(struct slock) + ... + sizeof(int))
I B lock-data-t zone-C-lock; /* Lock for pageable zones */
L

MBLOCK-PAD(sizeof(1ock-data-t))
I c struct zone *next-zone; /* Link for all-zones list */

1 *zone-t;
I

Figure 4. The Mach zone structure

progranming language that allows alignment requirements
to be specified and passed to the loader (as in GNU CC).
Since this was not available in the compiler being used for
the port. all extemal declarations of shared data were
changed to definitions and moved to assembly code files
where alignment facilities could be used.

3.5 Preventing Data Staleness

Flushing Strategy: The approach used in this project
allows data to remain in the cache between critical section
executions. Each time a critical section is entered, shared
data is flushed before it is touched, forcing the next
reference to come from memory. Modified data is stored
to memory prior to leaving the critical section thus
ensuring that a valid copy exists should it be needed on
another processor. This approach was used because it
could be (but hasn‘t been) extended to have staleness
“awareness”, much like the Version Verifrcation Scheme
proposed by Tartalja and Milutinovic [TM91], which
could be used to avoid the flush when cached copies aren’t
stale.

Static Data: Some of the shared data accessed within a
critical section may be static in nature. When the lock
protecting the data is instantiated, the addresses and
lengths of these regions are well known and don’t change.

Data
Category
Read Only
Constants

Read Only
After
Initializatior

Write one
processor
Read same
processor

Write one
processor,
Read many

R/W Single
Thread

R/w
Multiple
Threads

Memory
Placement

Local

Shared

Local

Shared

Local if
thread
cannot

migrate.
Shared

otherwise

Shared

Virtual
Storage

Mapping

WO

WO

R/w
owner,

None for
others

R/w
owner,
WO for
others

R/W on
active

processor,
None on
others

Partitioning

Unpartitioned
WO data can be

distributed
across

all other
partitions.

One per
processor

One per thread

By access
protocol

Table 1. Management of Kernel Data

The Mach functions used for initializing locks were
changed to include the specification of up to two data areas
which are recorded in the lock structure itself. The lock
and unlock functions were changed so that these areas
were flushed and stored appropnately.

Dynamic Data: Some of the data associated with locks
is dynamic in nature, changing as the state of the system
changes. A common example is a lock protecting a queue
header (static) and all the queue chain fields of those
structures llnked on the queue (dynamic). There are two
approaches for managing the coherence of dynamic data.
The first, which we call the encupsdated approach, is to
ensure all the data is coherent as part of the lock
manipulation, much llke the lock’s static data. This
requires an awareness of the structuring of the shared data,
which could be provided by a routine(s) whose address is
passed when the lock is initdued. Its address would be
maintained in the lock’s data structure, and it would be
invoked as the lock is manipulated. This would be similar
to a virtual method in an object oriented language.

The advantage of the encapsulated approach is that it is
tied to the data structures rather than the program logic.

90

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

When adapting existing systems for cache coherence,
intrusion into the programming logic is minimized and
logic changes don’t affect the methods that maintain
coherence. The disadvantage of this approach is that all of
a lock’s shared data is made coherent every time the lock is
used, even though in many cases, only a small portion of
the data is manipulated in any one critical section.

Another approach, which we call the distributed
approach (the one used in this project), is to insert the
cache management calls in-line with the code that touches
the shared data. Each critical section will have statements
added to invalidate shared data before it is referenced and
to store data that has been mdfied.

The advantage of the distributed approach is that only
those pieces of data that are actually touched while the
lock is held are made coherent. A disadvantage of the
distributed approach is that it is prone to over-flushing the
data that is modified. The most common cause of this
over-flushing is that subroutines may not be aware that
some of the data that they touch may already be coherent,
requiring it to also ensure its coherence.

3.6 Other Issues

The goal of this project was to determine the feasibility
of adapting an operating system to a non-coherent
environment and to roughly measure performance. This
allowed for design trade-offs that would be unacceptable
in a production environment but that had little impact on
our results.

Taskmhread Binding: Mach extends the Unix process
model by separating it into a task with possibly multiple
threads. The thread is the unit of scheduling. Each thread
has its own state that contains such things as its instruction
counter, registers, and stack. The task is the basic unit of
resource allocation, and collects the common state for its
threads. A task includes a paged virtual address space and
protected access to system resources, including its memory
mapping (all of a task’s threads share the same virtual
storage mapping), processors, and port capabilities. The
traditional notion of a Unix process is represented by a task
with a single thread.

The changes to the machine dependent code for
multiprocessor execution were minimized by a design
decision that restricts all threads from the same user task to
execute on the same processor. In a system supporting
only BSD “processes”, this design decision only impacts
the BSD single server, which is the only user task with
multiple threads.

Thread Migration: In Mach, user threads are free to
migrate between processors. We changed Mach changed
so that whenever a new task is created, a processor is
selected (via round-robin) to which all threads created
under the task are bound. This means that there is no load

balancing built into this implementation. Threads are
assigned permanently to a specific processor (threads are,
however, dispatched on the “master processor” for some
portion of 40 processing). The mechanism to reassign a
task and its threads to a different processor was
implemented, but no policy was developed to cause the
reassignment to occur.

These restrictions don’t hold for kemel threads, some of
which are bound to the “master” processor while others are
free to migrate.

Thread migration is a problem in a non-cache coherent
machine. The kemel’s shared data that is protected by
simple locks will remain coherent (threads can’t yield or
block while holding a simple lock -- so they can’t be
migrated while accessing this data). Kernel threads that
can migrate can lose coherence to other types of data (e.g.
data protected by complex locks, data on their stack).

For this reason, the kemel has been modified to keep
track of the last processor on which each thread executes.
Each time a thread is dispatched, this is examined, and if
the thread has migrated, a message is sent to the previous
processor. Both the previous and the current processors
invoke a routine to flush the entire contents of their data
caches. This guarantees coherence.

YO Management: Each processor in the POWER14
system has non-shared access to its own 40 bus. It would
have been feasible, but difficult, to merge all the
processors’ devices into a global device name space.
Instead, only the devices from one processor, called the
“master”, are made visible. All 40 operations are
funneled through the “master”.

This implementation allowed the device drivers and
interrupt handlers to execute, for the most part, without
change. Stubs were added to the device drivers to bind the
calling thread to the master until the U0 is queued, at
which time the thread is returned to its previous state,
bound again to its previous processor if appropriate.

4. Cache Violation Detection

4.1 naditional Tools

When the system fails in such a way that a coherence
problem is suspected, locating the problem is usually a
matter of reviewing all the code that deals with the
(possibly) incoherent data structure, looking for failures to
flush or store. Unfortunately, it’s often difficult to
determine the cause. By the time the problem manifests
itself in a failure, the source of incoherence may be very
hard to identify.

An on-line debugger may be of little value for
determining the type and source of the failure. The
execution of the debugger can interfere with the cache
state, hiding the fact that a stale cache line caused a

91

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

problem. Several times in debugging a problem the only
approach to isolating the failure was to modify the source
code to report the execution time values of data and to
rebuild the kernel.

During the first three months of testing only three
coherence problems were resolved. It became clear that it
might take years of work before the modified system
would run. When the fourth problem appeared, a decision
was made to either develop some tools and techniques to
enhance debugging, or to abandon the project.
Fortunately, a mechanism that could be used to detect
coherence “violations” was developed.

4.2 Violation Detection

The foundation for our mechanism for detecting cache
violations is the “promotion”, through macros, of the
memory block siLe to be the same as the page size.
Memory allocations occur on page boundanes. Partitions
that were private to a memory block now occupy an entire
page. Since most partitions fit into a single memory block,
this results in internal fragmentation of 98% (63/64).
Low-level operating system code was written which
maintains state information for every page (partition) of
shared kernel data. This code is called by the macros that
are used to invoke the cache management operations and
manipulates page table access and state information for the
shared data being flushed. Page table access to these pages
is controlled, as in the page coherence model, on either a
thread or a processor basis so that accesses to this data
cause program traps. These traps are handled by low-level
code which checks and maintains the state of the shared
data, reporting inconsistencies as cache (protocol)
violations.

Thread-Based Detection: The first tool developed
maintains state information on a per-thread basis. Each
thread’s initial access to shared data pages is set to None.
The macros used to invalidate and store sections of data
were modified so that state information could be
maintained about their use. At page fault time, the state is
examined to ensure that the thread flushed the data, then its
access is set to either WO or R/W based on the type of
fault. When a block is stored, the thread’s access is
changed to WO.

State transitions for one thread’s access to a page cause
the system to examine, and possibly modify, other threads’
states, reporting violations as appropriate. Consider an
example where thread, invalidates some data and then
blocks waiting for some event. If in the interim another
thread invalidates and mohfies this data, the state
information for thread, is reset. If thread, is resumed and
touches the data (without another invalidate), a violation
will be reported. In all, there are 41 types of protocol
violations that can be detected in this scheme. Those

interested in seeing the page state transition diagram for
this facility are referred to [Roc93].

Probably the most significant benefit of this scheme is
its ability to detect most, but not all, protocol violations
when running on a uniprocessor. The strength of this
mechanism is that those violations it can detect are reliably
reported whenever they occur.

The most significant limitation of the thread-based
mechanism is that it has no awareness of locks and the data
they protect. It does not always detect protocol failures
that involve the improper sequencing of locking and
coherence operations. This is a significant class of
problems that was revealed only by implementing the
Processor-Based detection as described in the next Section.

Processor-Based Detection: After further testing using
the thread-based detection scheme revealed no more
problems, the system was moved to the prototype machine.
Unfortunately, the system still suffered what appeared to
be data coherence problems. Recognizing that some
classes of problems may have gone undetected by
thread-based detection, a processor-based detection
scheme was developed.

In this mechanism each processor maintains
information on a per-page basis. Whenever a processor’s
access level to a page increases (None + R/O + R/W) it
sends a Cross Inquiry IPC message to the other processors.
The receiving processors check to see if this page has been
modified since it was last stored, and if so, a violation is
reported (by both the sender and the receiver). This is one
example of the 10 dfferent protocol violations that can be
detected using this scheme.

4.3 Violation Detection Results

The effort expended to develop the testing environment
was well spent. Thirty coherence problems were detected
and resolved in the three weeks of testing that were
required before the test cases ran cleanly. Some were of
such an obscure nature that it is doubtful that they would
have been found otherwise.

This environment required an average of 0.5 days to
identify and resolve one problem compared to an average
of one month using “traditional” debugging methods. For
the 30 problems detected, this represents a savings of 29.5
months.

A result of the internal
fragmentation is that kernel data requires 64 times as much
real memory. This required changing the kernel memory
pools and increasing the real memory of the test machine
to 64MB. The size of the kernel image grew from 480-
to 3.6MB.

Performance: The performance of the system with
violation detection enabled is abysmal; most operations are
approximately 1,OOO times slower. This results from the

Memory Requirements:

92

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

page faulting activity. Each time a thread is dispatched, all
the kernel data is mapped to None. The first reference to a
page causes a page fault. If the first reference to a page is a
read, then the page is mapped R/O, which causes the first
write access to cause a fault as well. When an invalidate is
issued, the page access is set to None, and the thread could
begin faulting again. Every time a thread suspends or
blocks, the status of the pages it touched are examined to
determine whether or not they have been stored back to
real memory. In addition, the access to each kernel page is
set to None to prepare the state for the next thread.

With the violation detection facility enabled, it took
over three days to boot the system to a login prompt. For
this reason it was necessary to add a facility to turn on the
violation detection at will, rather than automatically at
boot time. Each time the system was booted, the detection
code was turned on only after it progressed to the point
reached in the previous debugging session.

5. Effort

The most effort of this project (five person-months) was
spent on the Mach microkemel (machine independent)
code, categorizing the data and adding the appropriate
flushing logic. The original 95,000 source lines in release
MK67 required 4,000 new and modified lines of code. Of
these, 2,754 were cache flushing macros and 140 were
padding macros used for aligning data in 30 different data
structures. There were 82 different locks defined which
represents a measure of the partitioning requirements. No
count of the total number of external variable definitions
was made, but 483 of them were moved to assembly
source files to accomplish correct virtual storage mapping
and correct memory block alignment and grouping.

Approximately four person-months of effort went into
changes to the machine dependent code. The original port
did not support multiprocessing systems, and most of the
effort was spent here. The original base of 30,821 lines of
code grew to 40,023; an increase of 9,202 lines. Of these,
297 were cache flushing macros. There were 140 variable
definitions that were moved to assembler files.

Developing the cache violation detection facility
required approximately one month of effort. Of this, three
weeks were needed to develop the thread-based model;
one week for adding the processor-based code. The effort
resulted in approximately 1,300 lines of C code.

The testing phase lasted approximately four months.
Most of this was time spent on the POWEFt/4 Prototype
prior to the implementation of the violation detection code
(three months). After the detection code was developed,
three weeks were spent testing on a uniprocessor, and one
week was spent on the multiprocessor.

There is little chance that this project would have been
completed without the development of the detection
tools. Cache coherence bugs do not lend themselves to
resolution through conventional debugging techniques.

6. Performance

6.1 Benchmarks

Two benchmarks were used to measure the
performance of the operating system. Since the primary
objective of the project was to demonstrate correct
function and not performance, a random selection from the
SPEC benchmark suite was made.

The Espresso benchmark executes espresso 2.3, an
integer benchmark from U.C. Berkeley, using the input file
bca.in. Li is a CPU intensive benchmark implementing a
Lisp interpreter, based on XLISP 1.6 and written in C.
Version 1.0 of Li, developed at Sun Microsystems, was
used.

Since runs with each combination of the four processors
were desired, and since no load balancing policy was
implemented in the system, each benchmark consisted of a
shell script that executes, in the background, twelve
instances of the same program.

6.2 Base vs. Multiprocessor Enabled Code

The data structures and operations needed to run on a
multiprocessor (the locks, flushing and so on) are written
as macros in Mach. By changing preprocessor definitions,
it is possible to “compile out” all the code that is necessary
only when executing on a MP, producing a uniprocessor
version of the system. An interesting measurement
compares this uniprocessor version of the operating system
(labeled UP) with the version that has been enabled for
cache coherence and multiprocessor support (labeled M p)
running on a the same uniprocessor. The UP version can
take advantage of the fact that it is running on a
uniprocessor. It does not need to perform any locking,
flushing, and IPC queueing operations. Table 2 shows the
results of executing both benchmarks on an IBM RISC
System/6OOO model 530 with 128MB of real memory.

The real fields represent the elapsed (wall clock) time
for the benchmark. The user and sys fields show the
accumulated amount of CPU time directly spent executing
the job as divided between user mode and kernel (system)
mode. The CPU Share field is calculated as real / (user +
sys) and represents the portion of the CPU cycles available
for the duration of the benchmark that were used directly
in the execution of the jobs.

This comparison shows that the MP version provides
overall throughput of between 2/3 and 3/4 that of the
unmodified (UP) version. The most significant change

93

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

Li (Lisp Espresso (bcah) System/6000 Interpreter)
Model 530

real (secs.) 228.5 338.5
user (secs.) 220.3 243.4

-61.3 sys (secs.)

4,301.6 5,550.6
4,229.4 4,698.9

., 67.0 . 765.7

I 3:49 I 5:39 11 1:11:41 I 1:32:31 real
(hh: mm :ss)

Table 2. Unmodified (UP) vs. Modified (MP) On a
Uniprocessor

between the two systems is the sys component. It
represents the time this task was executing the kemel code
which, of course, was modified for cache coherence and
multiprocessor support. This is a factor of twelve larger
for the M P system. Although no instrumentation was
included which would help quantify the causes of the
increase, there are several contributing factors:

Locking operations. The UP version has locks and
locking operations “compiled out“ of the kemel. The MP
version does not. Each lock/unlock operation requires
acquiring a (simulated) semaphore, flushing the cache line
containing the lock. testing the lock’s value, setting the
lock value. storing the cache line. rind releasing the
semaphore .

Cache misses. When the kemel first accesses shared
kemel data after acquiring the appropriate lock, it flushes it
to eliminate the possibility of stale data, This
unfortunately guarantees that the next access will be a
cache miss.

Cache store with synchronize. Before the kemel
releases a lock it must store any changes to real memory
and synchronize the operation to be sure the lock is
released only after the data is stored. This is an even
longer operation than required as a result of a cache miss.

MP code. The Inter-Processor Communication (IPC)
code is not disabled when only running on a uniprocessor.
Any requests that need broadcasting are still added to the
IPC queue. Of course, the item is immediately dequeued
since the count field will be zero, but the overhead of
building and queueing is still there.

6.3 Scalability

The processor-based model implemented for user tasks
does not lend itself to low overhead, concurrent accessing
of shared data for cooperating processes. The cache cross
interrogate (XI) protocols require less overhead when
implemented in hardware rather than software (no context

switching). The unit of protection is a page (rather than a
cache block for hardware-based coherence schemes)
which can lead to more XI mffic because of a higher
incidence of false sharing.

The system, therefore, was measured for its scalability
in a throughput environment using the two benchmarks
described earlier. It is of value to note that even though the
programs that comprise the benchmark are not themselves
cooperating user processes, the BSD single server does
share memory with user tasks. Each task has a three page
data area that it shares with the BSD server. The server
task and the emulator code in the user task share this area
in R/W mode in an effort to reduce message passing
through the kemel.

Table 3 shows the results of executing these
benchmarks on the POWEW4 Prototype machine
configured as a 1, 2, 3, and 4-way multiprocessor. Each
processor had 64MB of local memory with access to
128MB of shared memory.

The most significant results from these benchmarks is
that the system appears to scale well as a batch throughput
machi ne.

As mentioned earlier, there is no load balancing policy
implemented for the system; tasks are assigned
permanently to a specific processor for the duration of their
execution. This means that in each of the configurations,
one of the processors is not only executing the Same
number of benchmark jobs as the others, but in addition, it
is executing all of the BSD server code. Since the
benchmark is not considered complete until all twelve jobs
are finished, there is some amount of time near the end of
the benchmark where all the processors, except the one
that’s running the BSD server, are idle. The availability of
this excess capacity has not been included in the
throughput analysis.

7. Conclusions

The most significant result of this project is that it
demonstrates that an existing multiprocessor operating
system can be molfied to function correctly on a
non-cache coherent multiprocessor that caches shared data
while exporting a coherent, strongly ordered, symmetric
multiprocessor view to users. Not only can it be
accomplished, but it required only 14 person-months of
effort to complete.

The second most significant result comes from the
potentd scalability of the resulting system. On a four
processor SMC the system provides between 3.26 and 3.94
times the throughput of a single processor. That the
system performs so well is especially promising since
there was no priority given to efficiency issues during the
development. Once the system was running, no effort was

94

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

POWEW4 Espresso
Prototype lCPU I 2 CPUS I 3CPUs I 4CPUs lCPU 2 CPUS

9,015.5

Li
3CPUs 4CPUs
6,127.3 4,635.6 real (secs.)

user (secs.)
sys (secs.)

12,229.2 I 12261.6 I 12,360.0
1,005.3 528.5 382.1 308.5 18,264.3
660.3 646.5 646.7 653.1 12,504.2
199.3 241.6 25 1.3 259.2 4,029.0 4,711.5

2:30:16
188% I 286% I 375%

5,267.8 5,055.2
1:4207 1:17:16

I I I 1 I 1 I I I

Speed UP 1.00 I 1.90 2.63 I 3.26 11 1.00 I 2.03 I 2.98 I 3.94

Table 3. Benchmark - Multiprocessor Results

real (hh:mm:ss)
CPU Share

made to tune it or to bias the results by selective reporting.
The benchmarks themselves were randomly selected.

A major conclusion of this effort is that although it is
possible to construct a system that tolerates non-cache
coherent hardware, it is nearly impossible to test it without
access violation detection assistance. In our case, we
developed software techniques that were sufficient, but the
elongated execution times were so severe that it would be
difficult to do thorough testing without special hardware
assistance.

We have shown that an N-way SMC can be made to
appear to the user as an N-way symmetric multiprocessor.
More generally, for scalability or redundancy purposes,
these N processors can be subset into M partitions with
each partition executing as a symmetric multiprocessor,
forming an M-node cluster.

16:45 8:49 6:22 5:09 5:04:24
86% 168% 235% 2%% 91%

8. References
[Acc+86] M. Accetta, R. Baron, D. Golub, R. Rashid, A.

Tevanian, and M. Young, “Mach: A New Kemel Foundation
for Unix Development,” Proceedings of the Summer 1986
USENIX Conference (1986): 93-112.

S.G. Abraham and D.E. Hudak, “Compile-Time
Partitioning of Iterative Parallel Loops to Reduce Cache
Coherency Traffic,” IEEE Transactions on Parallel and
Distributed Systems vol. 2 (1991): 318-328.

Young, “Loclung and Reference Counting in the Mach
Kemel,” 1991 Intemational Conference on Parallel Processing
VII. Software (1991): 11-167 - 173.

[DSB86] M. Dubois, C. Scheurich, and E Briggs, “Memory
Access Buffering In Multiprocessors,” Proceedings of the
13th International Svmposium on Computer Architecture
(1986): 434-442.

[AH911

[Bla+91] D.L. Black, A. Tevanian, Jr., D.B. Golub, and M.W.

[EK89] S.J. Eggers and R.H. Katz, “The Effect of Sharing on
the Cache and Bus Performance of Parallel Programs,”
Proceedings of the Third Intemational Conference on
Architectural S u p r t for Programming LanguaPes and
Owrating Systems (ASPLOS-11, 1989): 257-270.

[Gha+90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy, “Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors,”
Boceedings of the 17th Annual Intemational Svmposium on
Comuuter Architecture (1990): 15-26

Guide and Technical Reference (IBM Corporation, 1993).

Overhead by Compiler Data Layout and Loop
Transformation,” Laneuaees and Comuilers for Parallel
Computing. Fourth International Workshou (1992): 344-358.

L. Lamport, “How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess Programs,”
IEEE Transactions on Computers (Sept. 1979): 690-691.

[Len+9O] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
and J. Hennessy, ‘”The Directory-Based Cache Coherence
Protocol for the DASH Multiprocessor,” Proceedings of the
17th Intemational Symposium on Computer Architecture

[IBM93] IBM Shared Memorv Svstem POWER/4 User’s

[JD92] Y. J. Ju and H. Dietz, “Reduction of Cache Coherence

[Lam791

(1990): 148-159.

[LF92] M. Lu and J.Z. Fang, “A Solution of the Cache
Ping-Pong Problem in Multiprocessor Systems,” Joumal of
Parallel and Distributed Computingvol. 16 (1992): 158-171.

Operating Systems.’’ Ph.D. dissertation, Florida Institute of
Technology, 1993.

Dynamic Software Cache Consistency Maintenance Based on
Conditional Invalidation,” Proceeding of the 25th Hawaii
Intemational Conference on Svstem Sciences vol. 1 (1991):
45 7-466.

[Roc931 R.L. Rockhold, “Software-Based Cache Coherent

[TM91] I. Tartalja and V. Milutinovic, “An Approach to

95

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:17 from IEEE Xplore. Restrictions apply.

