
1

Parallel Programming with
OpenMP

Science & Technology Support Group
High Performance Computing
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

2

Parallel Programming with OpenMP
•

Introduction

•

The Basics of OpenMP

•

Synchronization Constructs

•

Some Advanced Features of OpenMP

•

Debugging OpenMP Code

•

Performance Tuning and OpenMP

•

Other Sources of Information

•

Problem Set

3

Introduction to OpenMP
●

OpenMP is an API for writing multi-threaded applications in a
shared memory environment

●

It consists of a set of compiler directives and library routines
●

Relatively easy to create multi-threaded applications in
Fortran, C, and C++

●

Standardizes the last 15 or so years of SMP development and
practice

●

Currently supported by
–

Hardware vendors
•

Cray, HP, IBM, Intel, SGI, Sun
–

Software tools vendors
•

Intel, PGI, Absoft
–

Applications vendors
•

ANSYS, Fluent, Oxford Molecular, NAG, Livermore Software, ...

●

Support is common and growing

4

The OpenMP Programming Model
•

A master thread spawns teams of threads as needed

•

Parallelism is added incrementally; the serial
program evolves into a parallel program

Parallel regions

Master thread

5

The OpenMP Programming Model
•

Programmer inserts OpenMP directives (Fortran comments, C
#pragmas) at key locations in the source code

•

Compiler interprets these directives and generates library calls
to parallelize code regions

Serial:

void main()
{
double x[1000];
for (int i=0; i<1000; i++)
{

big_calc(x[i]);
}

}

Parallel:

void main()
{
double x[1000];

#pragma omp parallel for
for (int i=0; i<1000; i++)
{

big_calc(x[i]);
}

}

Split up loop iterations among a team of threads

6

The OpenMP Programming Model
•

Number of threads can be controlled from within the
program, or by using the environment variable
OMP_NUM_THREADS

•

The programmer is responsible for managing
synchronization and data dependencies!

•

Compiling on OSC cluster systems:

ifort -openmp prog.f
ifort -openmp prog.f90
icc -openmp prog.c

7

How Do Threads Interact?
•

Shared memory model

–

Threads communicate by sharing variables.

•

Unintended sharing of data can lead to “race
conditions”

–

When the program’s outcome changes as the threads are scheduled
differently.

•

To control race conditions, use synchronization to
avoid data conflicts

•

Synchronization is expensive!

–

Think about changing how data is organized, to minimize the need

for
synchronization.

8

Pros and Cons of OpenMP

Pros
• Very simple

programming model
• Portable
• Can “mark up”

a serial

program to make it
parallel

Cons
• Requires built-in support

from compilers
• Requires shared memory
• Memory placement

directives not part of the
specification

9

The Basics of OpenMP
•General syntax rules
•The parallel region
•Execution modes
•OpenMP directive clauses
•Work-sharing constructs
•Combined parallel work-sharing constructs
•Environment variables
•Runtime environment routines
•Interlude: data dependencies

10

General Syntax Rules
•

Most OpenMP constructs are compiler directives or C
pragmas

–

For C and C++, pragmas take the form:

– For Fortran, directives take one of the following forms:

• Since these are essentially comments, compilers that
don’t support OpenMP can still compile OpenMP
programs (serially, of course!)

#pragma omp construct [clause [clause]...]

c$omp construct [clause [clause]...]
!$omp construct [clause [clause]...]
*$omp construct [clause [clause]...]

11

General Syntax Rules (cont’d.)
•

Most OpenMP directives apply to structured
blocks

–

A block of code with one entry point at the top, and one exit point at
the bottom. The only branches allowed are STOP statements in
Fortran and exit() in C/C++.

c$omp parallel

10 wrk(id) = junk(id)
res(id) = wrk(id)**2
if (conv(res)) goto 10

c$omp end parallel

print *, id

c$omp parallel

10 wrk(id) = junk(id)
30 res(id) = wrk(id)**2

if (conv(res)) goto 20
goto 10

c$omp end parallel

if (not_done) goto 30
20 print *, idA structured block

Not a structured block!

12

The Parallel Region
•

The fundamental construct that initiates parallel
execution

•

Fortran syntax:

c$omp parallel
c$omp& shared(var1, var2, …)
c$omp& private(var1, var2, …)
c$omp& firstprivate(var1, var2, …)
c$omp& reduction(operator|intrinsic:var1, var2, …)
c$omp& if(expression)
c$omp& default(private|shared|none)

a structured block of code

c$omp end parallel

13

The Parallel Region (cont’d.)

#pragma omp parallel \
private (var1, var2, …) \
shared (var1, var2, …) \
firstprivate(var1, var2, …) \
copyin(var1, var2, …) \
reduction(operator:var1, var2, …) \
if(expression) \
default(shared|none) \

{

…a structured block of code…

}

•

C/C++ syntax:

14

The Parallel Region (cont’d.)
•

The number of threads created upon entering the
parallel region is controlled by the value of the
environment variable OMP_NUM_THREADS
–

Can also be controlled by a function call from within the program.

•

Each thread executes the block of code enclosed in
the parallel region

•

In general, there is no synchronization between
threads in the parallel region!
–

Different threads reach particular statements at unpredictable
times.

•

When all threads reach the end of the parallel
region, all but the master thread go out of existence
and the master continues alone

15

The Parallel Region (cont’d.)
•

Each thread has a thread number, which is an
integer from 0 (the master thread) to the number of
threads minus one
–

Can be determined by a call to omp_get_thread_num().

•

Threads can execute different paths of statements
in the parallel region
–

Typically achieved by branching on the thread number:

#pragma omp parallel
{

myid = omp_get_thread_num();
if (myid == 0)

do_something();
else

do_something_else(myid);
}

16

Parallel Regions: Execution Modes
• Dynamic mode (the default)

–

The number of threads used in a parallel region can vary, under control
of the operating system, from one parallel region to the next.

–

Setting the number of threads just sets the maximum number of
threads; you might get fewer!

• Static mode
–

The number of threads is fixed by the programmer; you must always
get this many (or else fail to run).

•

Parallel regions may be nested, but a compiler may choose to
“serialize” the inner parallel region, i.e., run it on a single
thread

•

Execution mode is controlled by
–

The environment variable OMP_DYNAMIC.
–

The OMP function omp_set_dynamic().

17

OpenMP Directive Clauses
• shared(var1,var2,…)

–

Variables to be shared among all threads (threads access same
memory locations).

• private(var1,var2,…)
–

Each thread has its own copy of the variables for the duration of the
parallel code.

• firstprivate(var1,var2,…)
–

Private variables that are initialized when parallel code is entered.
• lastprivate(var1,var2,…)

–

Private variables that save their values at the last (serial) iteration.
• if(expression)

–

Only parallelize if expression is true.
• default(shared|private|none)

–

Specifies default scoping for variables in parallel code.
• schedule(type [,chunk])

–

Controls how loop iterations are distributed among threads.
• reduction(operator|intrinsic:var1,var2…)

–

Ensures that a reduction operation (e.g., a global sum) is performed
safely.

18

The private, default, and if Clauses
private & default

•

Don’t want to parallelize a loop if the
overhead outweighs the speedup

•

Each thread has its own private
copy of x and myid

•

Unless x is made private, its
value is indeterminate during
parallel operation

•

Values for private variables are
undefined at beginning and end
of the parallel region!

• default clause automatically
makes x and myid private

if(expression)

c$omp parallel shared(a)
c$omp& private(myid,x)

myid=omp_get_thread_num()
x = work(myid)
if (x < 1.0) then

a(myid) = x
end if

c$omp end parallel

Equivalent is:

c$omp parallel do default(private)
c$omp& shared(a)

…

c$omp parallel do if(n.ge.2000)
do i = 1, n
a(i) = b(i)*c + d(i)

enddo

19

firstprivate
•

Variables are private (local to each thread), but are
initialized to the value in the preceding serial code

•

Each thread has a private copy of c, initialized with the
value 98

program first
integer :: myid,c
integer,external :: omp_get_thread_num
c=98

!$omp parallel private(myid)
!$omp& firstprivate(c)
myid=omp_get_thread_num()
write(6,*) 'T:',myid,' c=',c

!$omp end parallel
end program first

T:1 c=98
T:3 c=98
T:2 c=98
T:0 c=98

20

OpenMP Work-Sharing Constructs
• Parallel for/DO
• Parallel sections
• single directive
• Placed inside parallel regions
•

Distribute the execution of associated statements
among existing threads

– No new threads are created.

•

No implied synchronization between threads at the
start of the work-sharing construct!

21

OpenMP Work-Sharing Constructs - for/DO
•

Distribute iterations of the immediately following
loop among threads in a team

•

By default there is a barrier at the end of the loop
–

Threads wait until all are finished, then proceed.
–

Use the nowait clause to allow threads to continue without
waiting.

#pragma omp parallel shared(a,b) private(j)
{

#pragma omp for
for (j=0; j<N; j++)

a[j] = a[j] + b[j];
}

22

Detailed Syntax - for

where each clause is one of
• private(list).
• firstprivate(list).
• lastprivate(list).
• reduction(operator: list).
• ordered.
• schedule(kind [, chunk_size]).
• nowait.

#pragma omp for [clause [clause]…]
for loop

23

Detailed Syntax - DO

where each clause is one of
• private(list).
• firstprivate(list).
• lastprivate(list).
• reduction(operator: list).
• ordered.
• schedule(kind [, chunk_size]).

•

For Fortran 90, use !$OMP and F90-style line
continuation

c$omp do [clause [clause]…]
do loop

[c$omp end do [nowait]]

24

lastprivate
•

Like private within the parallel construct - each thread has
its own copy

•

The value corresponding to the last iteration of the loop (in
serial mode) is saved following the parallel construct

•

When the loop is finished, i is saved as the value
corresponding to the last iteration in serial mode (i.e., n=N+1)

•

If i is declared private instead, the value of n is undefined!

c$omp do shared(x)
c$omp& lastprivate(i)

do i = 1, N
x(i)=a

enddo

n = i

25

reduction(operator|intrinsic:var1[,var2])

•

Allows safe global calculation
or comparison

•

A private copy of each listed
variable is created and
initialized depending on
operator or intrinsic (e.g.,
0 or +)

•

Partial sums and local mins
are determined by the threads
in parallel

•

Partial sums are added
together from one thread at a
time to get global sum

•

Local mins are compared from
one thread at a time to get
gmin

c$omp do shared(x) private(i)
c$omp& reduction(+:sum)

do i = 1, N
sum = sum + x(i)

enddo

c$omp do shared(x) private(i)
c$omp& reduction(min:gmin)

do i = 1,N
gmin =

min(gmin,x(i))
end do

26

reduction(operator|intrinsic:var1[,var2])

•

Listed variables must be shared in the enclosing
parallel context

•

In Fortran
– operator can be +, *, -, .and., .or., .eqv., .neqv.
– intrinsic can be max, min, iand, ior, ieor.

•

In C
– operator can be +, *, -, &, ^, |, &&, ||.
–

pointers and reference variables are not allowed in reductions!

27

OpenMP Work-Sharing Constructs - sections

•

Each parallel section is run on a separate thread
•

Allows functional decomposition
•

Implicit barrier at the end of the sections construct
–

Use the nowait clause to suppress this.

c$omp parallel
c$omp sections

c$omp section
call computeXpart()

c$omp section
call computeYpart()

c$omp section
call computeZpart()

c$omp end sections
c$omp end parallel

call sum()

28

OpenMP Work-Sharing Constructs - sections

•

Fortran syntax:

•

Valid clauses:
– private(list).
– firstprivate(list).
– lastprivate(list).
– reduction(operator|intrinsic:list).

c$omp sections [clause[,clause]...]
c$omp section

code block
[c$omp section

another code block
[c$omp section

…]]
c$omp end sections [nowait]

29

OpenMP Work-Sharing Constructs - sections

•

C syntax:

•

Valid clauses:
– private(list).
– firstprivate(list).
– lastprivate(list).
– reduction(operator:list).
– nowait.

#pragma omp sections [clause [clause...]]
{

#pragma omp section
structured block

[#pragma omp section
structured block

…]
}

30

OpenMP Work-Sharing Constructs - single

•

Ensures that a code block is
executed by only one thread in a
parallel region

•

The thread that reaches the
single directive first is the one
that executes the single block

•

Equivalent to a sections directive
with a single section - but a more
descriptive syntax

•

All threads in the parallel region
must encounter the single
directive

•

Unless nowait is specified, all
non-involved threads wait at the
end of the single block

c$omp parallel private(i)
shared(a)
c$omp do

do i = 1, n
…work on a(i) …

enddo

c$omp single
… process result of do …

c$omp end single

c$omp do
do i = 1, n
… more work …

enddo
c$omp end parallel

31

OpenMP Work-Sharing Constructs - single

•

Fortran syntax:

where clause is one of
– private(list).
– firstprivate(list).

c$omp single [clause [clause…]]
structured block

c$omp end single [nowait]

32

OpenMP Work-Sharing Constructs - single

•

C syntax:

where clause is one of
– private(list).
– firstprivate(list).
– nowait.

#pragma omp single [clause [clause…]]
structured block

33

Combined Parallel Work-Sharing Constructs

•

Short cuts for specifying a parallel region that
contains only one work-sharing construct (a parallel
for/DO or parallel sections)

•

Semantically equivalent to declaring a parallel
section followed immediately by the relevant work-
sharing construct

•

All clauses valid for a parallel section and for the
relevant work-sharing construct are allowed, except
nowait

–

The end of a parallel section contains an implicit barrier

 anyway.

34

Parallel DO/for Directive

c$omp parallel do [clause [clause…]]
do loop

[c$omp end parallel do]

#pragma omp parallel for [clause [clause…]]
for loop

35

Parallel sections Directive

c$omp parallel sections [clause [clause…]]
[c$omp section]

structured block
[c$omp section

structured block]
…
c$omp end parallel sections

#pragma omp parallel sections [clause [clause…]]
{

[#pragma omp section]
structured block

[#pragma omp section
structured block

…]
}

36

OpenMP Environment Variables
• OMP_NUM_THREADS

–

Sets the number of threads requested for parallel regions.
• OMP_SCHEDULE

–

Set to a string value that controls parallel loop scheduling at
runtime.

–

Only loops that have schedule type RUNTIME are affected.
• OMP_DYNAMIC

–

Enables or disables dynamic adjustment of the number of threads
actually used in a parallel region (due to system load).

–

Default value is implementation-dependent.
• OMP_NESTED

–

Enables or disables nested parallelism.
–

Default value is FALSE (nesting disabled).

37

OpenMP Environment Variables
•

Examples:

Note: values are case-insensitive!

[ipf-login1]$ export OMP_NUM_THREADS=16

[ipf-login1]% setenv OMP_SCHEDULE “guided,4”

[ipf-login1]$ export OMP_DYNAMIC=false

[ipf-login1]% setenv OMP_NESTED TRUE

38

OpenMP Runtime Environment Routines
• (void) omp_set_num_threads(int num_threads)

–

Sets the number of threads to be requested for subsequent parallel
regions.

• int omp_get_num_threads()
–

Returns the number of threads currently in the team.
• int omp_get_max_threads()

–

Returns the maximum value that may be returned by
omp_get_num_threads().

–

Generally used to allocate data structures that have a maximum size
per thread when OMP_DYNAMIC is set to TRUE.

• int omp_get_thread_num()
–

Returns the thread number, an integer from 0 to the number of threads
minus 1.

• int omp_get_num_procs()
–

Returns the number of physical processors available to the program.

39

OpenMP Runtime Environment Routines
• (int/logical) omp_in_parallel()

–

Returns “true”

(logical .TRUE. in Fortran; a non-zero integer in C) if
called from a parallel region, “false”

(logical .FALSE. in Fortran, 0 in
C) otherwise.

• (void) omp_set_dynamic(expr)
–

Enables (expr is “true”) or disables (expr is “false”) dynamic thread
allocation.

• (int/logical) omp_get_dynamic()
–

Returns “true”

or “false”

if dynamic thread allocation is
enabled/disabled, respectively.

• void omp_set_nested(int/logical expr)
–

Enables (expr is “true”) or disables (expr is “false”) nested
parallelism.

• (int/logical) omp_get_nested()
–

Returns “true”

or “false”

if nested parallelism is enabled/disabled,
respectively.

40

OpenMP Runtime Environment Routines

•

In Fortran, routines that return a value (integer or
logical) are functions, while those that set a value
(i.e., take an argument) are subroutines

•

In Fortran, functions must be declared as the
appropriate datatype

•

In C, be sure to #include <omp.h>

• Changes to the environment made by function calls
have precedence over the corresponding
environment variables
– For example, a call to omp_set_num_threads() overrides

any value that OMP_NUM_THREADS may have.

41

Interlude: Data Dependencies
•

In order for a loop to parallelize, the work done in
one loop iteration cannot depend on the work done
in any other iteration

•

In other words, the order of execution of loop
iterations must be irrelevant

•

Loops with this property are called data
independent

•

Some data dependencies may be broken by
changing the code

42

Is there a dependency here?

Data Dependencies (cont’d.)
•

Only variables that are written
in one iteration and read in
another iteration will create
data dependencies

•

A variable cannot create a
dependency unless it is shared

•

Often data dependencies are
difficult to identify. Compiler
tools can help by identifying
the dependencies
automatically

Recurrence:

do i = 2,5
a(i) = c*a(i-1)

enddo

do i = 2,N,2
a(i) = c*a(i-1)

enddo

Thread

0

1

2

3

Time

a(2) = c*a(1)

a(3) = c*a(2)

a(4) = c*a(3)

a(5) = c*a(4)

43

Data Dependencies (cont’d.)

•

Unless declared as private,
a temporary variable may be
shared and will cause a data
dependency

Function Calls

do i = 1,n
call myroutine(a,b,c,i)

enddo

subroutine myroutine(a,b,c,i)
…
a(i) = 0.3 * (a(i-1)+b(i)+c)
…
return

Temporary Variable Dependency

•

In general, loops containing
function calls can be
parallelized

•

The programmer must make
certain that the function or
subroutine contains no
dependencies or other side
effects

•

In Fortran, make sure there are
no static variables in the
called routine

•

Intrinsic functions are safe

do i = 1,n
x = cos(a(i))
b(i) = sqrt(x * c)

enddo

44

Data Dependencies (cont’d.)

•

Similar to the temporary
variable dependency, a
reduction dependency is
eliminated simply by using the
reduction clause to the
parallel do directive

Indirect Indexing
do i = 1,n
a(i) = c * a(idx(i))

enddo

do i = 1,n
a(ndx(i)) = b(i)+c (i)

enddo

Reductions

• If idx(i) not equal to i on
every iteration, then there is a
dependency

•

If ndx(i) ever repeats itself,
there is a dependency

do i = 1,n
xsum = xsum + a(i)
xmu1 = xmu1 * a(i)
xmax = max(xmax,a(i))
xmin = min(xmin,a(i))
enddo

45

Data Dependencies (cont’d.)
Conditional Loop Exit

•

If the k-loop is parallelized, then
there is a dependency related
to a(i,j)

•

This can be fixed by making the
k-loop the innermost loop

do i = 1,n
a(i) = b(i) + c(i)
if (a(i).gt.amax) then

a(i) = amax
goto 100

endif
enddo

100 continue

•

Loops with conditional exits
should not be parallelized.
Requires ordered execution

Nested Loop Order

do k = 1, n
do j = 1, n
do i = 1, n
a(i,j)=a(i,j)+b(i,k)*c(k,j)

enddo
enddo
enddo

46

Minimizing the Cost of a Recurrence
•

Move the dependency into
a separate loop

•

Parallelize the loop
without the dependency

•

Make sure benefits
outweigh the cost of loop
overhead

do i = 1, NHUGE
a(i) = ...lots of math...

& + a(i-1)
enddo

c
c Parallel Loop
c
c$omp parallel do shared(junk)
c$omp& private(i)

do i = 1, NHUGE
junk(i) = ...lots of math...

enddo

c
c Serial Loop
c

do i = 1, NHUGE
a(i) = junk(i) + a(i-1)

enddo

47

Loop Nest Parallelization Possibilities
All examples shown run on 8 threads with
schedule(static)

•

Parallelize the outer loop:

•

Each thread gets two values of i (T0 gets i=1,2; T1
gets i=3,4, etc.) and all values of j

!$omp parallel do private(i,j) shared(a)
do i=1,16
do j=1,16

a(i,j) = i+j
enddo

enddo

48

Loop Nest Parallelization Possibilities
•

Parallelize the inner loop:

•

Each thread gets two values of j (T0 gets j=1,2; T1
gets j=3,4, etc.) and all values of i

do i=1,16
!$omp parallel do private(j) shared(a,i)

do j=1,16
a(i,j) = i+j

enddo
enddo

49

OpenMP Synchronization Constructs
•

critical

•

atomic

•

barrier

•

master

•

ordered

•

flush

50

OpenMP Synchronization - critical Section
Ensures that a code block is executed by only one thread at a time in a

parallel region
●

Syntax:

●

When one thread is in the critical region, the others wait until the
thread inside exits the critical section

●

name identifies the critical region
●

Multiple critical sections are independent of one another unless they
use the same name

●

All unnamed critical regions are considered to have the same identity

#pragma omp critical [(name)]
structured block

!$omp critical [(name)]
structured block

!$omp end critical [(name)]

51

OpenMP Synchronization - critical Section Example

integer :: cnt1, cnt2

c$omp parallel private(i)
c$omp& shared(cnt1,cnt2)

c$omp do
do i = 1, n

…do work…
if(condition1)then

c$omp critical (name1)
cnt1 = cnt1+1

c$omp end critical (name1)
else

c$omp critical (name1)
cnt1 = cnt1-1

c$omp end critical (name1)
endif
if(condition2)then

c$omp critical (name2)
cnt2 =cnt2+1

c$omp end critical (name2)
endif

enddo
c$omp end parallel

52

OpenMP - critical Section Problem

Is this correct? What about this?

…

c$omp parallel do
do i = 1,n
if (a(i).gt.xmax) then

c$omp critical
xmax = a(i)

c$omp end critical
endif

enddo
…

…

c$omp parallel do
do i = 1,n

c$omp critical
if (a(i).gt.xmax) then

xmax = a(i)
endif

c$omp end critical
enddo

…

53

OpenMP Synchronization - atomic Update

Prevents a thread that is in the process of (1) accessing, (2)
changing, and (3) restoring values in a shared memory
location from being interrupted at any stage by another thread

•

Syntax:

•

Alternative to using the reduction clause (it applies to same
kinds of expressions)

•

Directive in effect only for the code statement immediately
following it

#pragma omp atomic
statement

!$omp atomic
statement

54

OpenMP Synchronization - atomic Update

integer, dimension(8) :: a,index
data index/1,1,2,3,1,4,1,5/

c$omp parallel private(i),shared(a,index)
c$omp do
do i = 1, 8

c$omp atomic
a(index(I)) = a(index(I)) + index(I)

enddo
c$omp end parallel

55

OpenMP Synchronization - barrier
Causes threads to stop until all threads have reached the barrier
• Syntax:

•

A red light until all threads arrive, then it turns green
•

Example:

c$omp parallel
c$omp do

do i = 1, N
<assignment>

c$omp barrier
<dependent work>

enddo
c$omp end parallel

!$omp barrier

#pragma omp barrier

56

OpenMP Synchronization - master Region
Code in a master region is executed only by the master thread

•

Syntax:

•

Other threads skip over entire master region (no implicit
barrier!)

#pragma omp master
structured block

!$omp master
structured block

!$omp end master

57

OpenMP Synchronization - master Region

!$omp parallel shared(c,scale) &
!$omp private(j,myid)

myid=omp_get_thread_num()
!$omp master

print *,’T:’,myid,’ enter scale’
read *,scale

!$omp end master
!$omp barrier
!$omp do

do j = 1, N
c(j) = scale * c(j)

enddo
!$omp end do
!$omp end parallel

58

OpenMP Synchronization - ordered Region

Within an ordered region, loop iterations are forced to be executed in
sequential order

•

Syntax:

•

An ordered region can appear only in a parallel loop
•

The parallel loop directive must contain the ordered clause (new)

•

Threads enter the ordered region one at a time

c$omp ordered
structured block

c$omp end ordered

#pragma omp ordered
structured block

59

OpenMP Synchronization - ordered Region

integer, external :: omp_get_thread_num
call omp_set_num_threads(4)

c$omp parallel private(myid)
myid=omp_get_thread_num()

c$omp do private(i) ordered
do i = 1, 8

c$omp ordered
print *,’T:’,myid,’ i=‘,i

c$omp end ordered
enddo

c$omp end parallel

T:0 i=1
T:0 i=2
T:1 i=3
T:1 i=4
T:2 i=5
T:2 i=6
T:3 i=7
T:3 i=8

60

OpenMP Synchronization - flush Directive

Causes the present value of the named shared variable to be
immediately written back (“flushed”) to memory

•

Syntax:

•

Enables signaling between threads by using a shared variable
as a semaphore

•

When other threads see that the shared variable has been
changed, they know that an event has occurred and proceed
accordingly

c$omp flush(var1[,var2]…)

#pragma omp flush(var1[,var2]…)

61

Sample Program: flush Directive

 program flush
 integer, parameter :: M=1600000
 integer, dimension(M) :: c
 integer :: stop,sum,tid
 integer, dimension(0:1) :: done
 integer, external :: omp_get_thread_num

 call omp_set_num_threads(2)
 c=1
 c(345)=9
 !$omp parallel default(private) shared(done,c,stop)
 tid=omp_get_thread_num()
 done(tid)=0
 if(tid==0) then
 neigh=1
 else
 neigh=0
 end if
 !$omp barrier

62

Sample Program: flush Directive (cont’d.)

if (tid==0) then
do j=1,M

if(c(j)==9) stop=j
end do

end if
done(tid)=1

!$omp flush(done)
do while(done(neigh).eq.0)

!$omp flush(done)

end do

if (tid==1) then
sum=0
do j=1,stop-1

sum=sum+c(j)
end do

end if
!$omp end parallel

end program flush

63

Debugging OpenMP Code
•

Shared memory parallel programming opens up a
range of new programming errors arising from
unanticipated conflicts between shared resources

• Race Conditions
–

When the outcome of a program depends on the detailed timing
of the threads in the team.

• Deadlock
–

When threads hang while waiting for a locked resource that will
never become available.

64

Examples: Race Conditions

•

The result varies unpredictably, depending on the
order in which threads execute the sections

•

Wrong answers are produced without warning!

c$omp parallel sections
A = B + C

c$omp section
B = A + C

c$omp section
C = B + A

c$omp end parallel sections

65

Examples: Race Conditions

The result varies unpredictably because the value of x
isn’t correct until the barrier at the end of the do
loop is reached

•

Wrong answers are produced without warning!

•

Be careful when using nowait!

c$omp parallel shared(x) private(tmp)
id = omp_get_thread_num()

c$omp do reduction(+:x)
do j=1,100

tmp = work(j)
x = x + tmp

enddo
c$omp end do nowait

y(id) = work(x,id)
c$omp end parallel

66

Examples: Race Conditions

•

The result varies unpredictably because access to
the shared variable tmp is not protected

•

Wrong answers are produced without warning!

•

Probably want to make tmp private

real :: tmp,x
c$omp parallel do reduction(+:x)
do j=1,100

tmp = work(j)
x = x + tmp

enddo
c$omp end do
y(id) = work(x,id)

67

Examples: Deadlock

•

If A is locked by one thread and B by another, you have
deadlock

•

If both are locked by the same thread, you have a race
condition!

•

Avoid nesting different locks

call OMP_INIT_LOCK(lcka)
call OMP_INIT_LOCK(lckb)

c$omp parallel sections
call OMP_SET_LOCK(lcka)
call OMP_SET_LOCK(lckb)
call useAandB(res)
call OMP_UNSET_LOCK(lckb)
call OMP_UNSET_LOCK(lcka)

c$omp section
call OMP_SET_LOCK(lckb)
call OMP_SET_LOCK(lcka)
call useBandA(res)
call OMP_UNSET_LOCK(lcka)
call OMP_UNSET_LOCK(lckb)

c$omp end parallel sections

68

Examples: Deadlock

•

If A is locked in the first section and the if statement
branches around the unset lock, then threads in the other
section will deadlock waiting for the lock to be released

•

Make sure you release your locks!

call OMP_INIT_LOCK(lcka)
c$omp parallel sections

call OMP_SET_LOCK(lcka)
ival = work()
if (ival.eq.tol) then
call OMP_UNSET_LOCK(lcka)

else
call error(ival)

endif
c$omp section

call OMP_SET_LOCK(lcka)
call useBandA(res)
call OMP_UNSET_LOCK(lcka)

c$omp end parallel sections

69

Other Danger Zones
●

Are the libraries you are using thread-safe?
–

Standard libraries should always be okay.

●

I/O inside a parallel region can interleave
unpredictably

●

private variables can mask globals
●

Understand when shared memory is coherent
–

When in doubt, use FLUSH.

●

NOWAIT removes implicit barriers

70

Performance Tuning and OpenMP
•Basic strategies
•Automatic parallelization
•Example 1
•Example 2
•The memory hierarchy
•Cache locality
•Data locality

71

Basic Strategies
•

If possible, use auto-parallelizing compiler as a first step
•

Use profiling to identify time-consuming code sections (loops)
•

Add OpenMP directives to parallelize the most important loops
•

If a parallelized loop does not perform well, check for/consider
–

Parallel startup costs.
–

Small loops.
–

Load imbalances.
–

Many references to shared variables.
–

Low cache affinity.
–

Unnecessary synchronization.
–

Costly remote memory references (in NUMA machines).

72

Automatic Parallelization
•

Most widely used languages often have compilers that will
automatically parallelize your code

•

The compiler stage that performs this is called the Automatic
Parallelizer (AP)

•

The AP will insert OpenMP directives into your code if a loop
can be parallelized. If not, it will tell you why

•

“Safe” parallel optimization implies there are no dependencies
• Only loops can be parallelized automatically
•

Should be considered, at best, as a first step toward getting
your code parallelized

•

The next step should be inserting your own directives, and
tuning the various parallel sections for optimum performance

73

Strategy for Using Auto-Parallelization

•

Run AP on source files, and examine the listing
–

Convenient to break code up into separate source files (use
fsplit(1) and make(1)).

•

For loops that don’t automatically parallelize, try to
eliminate inhibiting dependencies by modifying the
source code

•

Use the listing to implement parallelization by hand
using OpenMP directives

•

Stop when you are satisfied with performance

74

Performance Tuning: Example 1
•

Original code:

c1 = x(1)>0
c2 = x(1:10)>0

DO i=1,n
DO j=i,n

if (c1) then r(1:100) = …
…

if (c2) then … = r(1:100)
sum(j) = sum(j) + …

ENDDO
ENDDO

75

Example 1 (cont’d.)
•

First, parallelize the loop
–

Prefer to parallelize the outer

loop -

higher iteration count.
–

Note c2 is never true unless c1 is also true -

can make r
private!

–

Also parallelize the reduction.

•

But, the loop is “triangular”! By default, iterations
may be unbalanced between processors
–

Use the schedule clause to enforce more efficient load
balancing.

76

Example 1 - Parallel Version

c1 = x(1)>0
c2 = x(1:10)>0
ALLOCATE(xsum(1:nprocs,n))

c$omp parallel do private(i,j,r,myid)
c$omp& schedule(static,1)
DO i=1,n

myid = omp_get_thread_num()
DO j=i,n

if (c1) then r(1:100) = …
…

if (c2) then … = r(1:100)
xsum(myid,j) = sum(myid,j) + …

ENDDO
ENDDO

c$omp parallel do
DO i=1,n

sum(i) = sum(i) + xsum(1:nprocs,i)
ENDDO

77

Performance Tuning: Example 2
•

Increasing parallel loop granularity using the
nowait clause:

!$omp parallel private(ld1,ld2,ldi,j,ld,k)
do k = 2,ku-2

!$omp do
do j = jlo, jhi
ld2 = a(j,k)
ld1 = b(j,k)+ld2*x(j,k-2)
ld = c(j,k)+ld1*x(j,k-1)+ld2*y(j,k-1)
ldi = 1./ld
f(j,k,1) = ldi*(f(j,k,1)-f(j,k-2,1)*ld2
f(j,k,1) = ldi*(f(j,k,2)-f(j,k-2,2)*ld1
x(j,k) = ldi*(d(j,k)-y(j,k-1)*ld1
y(j,k) = e(j,k)*ld
enddo

!$omp end do nowait
end do

!$omp end parallel

78

The Memory Hierarchy
•

Most parallel systems are built from CPUs with a memory
hierarchy

–

Registers.
–

Primary (L1) cache.
–

Secondary (L2) cache.
–

Additional levels of cache.
–

Local memory.
–

Remote memory -

accessed through the interconnect network.
• As you move down this list, the time to retrieve data increases

by about an order of magnitude for each step!
•

Therefore:
–

Make efficient use of local memory (caches).
–

Minimize remote memory references.

79

Performance Tuning - Cache Locality
•

The basic rule for efficient use of local memory (caches):
Use a memory stride of one

•

This means array elements are accessed in the same order
they are stored in memory

•

Fortran: “Column-major” order
–

Want the leftmost

index in a multi-dimensional array varying most
rapidly in a loop.

•

C: “Row-major” order
–

Want rightmost

index in a multi-dimensional array varying most rapidly
in a loop.

•

Interchange nested loops if necessary (and possible!) to
achieve the preferred order

80

Performance Tuning - Data Locality
•

On NUMA (“non-uniform memory access”) platforms, it may be
important to know

–

Where threads are running.
–

What data is in their local memories.
–

The cost of remote memory references.

•

OpenMP itself provides no mechanisms for controlling
–

The binding of threads to particular processors.
–

The placement of data in particular memories.

•

OpenMP was designed with true SMP (i.e., UMA) in mind
–

For NUMA, the possibilities are many and highly machine-dependent.
–

NUMA machines are becoming increasingly common.

•

Often there are system-specific mechanisms for addressing
these problems

–

Additional directives for data placement.
–

Ways to control where individual threads are running.

81

NUMA Architectures: AMD Opteron Dual Socket

From http://www.amd.com/us-en/assets/content_type/DownloadableAssets/
2P_S_WS_Comparison_PID_41460.pdf

82

NUMA Architectures: AMD Opteron Quad Socket

From http://www.amd.com/us-en/assets/content_type/DownloadableAssets/
4P_Server_Comparison_PID_41461.pdf

83

NUMA Architectures: HP Superdome sx2000

From Meet the HP Integrity Superdome Server with the HP Super-Scalable Processor Chipset
sx2000, HP, 2006.

84

NUMA Architectures: SGI Altix 3000 Series

From Figure 3.4 of SGI Altix 3000 User's Guide, SGI, 2003.

85

NUMA Architectures: SGI Altix 4000 Series

From Figure 3.4 of SGI Altix 4000 User's Guide, SGI, 2006.

86

Other Sources of Information
•

Online manuals
•

Related workshop courses

87

Online Manuals
•

Like most UNIX-like systems, Linux includes a set of
reference manuals as part of the operating system. These
can be accessed by typing man cmdname, where cmdname
is the name of the command or library routine for which
you need information

•

You can also do a keyword search of all of the currently
accessible manual pages by running man -k keyword

88

Related Workshop Courses
OSC offers several other courses that may be of interest:
•

C Programming
•

Features of the C++ Programming Language
•

An Introduction to Fortran 90
•

Parallel Programming with MPI
•

Using the ScaLAPACK Parallel Numerical Library
•

Parallel I/O Techniques
•

Performance Tuning for Microprocessor Architectures
More information on these courses and more can be found at

http://www.osc.edu/hpc/training/

http://oscinfo.osc.edu/training/C/
http://oscinfo.osc.edu/training/C++/
http://oscinfo.osc.edu/training/f90/
http://oscinfo.osc.edu/training/mpi/
http://oscinfo.osc.edu/training/parlib/
http://oscinfo.osc.edu/training/pario/
http://oscinfo.osc.edu/training/perftunmic/
http://www.osc.edu/hpc/training/

89

OpenMP Problem Set
1. Write a program where each thread prints the message ‘Hello

World!’, along with its thread ID number and the total number of
threads used. Run with 8 threads and run your program several
times. Does the order of the output change? Repeat using 4,16,
33, and 50 threads.

2. Modify your solution to Problem 1 so that only even-numbered
threads print out the information message.

3. Write a program that declares an array A to have 16000 integer
elements and initialize A so that each element has its index as its
value. Then create a real array B that will contain the running
average of array A. That is,

B(I)=(A(I-1) + A(I) +A(I+1)/3.0

except at the end points. Your code should do the initialization of
A and the running average in parallel using 8 threads. Experiment
with all four scheduling types for the running average loop by
timing the loop with different schedules.

90

4. Write a program so that the parallel threads print out ‘Backwards’
and their thread ID number in reverse order of thread number.
That is, each time your program is run, the last thread prints out
first, then the second to last, and so on. There are at least five
different ways to solve this problem. Find as many as you can.

5. Compile the code mystery.f and run on 16 threads. What is
wrong with this program? (You may have to run it several times.)
Fix the code so that it works correctly. As with problem 4 there
are several ways to fix the code; try to find them all.

6. Write a program to read in the x,y,z coordinates from a file
points.dat (which you will be given) and calculate the
geometric center, which is the average x value, the average y
value, and the average z value. Do the calculation in parallel.
Write two versions of your program: the first using loop-level
parallelism, the next using functional decomposition. (The points
data file is ASCII with one x,y,z triplet per line.)

OpenMP Problem Set (cont’d.)

91

7. Using the functional decomposition version of program 6,
calculate the average coordinate value given by the equation

(Σ xi + Σ yi +Σ zi)/3N
where N is the number of data points. Implement using a global
sum and critical regions.

8. Write a program to multiply two large matrices together
a) Compile for single-processor execution. Time the program.
b) Compile for multiple processor execution (OpenMP directives) and

time for 4,8,16, and 32 threads.
9. Compile the program alias.f and run on four threads. Can you

see the inefficiency in the program? Write a new version that is
more efficient.

OpenMP Problem Set (cont’d.)

	Parallel Programming with OpenMP
	Parallel Programming with OpenMP
	Introduction to OpenMP
	The OpenMP Programming Model
	The OpenMP Programming Model
	The OpenMP Programming Model
	How Do Threads Interact?
	Pros and Cons of OpenMP
	The Basics of OpenMP
	General Syntax Rules
	General Syntax Rules (cont’d.)
	The Parallel Region
	The Parallel Region (cont’d.)
	The Parallel Region (cont’d.)
	The Parallel Region (cont’d.)
	Parallel Regions: Execution Modes
	OpenMP Directive Clauses
	The private, default, and if Clauses
	firstprivate
	OpenMP Work-Sharing Constructs
	OpenMP Work-Sharing Constructs - for/DO
	Detailed Syntax - for
	Detailed Syntax - DO
	lastprivate
	reduction(operator|intrinsic:var1[,var2])
	reduction(operator|intrinsic:var1[,var2])
	OpenMP Work-Sharing Constructs - sections
	OpenMP Work-Sharing Constructs - sections
	OpenMP Work-Sharing Constructs - sections
	OpenMP Work-Sharing Constructs - single
	OpenMP Work-Sharing Constructs - single
	OpenMP Work-Sharing Constructs - single
	Combined Parallel Work-Sharing Constructs
	Parallel DO/for Directive
	Parallel sections Directive
	OpenMP Environment Variables
	OpenMP Environment Variables
	OpenMP Runtime Environment Routines
	OpenMP Runtime Environment Routines
	OpenMP Runtime Environment Routines
	Interlude: Data Dependencies
	Data Dependencies (cont’d.)
	Data Dependencies (cont’d.)
	Data Dependencies (cont’d.)
	Data Dependencies (cont’d.)
	Minimizing the Cost of a Recurrence
	Loop Nest Parallelization Possibilities
	Loop Nest Parallelization Possibilities
	OpenMP Synchronization Constructs
	OpenMP Synchronization - critical Section
	OpenMP Synchronization - critical Section Example
	OpenMP - critical Section Problem
	OpenMP Synchronization - atomic Update
	OpenMP Synchronization - atomic Update
	OpenMP Synchronization - barrier
	OpenMP Synchronization - master Region
	OpenMP Synchronization - master Region
	OpenMP Synchronization - ordered Region
	OpenMP Synchronization - ordered Region
	OpenMP Synchronization - flush Directive
	Sample Program: flush Directive
	Sample Program: flush Directive (cont’d.)
	Debugging OpenMP Code
	Examples: Race Conditions
	Examples: Race Conditions
	Examples: Race Conditions
	Examples: Deadlock
	Examples: Deadlock
	Other Danger Zones
	Performance Tuning and OpenMP
	Basic Strategies
	Automatic Parallelization
	Strategy for Using Auto-Parallelization
	Performance Tuning: Example 1
	Example 1 (cont’d.)
	Example 1 - Parallel Version
	Performance Tuning: Example 2
	The Memory Hierarchy
	Performance Tuning - Cache Locality
	Performance Tuning - Data Locality
	NUMA Architectures: AMD Opteron Dual Socket
	NUMA Architectures: AMD Opteron Quad Socket
	NUMA Architectures: HP Superdome sx2000
	NUMA Architectures: SGI Altix 3000 Series
	NUMA Architectures: SGI Altix 4000 Series
	Other Sources of Information
	Online Manuals
	Related Workshop Courses
	OpenMP Problem Set
	OpenMP Problem Set (cont’d.)
	OpenMP Problem Set (cont’d.)

