
Parallel Programming with OpenMP

Science and Technology Support Group
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212-1163

2
Parallel Programming with OpenMP

Parallel Programming with OpenMP

• Setting the Stage
• The Basics of OpenMP
• Synchronization Constructs
• Some Advanced Features of OpenMP
• Debugging OpenMP Code
• Performance Tuning and OpenMP
• References
• Problems
• Appendix A: Auto-Parallelization on the Altix 3000

3
Parallel Programming with OpenMP

Setting the Stage

• Overview of parallel computing
• Introduction to OpenMP
• The OpenMP programming model

4
Parallel Programming with OpenMP

Overview of Parallel Computing

• Parallel computing is when a program uses concurrency to either
– decrease the runtime needed to solve a problem
– increase the size of problem that can be solved

• The direction in which high-performance computing is headed!
• Mainly this is a price/performance issue

– Vector machines very expensive to engineer and run
– Commodity hardware/software - Clusters!

5
Parallel Programming with OpenMP

Writing a Parallel Application

• Decompose the problem into tasks
– Ideally, these tasks can be worked on independently of the others

• Map tasks onto “threads of execution” (processors)
• Threads have shared and local data

– Shared: used by more than one thread
– Local: Private to each thread

• Write source code using some parallel programming environment
• Choices may depend on (among many things)

– the hardware platform to be run on
– the level performance needed
– the nature of the problem

6
Parallel Programming with OpenMP

Parallel Architectures

• Distributed memory
– Each processor has local memory
– Cannot directly access the memory of other processors

• Shared memory (OSC Altix 3000, Sun 6800, Cray SV1ex)
– Processors can directly reference memory attached to other processors
– Shared memory may be physically distributed

• The cost to access remote memory may be high!
– Several processors may sit on one memory bus (SMP)

• Combinations are very common (OSC IA32 and IA64 clusters)
– IA32 cluster

• 128 compute nodes, each with 2 processors sharing 2GB of memory on one bus
– IA64 cluster

• 150 compute nodes, each with 2 processors sharing 4GB of memory on one bus
– High-speed interconnect between nodes

7
Parallel Programming with OpenMP

Parallel Programming Models

• Distributed memory systems
– For processors to share data, the programmer must explicitly arrange for

communication - “Message Passing”
– Message passing libraries:

• MPI (“Message Passing Interface”)
• PVM (“Parallel Virtual Machine”)
• Shmem (Cray only)

• Shared memory systems
– “Thread” based programming
– Compiler directives (OpenMP; various proprietary systems)
– Can also do explicit message passing, of course

8
Parallel Programming with OpenMP

Parallel Computing: Hardware

• In very good shape!
• Processors are cheap and powerful

– Intel, MIPS, …
– Theoretical performance approaching 1 GFLOP/sec

• SMP nodes with 1-8 CPUs are common
• Affordable, high-performance interconnect technology is becoming available –

Myrinet, Infiniband
• Systems with a few hundreds of processors and good inter-processor

communication are not hard to build

9
Parallel Programming with OpenMP

Parallel Computing: Software

• Not as mature as the hardware
• The main obstacle to making use of all this power

– Perceived difficulties with writing parallel codes outweigh the benefits
• Emergence of standards is helping enormously

– MPI
– OpenMP

• Programming in a shared memory environment generally easier
• Often better performance using message passing

– Much like assembly language vs. C/Fortran

10
Parallel Programming with OpenMP

Introduction to OpenMP

• OpenMP is an API for writing multithreaded applications in a shared memory
environment

• It consists of a set of compiler directives and library routines
• Relatively easy to create multi-threaded applications in Fortran, C and C++
• Standardizes the last 15 or so years of SMP development and practice
• Currently supported by

– Hardware vendors
• Intel, HP, SGI, Sun, IBM

– Software tools vendors
• Intel, KAI, PGI, PSR, APR, Absoft

– Applications vendors
• ANSYS, Fluent, Oxford Molecular, NAG, DOE ASCI, Dash, Livermore Software, ...

• Support is common and growing

11
Parallel Programming with OpenMP

The OpenMP Programming Model

• A master thread spawns teams of threads as needed
• Parallelism is added incrementally; the serial program evolves into a parallel

program

Parallel regions

Master thread

12
Parallel Programming with OpenMP

The OpenMP Programming Model

• Programmer inserts OpenMP directives (Fortran comments, C #pragmas) at
key locations in the source code.

• Compiler interprets these directives and generates library calls to parallelize
code regions.

Serial:

void main(){
double x[1000];
for (int i=0; i<1000; i++){
big_calc(x[i]);

}
}

Parallel:

void main(){
double x[1000];

#pragma omp parallel for
for (int i=0; i<1000; i++){
big_calc(x[i]);

}
}

Split up loop iterations among a team of threads

13
Parallel Programming with OpenMP

The OpenMP Programming Model

• Number of threads can be controlled from within the program, or
using the environment variable OMP_NUM_THREADS.

• The programmer is responsible for managing synchronization and data
dependencies!

• Compiling on OSC systems:

Intel Compiler – IA64 Cluster Intel Compiler – IA32 Cluster

efc -openmp prog.f
efc -openmp prog.f90
ecc -openmp prog.c

ifc -openmp prog.f
ifc -openmp prog.f90
icc -openmp prog.c

14
Parallel Programming with OpenMP

How do Threads Interact?

• Shared memory model
– Threads communicate by sharing variables.

• Unintended sharing of data can lead to “race conditions”
– When the program’s outcome changes as the threads are scheduled differently.

• To control race conditions, use synchronization to avoid data conflicts
• Synchronization is expensive!

– Think about changing how data is organized, to minimize the need for
synchronization.

15
Parallel Programming with OpenMP

The Basics of OpenMP

• General syntax rules
• The parallel region
• Execution modes
• OpenMP directive clauses
• Work-sharing constructs
• Combined parallel work-sharing constructs
• Environment variables
• Runtime environment routines
• Interlude: data dependencies

16
Parallel Programming with OpenMP

• Most OpenMP constructs are compiler directives or C pragmas
– For C and C++, pragmas take the form

– For Fortran, directives take one of the forms:

• Since these are directives, compilers that don’t support OpenMP can still
compile OpenMP programs (serially, of course!)

#pragma omp construct [clause [clause]...]

c$omp construct [clause [clause]...]
!$omp construct [clause [clause]...]
*$omp construct [clause [clause]...]

General Syntax Rules

17
Parallel Programming with OpenMP

General Syntax Rules

• Most OpenMP directives apply to structured blocks
– A block of code with one entry point at the top, and one exit point at the bottom.

The only branches allowed are STOP statements in Fortran and exit() in
C/C++

c$omp parallel

10 wrk(id) = junk(id)
30 res(id) = wrk(id)**2

if (conv(res)) goto 20
goto 10

c$omp end parallel

if (not_done) goto 30
20 print *, id

c$omp parallel

10 wrk(id) = junk(id)
res(id) = wrk(id)**2
if (conv(res)) goto 10

c$omp end parallel

print *, id

A structured block
Not a structured block!

18
Parallel Programming with OpenMP

The Parallel Region

• The fundamental construct that initiates parallel execution
• Fortran syntax:

c$omp parallel
c$omp& shared(var1, var2, …)
c$omp& private(var1, var2, …)
c$omp& firstprivate(var1, var2, …)
c$omp& reduction(operator|intrinsic:var1, var2, …)
c$omp& if(expression)
c$omp& default(private|shared|none)

a structured block of code

c$omp end parallel

19
Parallel Programming with OpenMP

The Parallel Region

• C/C++ syntax:

#pragma omp parallel \
private (var1, var2, …) \
shared (var1, var2, …) \
firstprivate(var1, var2, …) \
copyin(var1, var2, …) \
reduction(operator:var1, var2, …) \
if(expression) \
default(shared|none) \

{

…a structured block of code…

}

20
Parallel Programming with OpenMP

The Parallel Region

• The number of threads created upon entering the parallel region is controlled
by the value of the environment variable OMP_NUM_THREADS

– Can also be controlled by a function call from within the program.
• Each thread executes the block of code enclosed in the parallel region
• In general there is no synchronization between threads in the parallel region!

– Different threads reach particular statements at unpredictable times.
• When all threads reach the end of the parallel region, all but the master thread

go out of existence and the master continues on alone.

21
Parallel Programming with OpenMP

The Parallel Region

• Each thread has a thread number, which is an integer from 0 (the master
thread) to the number of threads minus one.

– Can be determined by a call to omp_get_thread_num()

• Threads can execute different paths of statements in the parallel region
– Typically achieved by branching on the thread number:

#pragma omp parallel
{

myid = omp_get_thread_num();
if (myid == 0)

do_something();
else

do_something_else(myid);
}

22
Parallel Programming with OpenMP

Parallel Regions: Execution Modes

• “Dynamic mode” (the default)
– The number of threads used in a parallel region can vary, under control of the

operating system, from one parallel region to the next.
– Setting the number of threads just sets the maximum number of threads; you might

get fewer!
• “Static mode”

– The number of threads is fixed by the programmer; you must always get this many
(or else fail to run).

• Parallel regions may be nested, but a compiler may choose to “serialize” the
inner parallel region, i.e., run it on a single thread.

• Execution mode is controlled by
– The environment variable OMP_DYNAMIC
– The OMP function omp_set_dynamic()

23
Parallel Programming with OpenMP

OpenMP Directive Clauses

• shared(var1,var2,…)
– Variables to be shared among all threads (threads access same memory locations).

• private(var1,var2,…)
– Each thread has its own copy of the variables for the duration of the parallel code.

• firstprivate(var1,var2,…)
– Private variables that are initialized when parallel code is entered.

• lastprivate(var1,var2,…)
– Private variables that save their values at the last (serial) iteration.

• if(expression)
– Only parallelize if expression is true.

• default(shared|private|none)
– Specifies default scoping for variables in parallel code.

• schedule(type [,chunk])
– Controls how loop iterations are distributed among threads.

• reduction(operator|intrinsic:var1,var2…)
– Ensures that a reduction operation (e.g., a global sum) is performed safely.

24
Parallel Programming with OpenMP

The private,default and if clauses

private & default

• Don’t want to parallelize a loop if the
overhead outweighs the speedup.

c$omp&

c$omp end parallel

Equivalent

c$omp
c$omp&

• Each thread has its own private copy of
x and myid

• Unless x is made private, its value is
indeterminate during parallel operation

• Values for private variables are
undefined at beginning and end of the
parallel region!

• default clause automatically makes
x and myid private.

if(expression)

c$omp parallel shared(a)
private(myid,x)

myid=omp_get_thread_num()
x = work(myid)
if (x < 1.0) then
a(myid) = x

end if

 is:

parallel do default(private)
shared(a)
…

c$omp parallel do if(n.ge.2000)
do i = 1, n
a(i) = b(i)*c + d(i)

enddo

25
Parallel Programming with OpenMP

firstprivate

• Variables are private (local to each thread), but are initialized to the value in the
preceding serial code.

• Each thread has a private copy of c, initialized with the value 98

program first
integer :: myid,c
integer,external :: omp_get_thread_num
c=98

!$omp parallel private(myid)
!$omp& firstprivate(c)
myid=omp_get_thread_num()
write(6,*) 'T:',myid,' c=',c

!$omp end parallel
end program first

T:1 c=98
T:3 c=98
T:2 c=98
T:0 c=98

26
Parallel Programming with OpenMP

OpenMP Work-Sharing Constructs

• Parallel for/DO
• Parallel sections
• single directive
• Placed inside parallel regions
• Distribute the execution of associated statements among existing threads

– No new threads are created.
• No implied synchronization between threads at the start of the work sharing

construct!

27
Parallel Programming with OpenMP

OpenMP work-sharing constructs - for/DO

• Distribute iterations of the immediately following loop among threads
in a team

• By default there is a barrier at the end of the loop
– Threads wait until all are finished, then proceed.
– Use the nowait clause to allow threads to continue without waiting.

#pragma omp parallel shared(a,b) private(j)
{

#pragma omp for
for (j=0; j<N; j++)

a[j] = a[j] + b[j];
}

28
Parallel Programming with OpenMP

Detailed syntax - for

#pragma omp for [clause [clause]…]
for loop

where each clause is one of
• private(list)
• firstprivate(list)
• lastprivate(list)
• reduction(operator: list)
• ordered

• schedule(kind [, chunk_size])
• nowait

29
Parallel Programming with OpenMP

Detailed syntax - DO

c$omp do [clause [clause]…]
do loop

[c$omp end do [nowait]]

where each clause is one of
– private(list)
– firstprivate(list)
– lastprivate(list)
– reduction(operator: list)
– ordered
– schedule(kind [, chunk_size])

• For Fortran 90, use !$OMP and F90-style line continuation.

30
Parallel Programming with OpenMP

The schedule(type,[chunk])clause

• Controls how work is distributed among threads
• chunk is used to specify the size of each work parcel (number of iterations)
• type may be one of the following:

– static
– dynamic

– guided
– runtime

• The chunk argument is optional. If omitted, implementation-dependent default
values are used.

31
Parallel Programming with OpenMP

schedule(static)

• Iterations are divided evenly among threads

c$omp do shared(x) private(i)
c$omp& schedule(static)

do i = 1, 1000
x(i)=a

enddo

thread 0 (i = 1,250)

thread 1 (i = 251,500)

thread 0 thread 0
thread 2 (i = 501,750)

thread 3 (i = 751,1000)

32
Parallel Programming with OpenMP

schedule(static,chunk)

• Divides the work load in to chunk sized parcels
• If there are N threads, each thread does every Nth chunk of work

c$omp do shared(x)private(i)
c$omp& schedule(static,1000)

do i = 1, 12000
… work …

enddo

Thread 0
(1,1000), (4001,5000), (8001,9000)

Thread 1
(1001,2000), (5001,6000), (9001,10000)

Thread 0 Thread 0
Thread 2

(2001,3000), (6001,7000), (10001,11000)

Thread 3
(3001,4000), (7001,8000), (11001,12000)

33
Parallel Programming with OpenMP

schedule(dynamic,chunk)

• Divides the workload into chunk sized
parcels.

• As a thread finishes one chunk, it
grabs the next available chunk.

• Default value for chunk is 1.
• More overhead, but potentially better

load balancing.

c$omp do shared(x) private(i)
c$omp& schedule(dynamic,1000)

do i = 1, 10000
… work …

end do

34
Parallel Programming with OpenMP

schedule(guided,chunk)

• Like dynamic scheduling, but the
chunk size varies dynamically.

• Chunk sizes depend on the number of
unassigned iterations.

• The chunk size decreases toward the
specified value of chunk.

• Achieves good load balancing with
relatively low overhead.

• Insures that no single thread will be
stuck with a large number of leftovers
while the others take a coffee break.

c$omp do shared(x) private(i)
c$omp& schedule(guided,55)

do i = 1, 12000
… work …

end do

35
Parallel Programming with OpenMP

schedule(runtime)

• Scheduling method is determined at runtime.
• Depends on the value of environment variable OMP_SCHEDULE
• This environment variable is checked at runtime, and the method is set

accordingly.
• Scheduling method is static by default.
• Chunk size set as (optional) second argument of string expression.
• Useful for experimenting with different scheduling methods without

recompiling.

[mck-login1]$ setenv OMP_SCHEDULE static,1000
[mck-login1]$ setenv OMP_SCHEDULE dynamic

36
Parallel Programming with OpenMP

lastprivate

• Like private within the parallel construct - each thread has its own copy.
• The value corresponding to the last iteration of the loop (in serial mode) is saved

following the parallel construct.

• When the loop is finished, i is saved as the value corresponding to the last
iteration in serial mode (i.e., n = N + 1).

• If i is declared private instead, the value of n is undefined!

c$omp do shared(x)
c$omp& lastprivate(i)

do i = 1, N
x(i)=a

enddo

n = i

37
Parallel Programming with OpenMP

• Allows safe global calculation or
comparison.

• A private copy of each listed variable
is created and initialized depending on
operator or intrinsic (e.g., 0
for +).

• Partial sums and local mins are
determined by the threads in parallel.

• Partial sums are added together from
one thread at a time to get gobal sum.

• Local mins are compared from one
thread at a time to get gmin.

c$omp do shared(x) private(i)
c$omp& reduction(+:sum)

do i = 1, N
sum = sum + x(i)

enddo

c$omp do shared(x) private(i)
c$omp& reduction(min:gmin)

do i = 1,N
gmin = min(gmin,x(i))

end do

reduction(operator|intrinsic:var1[,var2])

38
Parallel Programming with OpenMP

reduction(operator|intrinsic:var1[,var2])

• Listed variables must be shared in the enclosing parallel context.
• In Fortran

– operator can be +, *, -, .and., .or., .eqv., .neqv.
– intrinsic can be max, min, iand, ior, ieor

• In C
– operator can be +, *, -, &, ^, |, &&, ||
– pointers and reference variables are not allowed in reductions!

39
Parallel Programming with OpenMP

OpenMP Work-Sharing Constructs - sections

c$omp parallel
c$omp sections

c$omp section
call computeXpart()

c$omp section
call computeYpart()

c$omp section
call computeZpart()

c$omp end sections
c$omp end parallel

call sum()

• Each parallel section is run on a separate thread
• Allows functional decomposition
• Implicit barrier at the end of the sections construct

– Use the nowait clause to suppress this

40
Parallel Programming with OpenMP

OpenMP Work-Sharing Constructs - sections

• Fortran syntax:

• Valid clauses:
– private(list)
– firstprivate(list)
– lastprivate(list)
– reduction(operator|intrinsic:list)

c$omp sections [clause[,clause]...]
c$omp section

code block
[c$omp section

another code block
[c$omp section

…]]
c$omp end sections [nowait]

41
Parallel Programming with OpenMP

OpenMP Work Sharing Constructs - sections

• C syntax:

• Valid clauses:
– private(list)
– firstprivate(list)
– lastprivate(list)
– reduction(operator:list)
– nowait

#pragma omp sections [clause [clause...]]
{

#pragma omp section
structured block

[#pragma omp section
structured block

…]
}

42
Parallel Programming with OpenMP

OpenMP Work Sharing Constructs - single

• Ensures that a code block is executed by
only one thread in a parallel region.

• The thread that reaches the single
directive first is the one that executes the
single block.

• Equivalent to a sections directive with a
single section - but a more descriptive
syntax.

• All threads in the parallel region must
encounter the single directive.

• Unless nowait is specified, all non-
involved threads wait at the end of the
single block

c$omp parallel private(i) shared(a)
c$omp do

do i = 1, n
…work on a(i) …

enddo

c$omp single
… process result of do …

c$omp end single

c$omp do
do i = 1, n
… more work …

enddo
c$omp end parallel

43
Parallel Programming with OpenMP

OpenMP Work Sharing Constructs - single

• Fortran syntax:

where clause is one of
– private(list)
– firstprivate(list)

c$omp single [clause [clause…]]
structured block

c$omp end single [nowait]

44
Parallel Programming with OpenMP

• C syntax:

where clause is one of
– private(list)
– firstprivate(list)
– nowait

#pragma omp single [clause [clause…]]
structured block

OpenMP Work Sharing Constructs - single

45
Parallel Programming with OpenMP

Combined Parallel Work-Sharing Constructs

• Short cuts for specifying a parallel region that contains only one work sharing
construct (a parallel for/DO or parallel sections).

• Semantically equivalent to declaring a parallel section followed immediately
by the relevant work-sharing construct.

• All clauses valid for a parallel section and for the relevant work-sharing
construct are allowed, except nowait.

– The end of a parallel section contains an implicit barrier anyway.

46
Parallel Programming with OpenMP

Parallel DO/for Directive

c$omp parallel do [clause [clause…]]
do loop

[c$omp end parallel do]

#pragma omp parallel for [clause [clause…]]
for loop

47
Parallel Programming with OpenMP

Parallel sections Directive

c$omp parallel sections [clause [clause…]]
[c$omp section]

structured block
[c$omp section

structured block]
…
c$omp end parallel sections

#pragma omp parallel sections [clause [clause…]]
{

[#pragma omp section]
structured block

[#pragma omp section
structured block

…]
}

48
Parallel Programming with OpenMP

OpenMP Environment Variables

• OMP_NUM_THREADS
– Sets the number of threads requested for parallel regions.

• OMP_SCHEDULE
– Set to a string value which controls parallel loop scheduling at runtime.
– Only loops that have schedule type RUNTIME are affected.

• OMP_DYNAMIC
– Enables or disables dynamic adjustment of the number of threads actually used in a

parallel region (due to system load).
– Default value is implementation dependent.

• OMP_NESTED
– Enables or disables nested parallelism.
– Default value is FALSE (nesting disabled).

49
Parallel Programming with OpenMP

OpenMP Environment Variables

• Examples:

Note: values are case-insensitive!

[mck-login1]$ export OMP_NUM_THREADS=16

[mck-login1]$ setenv OMP_SCHEDULE “guided,4”

[mck-login1]$ export OMP_DYNAMIC=false

[mck-login1]$ setenv OMP_NESTED TRUE

50
Parallel Programming with OpenMP

OpenMP Runtime Environment Routines

• (void) omp_set_num_threads(int num_threads)
– Sets the number of threads to be requested for subsequent parallel regions.

• int omp_get_num_threads()
– Returns the number of threads currently in the team.

• int omp_get_max_threads()
– Returns the maximum value that may be returned by omp_get_num_threads.
– Generally used to allocate data structures that have a maximum size per thread

when OMP_DYNAMIC is set to TRUE.
• int omp_get_thread_num()

– Returns the thread number, an integer from 0 to the number of threads minus 1.
• int omp_get_num_procs()

– Returns the number of physical processors available to the program.

51
Parallel Programming with OpenMP

OpenMP Runtime Environment Routines

• (int/logical) omp_in_parallel()
– Returns “true” (logical .TRUE. in Fortran; a non-zero integer in C) if called from a

parallel region, “false” (logical .FALSE. in Fortran, 0 in C) otherwise.
• (void) omp_set_dynamic(expr)

– Enables (expr is “true”) or disables (expr is “false”) dynamic thread allocation.
• (int/logical) omp_get_dynamic()

– Returns “true” or “false” if dynamic thread allocation is enabled/disabled,
respectively.

• void omp_set_nested(int/logical expr)
– Enables (expr is “true”) or disables (expr is “false”) nested parallelism.

• (int/logical) omp_get_nested()
– Returns “true” or “false” if nested parallelism is enables/disabled, respectively.

52
Parallel Programming with OpenMP

OpenMP Runtime Environment Routines

• In Fortran, routines that return a value (integer or logical) are functions, while
those that set a value (i.e., take an argument) are subroutines.

• In Fortran, functions must be declared as the appropriate datatype

• In C, be sure to #include <omp.h>

• Changes to the environment made by function calls have precedence over the
corresponding environment variables.

– For example, a call to omp_set_num_threads()overrides any value that
OMP_NUM_THREADS may have.

53
Parallel Programming with OpenMP

Interlude: Data Dependencies

• In order for a loop to parallelize, the work done in one loop iteration cannot
depend on the work done in any other iteration.

• In other words, the order of execution of loop iterations must be irrelevant.
• Loops with this property are called data independent.
• Some data dependencies may be broken by changing the code.

54
Parallel Programming with OpenMP

Data Dependencies (cont.)

Is there a dependency here?• Only variables that are written in one
iteration and read in another iteration
will create data dependencies.

• A variable cannot create a dependency
unless it is shared.

• Often data dependencies are difficult to
identify. Compiler tools can help by
identifying the dependencies
automatically.

Recurrence:

do i = 2,5
a(i) = c*a(i-1)

enddo

do i = 2,N,2
a(i) = c*a(i-1)

enddo

Thread

0

1

2

3

Time

a(2) = c*a(1)

a(3) = c*a(2)

a(4) = c*a(3)

a(5) = c*c(4)

55
Parallel Programming with OpenMP

Data Dependencies (cont.)

Temporary Variable Dependency

• In general, loops containing function
calls can be parallelized.

• The programmer must make certain that
the function or subroutine contains no
dependencies or other side effects.

• In Fortran, make sure there are no
static variables in the called routine.

• Intrinsic functions are safe.

• Unless declared as private, a
temporary variable may be shared, and
will cause a data dependency.

Function Calls

do i = 1,n
call myroutine(a,b,c,i)

enddo

subroutine myroutine(a,b,c,i)
…
a(i) = 0.3 * (a(i-1)+b(i)+c)
…
return

do i = 1,n
x = cos(a(i))
b(i) = sqrt(x * c)

enddo

56
Parallel Programming with OpenMP

Data Dependencies (cont.)

Reductions

• If idx(i) not equal to i on every
iteration, then there is a dependency.

• If ndx(i) ever repeats itself, there is a
dependency.

• Similar to the temporary variable
dependency, a reduction dependency is
eliminated simply by using the
reduction clause to the parallel
do directive.

Indirect Indexing

do i = 1,n
xsum = xsum + a(i)
xmu1 = xmu1 * a(i)
xmax = max(xmax,a(i))
xmin = min(xmin,a(i))
enddo

do i = 1,n
a(i) = c * a(idx(i))

enddo

do i = 1,n
a(ndx(i)) = b(i)+c (i)

enddo

57
Parallel Programming with OpenMP

Conditional Loop Exit

• If the k-loop is parallelized, then there
is a dependency related to a(i,j)

• This can be fixed by making the k-loop
the innermost loop

do i = 1,n
a(i) = b(i) + c(i)
if (a(i).gt.amax) then

a(i) = amax
goto 100

endif
enddo

100 continue

• Loops with conditional exits should not
be parallelized. Requires ordered
execution.

Nested Loop Order

do k = 1, n
do j = 1, n
do i = 1, n
a(i,j)=a(i,j)+b(i,k)*c(k,j)

enddo
enddo
enddo

Data Dependencies (cont.)

58
Parallel Programming with OpenMP

Minimizing the Cost of a Recurrence

• Move the dependency into a separate
loop.

• Parallelize the loop without the
dependency.

• Make sure benefits outweigh the cost
of loop overhead.

do i = 1, NHUGE
a(i) = ...lots of math...

& + a(i-1)
enddo

c
c Parallel Loop
c
c$omp parallel do shared(junk)
c$omp& private(i)

do i = 1, NHUGE
junk(i) = ...lots of math...

enddo

c
c Serial Loop
c

do i = 1, NHUGE
a(i) = junk(i) + a(i-1)

enddo

59
Parallel Programming with OpenMP

Loop Nest Parallelization Possibilities

All examples shown run on 8 threads with schedule(static)

• Parallelize the outer loop:

• Each thread gets two values of i (T0 gets i=1,2; T1 gets i=3,4, etc.) and all
values of j

!$omp parallel do private(i,j) shared(a)
do i=1,16
do j=1,16

a(i,j) = i+j
enddo

enddo

60
Parallel Programming with OpenMP

Loop Nest Parallelization Possibilities

• Parallelize the inner loop:

• Each thread gets two values of j (T0 gets j=1,2; T1 gets j=3,4, etc.) and all
values of i

do i=1,16
!$omp parallel do private(j) shared(a,i)

do j=1,16
a(i,j) = i+j

enddo
enddo

61
Parallel Programming with OpenMP

OpenMP Synchronization Constructs

• critical
• atomic

• barrier
• master
• ordered

• flush

62
Parallel Programming with OpenMP

OpenMP Synchronization - critical Section

• Ensures that a code block is executed by only one thread at a time in a parallel
region

• Syntax:

• When one thread is in the critical region, the others wait until the thread
inside exits the critical section.

• name identifies the critical region.
• Multiple critical sections are independent of one another unless they use the

same name.
• All unnamed critical regions are considered to have the same identity.

#pragma omp critical [(name)]
structured block

!$omp critical [(name)]
structured block

!$omp end critical [(name)]

63
Parallel Programming with OpenMP

OpenMP Synchronization - critical Section Example

integer :: cnt1, cnt2

c$omp parallel private(i)
c$omp& shared(cnt1,cnt2)

c$omp do
do i = 1, n

…do work…
if(condition1)then

c$omp critical (name1)
cnt1 = cnt1+1

c$omp end critical (name1)
else

c$omp critical (name1)
cnt1 = cnt1-1

c$omp end critical (name1)
endif
if(condition2)then

c$omp critical (name2)
cnt2 =cnt2+1

c$omp end critical (name2)
endif

enddo
c$omp end parallel

64
Parallel Programming with OpenMP

OpenMP - Critical Section Problem

Is this correct? What about this?

…

c$omp parallel do
do i = 1,n
if (a(i).gt.xmax) then

c$omp critical
xmax = a(i)

c$omp end critical
endif

enddo
…

…

c$omp parallel do
do i = 1,n

c$omp critical
if (a(i).gt.xmax) then

xmax = a(i)
endif

c$omp end critical
enddo

…

65
Parallel Programming with OpenMP

OpenMP Synchronization - atomic Update

• Prevents a thread that is in the process of (1) accessing, (2) changing, and (3)
restoring values in a shared memory location from being interrupted at any
stage by another thread.

• Syntax:

• Alternative to using the reduction clause (it applies to same kinds of
expressions).

• Directive in effect only for the code statement immediately following it.

#pragma omp atomic
statement

!$omp atomic
statement

66
Parallel Programming with OpenMP

OpenMP Synchronization - atomic Update

integer, dimension(8) :: a,index
data index/1,1,2,3,1,4,1,5/

c$omp parallel private(i),shared(a,index)
c$omp do
do i = 1, 8

c$omp atomic
a(index(I)) = a(index(I)) + index(I)

enddo
c$omp end parallel

67
Parallel Programming with OpenMP

OpenMP Synchronization - barrier

• Causes threads to stop until all threads have reached the barrier.
• Syntax:

• A red light until all threads arrive, then it turns green.
• Example:

!$omp barrier

#pragma omp barrier

c$omp parallel
c$omp do

do i = 1, N
<assignment>

c$omp barrier
<dependent work>

enddo
c$omp end parallel

68
Parallel Programming with OpenMP

OpenMP Synchronization - master Region

• Code in a master region is executed only by the master thread.
• Syntax:

• Other threads skip over entire master region (no implicit barrier!).

#pragma omp master
structured block

!$omp master
structured block

!$omp end master

69
Parallel Programming with OpenMP

OpenMP Synchronization - master Region

!$omp parallel shared(c,scale) &
!$omp private(j,myid)

myid=omp_get_thread_num()
!$omp master

print *,’T:’,myid,’ enter scale’
read *,scale

!$omp end master
!$omp barrier
!$omp do

do j = 1, N
c(j) = scale * c(j)

enddo
!$omp end do
!$omp end parallel

70
Parallel Programming with OpenMP

OpenMP Synchronization - ordered Region

• Within an ordered region, loop iterations are forced to be executed in
sequential order.

• Syntax:

• An ordered region can only appear in a parallel loop.
• The parallel loop directive must contain the ordered clause (new).
• Threads enter the ordered region one at a time.

c$omp ordered
structured block

c$omp end ordered

#pragma omp ordered
structured block

71
Parallel Programming with OpenMP

OpenMP Synchronization - ordered Region

integer, external :: omp_get_thread_num
call omp_set_num_threads(4)

c$omp parallel private(myid)
myid=omp_get_thread_num()

c$omp do private(i) ordered
do i = 1, 8

c$omp ordered
print *,’T:’,myid,’ i=‘,i

c$omp end ordered
enddo

c$omp end parallel

T:0 i=1
T:0 i=2
T:1 i=3
T:1 i=4
T:2 i=5
T:2 i=6
T:3 i=7
T:3 i=8

72
Parallel Programming with OpenMP

OpenMP Synchronization - flush Directive

• Causes the present value of the named shared variable to be immediately
written back (“flushed”) to memory.

• Syntax:

• Enables signaling between threads by using a shared variable as a semaphore.
• When other threads see that the shared variable has been changed, they know

that an event has occurred and proceed accordingly.

c$omp flush(var1[,var2]…)

#pragma omp flush(var1[,var2]…)

73
Parallel Programming with OpenMP

Sample Program: flush Directive

 program flush
 integer, parameter :: M=1600000
 integer, dimension(M) :: c
 integer :: stop,sum,tid
 integer, dimension(0:1) :: done
 integer, external :: omp_get_thread_num

 call omp_set_num_threads(2)
 c=1
 c(345)=9
 !$omp parallel default(private) shared(done,c,stop)
 tid=omp_get_thread_num()
 done(tid)=0
 if(tid==0) then
 neigh=1
 else
 neigh=0
 end if
 !$omp barrier

74
Parallel Programming with OpenMP

Sample Program: flush Directive (cont.)

if (tid==0) then
do j=1,M

if(c(j)==9) stop=j
end do

end if
done(tid)=1

!$omp flush(done)
do while(done(neigh).eq.0)

!$omp flush(done)

end do

if (tid==1) then
sum=0
do j=1,stop-1

sum=sum+c(j)
end do

end if
!$omp end parallel

end program flush

75
Parallel Programming with OpenMP

Some Advanced Features of OpenMP

• Advanced data scoping: the threadprivate directive
• “Orphaning” OpenMP directives
• Advanced synchronization: lock functions

76
Parallel Programming with OpenMP

Advanced Data Scoping - threadprivate Directive
(Fortran)

• Can a thread keep its own private variables throughout every parallel section
in a program? Yes!

• Put the desired variables in a common block and declare that common block to
be threadprivate.

• Makes common blocks private to individual threads but global within each
thread

• Syntax:

• threadprivate directive must appear after the common block declaration.
• threadprivate variables may only appear in the copyin clause.
• For threadprivate variables to persist over several parallel regions, must

use static execution mode and the same number of threads in every region.

c$omp threadprivate(/cb/[,/cb2/…])

77
Parallel Programming with OpenMP

Advanced Data Scoping - threadprivate Directive
(C/C++)

• In C, threadprivate applies to file-scope and static variables
• Makes them private to individual threads, but global within each thread.
• Syntax:

• The threadprivate directive must appear after the declarations of the
specified variables but before any references to them, and must itself be at file
(or namespace) scope.

• Threadprivate variables can only appear in the copyin, schedule and if
clauses.

• For threadprivate variables to persist over several parallel regions, must
use static execution mode and the same number of threads in every region.

#pragma omp threadprivate(var1,var2,…)

78
Parallel Programming with OpenMP

Sample Program: threadprivate

 program region
 integer,external :: omp_get_thread_num
 integer :: tid,x
 common/mine/x

 !$omp threadprivate(/mine/)
 call omp_set_num_threads(4)

 !$omp parallel private(tid)
 tid=omp_get_thread_num()
 x=tid*10+1
 print *,"T:",tid," inside first parallel region x=",x
 !$omp end parallel

 print *,"T:",tid," outside parallel region x=",x

 !$omp parallel private(tid)
 tid=omp_get_thread_num()
 print *,"T:",tid," inside next parallel region x=",x
 !$omp end parallel

 end program region

79
Parallel Programming with OpenMP

Sample Program: threadprivate

[jimg@mck-login1 mck]$ cat threadprivate.job
#PBS -N threadprivate
#PBS -l walltime=20:00
#PBS -l ncpus=4
#PBS -j oe
cd $PBS_O_WORKDIR
efc -openmp threadprivate.f90 -o threadprivate
./threadprivate

[jimg@mck-login1 mck]$ qsub threadprivate.job
46188.nfs1.osc.edu

[jimg@mck-login1 mck]$ cat threadprivate.o46188
efc: Command line warning: openmp requires C style preprocessing; fpp level is reset to 2

program REGION
threadprivate.f90(10) : (col. 0) remark: OpenMP DEFINED REGION WAS PARALLELIZED.
threadprivate.f90(18) : (col. 0) remark: OpenMP DEFINED REGION WAS PARALLELIZED.

27 Lines Compiled
T: 0 inside first parallel region x= 1
T: 1 inside first parallel region x= 11
T: 2 inside first parallel region x= 21
T: 3 inside first parallel region x= 31
T: 0 outside parallel region x= 1
T: 0 inside next parallel region x= 1
T: 2 inside next parallel region x= 21
T: 3 inside next parallel region x= 31
T: 1 inside next parallel region x= 11

80
Parallel Programming with OpenMP

Initializing threadprivate Variables - The copyin Clause

• Causes threadprivate variables to be given the master thread’s
values at the onset of parallel code.

• Fortran syntax:

 C syntax:

• Note: copyin is also a valid clause for parallel do loops and the
parallel sections construct.

copyin(/cb/[,/cb2/…])

copyin(var1,var2,…)

81
Parallel Programming with OpenMP

Sample Program: The copyin Clause

integer :: x,tid
integer, external :: omp_get_thread_num()
common/mine/x

!$omp threadprivate(/mine/)
x=33
call omp_set_num_threads(4)

!$omp parallel private(tid) copyin(/mine/)
tid=omp_get_thread_num()
print *,’T:’,tid,’ x=‘,x

!$omp end parallel

T:1 i=33
T:2 i=33
T:0 i=33
T:3 i=33

82
Parallel Programming with OpenMP

“Orphaning” OpenMP Directives

• Parallel work initiated in a parallel region does not have to be actually
performed within the region’s “lexical” scope.

• Work can be “orphaned” out of the parallel region via a subroutine/function
call.

83
Parallel Programming with OpenMP

Sample Program: Orphaned parallel do

program orphan
integer, parameter :: M=8
integer, dimension(M) :: x
integer :: myid,i
common/global/x,myid,i

call omp_set_num_threads(4)
!$omp parallel shared(x)

call work()
!$omp end parallel

write(6,*) x
end program orphan

subroutine work()
integer, parameter :: M=8
integer, dimension(M) :: x
integer,external :: omp_get_thread_num
common/global/x,myid,i

!$omp do private(i,myid)
do i=1,M

myid=omp_get_thread_num()
write(6,*) "T:",myid," i=",i
x(i)=myid

end do
!$omp end do

return
end subroutine work

84
Parallel Programming with OpenMP

Sample Program: Output

 [jimg@mck-login1 mck]$ qsub orphan.job
 46211.nfs1.osc.edu

 [jimg@mck-login1 mck]$ more orphan.o46211
 Warning: no access to tty (Bad file descriptor).
 Thus no job control in this shell.
 efc: Command line warning: openmp requires C style preprocessing; fpp

level is reset to 2
 program ORPHAN
 orphan.f90(8) : (col. 0) remark: OpenMP DEFINED REGION WAS PARALLELIZED.
 external subroutine WORK
 orphan.f90(19) : (col. 0) remark: OpenMP DEFINED LOOP WAS PARALLELIZED.

 28 Lines Compiled
 T: 0 i= 1
 T: 0 i= 2
 T: 1 i= 3
 T: 1 i= 4
 T: 2 i= 5
 T: 2 i= 6
 T: 3 i= 7
 T: 3 i= 8
 0 0 1 1 2 2
 3 3

85
Parallel Programming with OpenMP

Advanced Synchronization: Lock Functions (C/C++)

• void omp_init_lock(omp_lock_t *lock);
– Initializes the lock associated with the parameter lock

• void omp_destroy_lock(omp_lock_t *lock);
– Ensures the lock variable lock is uninitialized

• void omp_set_lock(omp_lock_t *lock);
– Blocks the thread executing the function until lock is available, then sets the lock

and proceeds.
• void omp_unset_lock(omp_lock_t *lock);

– Releases ownership of lock

• integer omp_test_lock(omp_lock_t *lock);
– Tries to set the lock, but does not block the thread from executing.
– Returns non-zero (“true”) if the lock was successfully set.

• Must #include <omp.h>

86
Parallel Programming with OpenMP

Advanced Synchronization: Lock Functions (Fortran)

• subroutine omp_init_lock(lock)
– Initializes the lock associated with the parameter lock

• subroutine omp_destroy_lock(lock)
– Ensures the lock variable lock is uninitialized

• subroutine omp_set_lock(lock)
– Blocks the thread executing the function until lock is available, then sets the lock

and proceeds.
• subroutine omp_unset_lock(lock)

– Releases ownership of lock

• logical function omp_test_lock(lock);
– Tries to set the lock, but does not block the thread from executing
– Returns .TRUE. if the lock was successfully set

• lock should be an integer of a KIND large enough to hold an address.

87
Parallel Programming with OpenMP

Lock Functions: Example

#include <omp.h>
void main()
{

omp_lock_t lock;
int myid;
omp_init_lock(&lock);
#pragma omp parallel shared(lock) private(myid)
{
myid = omp_get_thread_num();
omp_set_lock(&lock);
printf(“Hello from thread %d\n”, myid);
omp_unset_lock(&lock);

while (! omp_test_lock(&lock)) {
skip(myid);

}
do_work(myid);
omp_unset_lock(&lock);

}
omp_destroy_lock(&lock);

}

88
Parallel Programming with OpenMP

Debugging OpenMP Code

• Examples: race conditions
• Examples: deadlock
• Other danger zones

89
Parallel Programming with OpenMP

Debugging OpenMP Code

• Shared memory parallel programming opens up a range of new programming
errors arising from unanticipated conflicts between shared resources

• Race Conditions
– When the outcome of a program depends on the detailed timing of the threads in

the team.
• Deadlock

– When threads hang while waiting on a locked resource that will never become
available.

90
Parallel Programming with OpenMP

Examples: Race Conditions

c$omp parallel sections
A = B + C

c$omp section
B = A + C

c$omp section
C = B + A

c$omp end parallel sections

• The result varies unpredictably depending on the order in which threads
execute the sections.

• Wrong answers are produced without warning!

91
Parallel Programming with OpenMP

Examples: Race Conditions

c$omp parallel shared(x) private(tmp)
id = omp_get_thread_num()

c$omp do reduction(+:x)
do j=1,100

tmp = work(j)
x = x + tmp

enddo
c$omp end do nowait

y(id) = work(x,id)
c$omp end parallel

• The result varies unpredictably because the value of x isn’t correct until the
barrier at the end of the do loop is reached.

• Wrong answers are produced without warning!
• Be careful when using nowait!

92
Parallel Programming with OpenMP

Examples: Race Conditions

real :: tmp,x
c$omp parallel do reduction(+:x)
do j=1,100

tmp = work(j)
x = x + tmp

enddo
c$omp end do
y(id) = work(x,id)

• The result varies unpredictably because access to the shared variable tmp is
not protected.

• Wrong answers are produced without warning!
• Probably want to make tmp private.

93
Parallel Programming with OpenMP

Examples: Deadlock

call OMP_INIT_LOCK(lcka)
call OMP_INIT_LOCK(lckb)

c$omp parallel sections
call OMP_SET_LOCK(lcka)
call OMP_SET_LOCK(lckb)
call useAandB(res)
call OMP_UNSET_LOCK(lckb)
call OMP_UNSET_LOCK(lcka)

c$omp section
call OMP_SET_LOCK(lckb)
call OMP_SET_LOCK(lcka)
call useBandA(res)
call OMP_UNSET_LOCK(lcka)
call OMP_UNSET_LOCK(lckb)

c$omp end parallel sections

• If A is locked by one thread and B by another, you have deadlock.
• If both are locked by the same thread, you have a race condition!
• Avoid nesting different locks.

94
Parallel Programming with OpenMP

Examples: Deadlock

call OMP_INIT_LOCK(lcka)
c$omp parallel sections

call OMP_SET_LOCK(lcka)
ival = work()
if (ival.eq.tol) then
call OMP_UNSET_LOCK(lcka)

else
call error(ival)

endif
c$omp section

call OMP_SET_LOCK(lcka)
call useBandA(res)
call OMP_UNSET_LOCK(lcka)

c$omp end parallel sections

• If A is locked in the first section and the if statement branches around the unset
lock, then threads in the other section will deadlock waiting for the lock to be
released.

• Make sure you release your locks!

95
Parallel Programming with OpenMP

Other Danger Zones

• Are the libraries you are using thread-safe?
– Standard libraries should always be okay.

• I/O inside a parallel region can interleave unpredictably.
• private variables can mask globals.
• Understand when shared memory is coherent.

– When in doubt, use FLUSH
• NOWAIT removes implicit barriers.

96
Parallel Programming with OpenMP

Performance Tuning and OpenMP

• Basic strategies
• Automatic parallelization
• Example 1
• Example 2
• The memory hierarchy
• Cache locality
• Data locality

97
Parallel Programming with OpenMP

Basic Strategies

• If possible, use auto-parallelizing compiler as a first step
• Use profiling to identify time-consuming code sections (loops)
• Add OpenMP directives to parallelize the most important loops
• If a parallelized loop does not perform well, check for/consider

– Parallel startup costs
– Small loops
– Load imbalances
– Many references to shared variables
– Low cache affinity
– Unnecessary synchronization
– Costly remote memory references (in NUMA machines)

98
Parallel Programming with OpenMP

Automatic Parallelization

• The major languages often have versions of their compilers which will
automatically parallelize your code.

• The compiler stage that performs this is called the Automatic Parallelizer
(AP).

• The AP will insert OpenMP directives into your code if a loop can be
parallelized. If not, it will tell you why.

• “Safe” parallel optimization implies there are no dependencies.
• Only loops can be parallelized automatically.
• Should be considered, at best, as a first step toward getting your code

parallelized
• The next step should be inserting your own directives, and tuning the various

parallel sections for optimum performance.

99
Parallel Programming with OpenMP

Strategy for Using Auto-Parallelization

• Run AP on source files, and examine the listing.
– Convenient to break code up into separate source files (use fsplit(1) and

make(1)).
• For loops that don’t automatically parallelize, try to eliminate inhibiting

dependencies by modifying the source code.
• Use the listing to implement parallelization by hand using OpenMP directives.
• Stop when you are satisfied with performance.

100
Parallel Programming with OpenMP

Performance Tuning: Example 1

• Original code:

c1 = x(1)>0
c2 = x(1:10)>0

DO i=1,n
DO j=i,n

if (c1) then r(1:100) = …
…

if (c2) then … = r(1:100)
sum(j) = sum(j) + …

ENDDO
ENDDO

101
Parallel Programming with OpenMP

Example 1 (cont.)

• First, parallelize the loop.
– Prefer to parallelize the outer loop - higher iteration count
– Note c2 is never true unless c1 is also true - can make r private!
– Also parallelize the reduction

• But, the loop is “triangular”! By default, iterations may be unbalanced
between processors.

– Use the schedule clause to enforce more efficient load balancing

102
Parallel Programming with OpenMP

Example 1 - Parallel Version

c1 = x(1)>0
c2 = x(1:10)>0
ALLOCATE(xsum(1:nprocs,n))

c$omp parallel do private(i,j,r,myid)
c$omp& schedule(static,1)
DO i=1,n

myid = omp_get_thread_num()
DO j=i,n

if (c1) then r(1:100) = …
…

if (c2) then … = r(1:100)
xsum(myid,j) = sum(myid,j) + …

ENDDO
ENDDO

c$omp parallel do
DO i=1,n

sum(i) = sum(i) + xsum(1:nprocs,i)
ENDDO

103
Parallel Programming with OpenMP

Performance Tuning: Example 2

• Increasing parallel loop granularity using the nowait clause:

!$omp parallel private(ld1,ld2,ldi,j,ld,k)
do k = 2,ku-2

!$omp do
do j = jlo, jhi

ld2 = a(j,k)
ld1 = b(j,k)+ld2*x(j,k-2)
ld = c(j,k)+ld1*x(j,k-1)+ld2*y(j,k-1)
ldi = 1./ld
f(j,k,1) = ldi*(f(j,k,1)-f(j,k-2,1)*ld2
f(j,k,1) = ldi*(f(j,k,2)-f(j,k-2,2)*ld1
x(j,k) = ldi*(d(j,k)-y(j,k-1)*ld1
y(j,k) = e(j,k)*ld

enddo
!$omp end do nowait

end do
!$omp end parallel

104
Parallel Programming with OpenMP

The Memory Hierarchy

• Most parallel systems are built from CPUs with a memory hierarchy
– Registers
– Primary cache
– Secondary cache
– Local memory
– Remote memory - access through the interconnection network

• As you move down this list, the time to retrieve data increases by about an
order of magnitude for each step.

• Therefore:
– Make efficient use of local memory (caches)
– Minimize remote memory references

105
Parallel Programming with OpenMP

Performance Tuning - Cache Locality

• The basic rule for efficient use of local memory (caches):
Use a memory stride of one

• This means array elements are accessed in the same order they are stored in
memory.

• Fortran: “Column-major” order
– Want the leftmost index in a multi-dimensional array varying most rapidly in a

loop
• C: “Row-major” order

– Want rightmost index in a multi-dimensional array varying most rapidly in a loop
• Interchange nested loops if necessary (and possible!) to achieve the preferred

order.

106
Parallel Programming with OpenMP

Performance Tuning - Data Locality

• On NUMA (“non-uniform memory access”) platforms, it may be important to
know

– Where threads are running
– What data is in their local memories
– The cost of remote memory references

• OpenMP itself provides no mechanisms for controlling
– the binding of threads to particular processors
– the placement of data in particular memories

• Designed with true (UMA) SMP in mind
– For NUMA, the possibilities are many and highly machine-dependent

• Often there are system-specific mechanisms for addressing these problems
– Additional directives for data placement
– Ways to control where individual threads are running

107
Parallel Programming with OpenMP

Altix 3000: Architecture

108
Parallel Programming with OpenMP

References

• Official OpenMP site: www.openmp.org
– Contains the complete OpenMP specifications for Fortran and C/C++
– News of future developments
– Sample programs
– Links to other sites of interest

http://www.openmp.org/

109
Parallel Programming with OpenMP

OpenMP Problem Set

Write a program where each thread prints the message ‘Hello World!’, along with its
thread ID number and the total number of threads used. Run with 8 threads and run your
program several times. Does the order of the output change? Repeat using 4,16, 33 and
50 threads
Modify your solution to Problem 1 so that only even-numbered threads print out the
information message.
Write a program that declares an array A to have 16000 integer elements and initialize A
so that each element has its index as its value. Then create a real array B which will
contain the running average of array A. That is,

 B(I)=(A(I-1) + A(I) +A(I+1)/3.0
 except at the end points. Your code should do the initialization of A and the running

average in parallel using 8 threads. Experiment with all four of scheduling types for the
running average loop by timing the loop with different schedules.

110
Parallel Programming with OpenMP

Write a program so that the parallel threads print out ‘Backwards’ and their thread ID
number in reverse order of thread number. That is, each time your program is run the
last thread prints out first, then the second to last and so on. There are at least five
different ways to solve this problem. Find as many as you can.
Compile the code mystery.f and run on 16 threads. What is wrong with this
program? (You may have to run it several times). Fix the code so that it works correctly.
As with problem 4 there are several ways to fix the code, try to find them all.
Write a program to read in the x,y,z coordinates from a file points.dat (which you
will be given) and calculate the geometric center which is the average x value, the
average y value, and the average z value. Do the calculation in parallel. Write two
versions of your program: the first using loop-level parallelism, the next using
functional decomposition. (The points data file is ASCII with one x,y,z triplet per line)

111
Parallel Programming with OpenMP

Using the functional decomposition version of program 6, calculate the average
coordinate value given by the equation

 (Σ xi + Σ yi +Σ zi)/3N
 where N is the number of data points. Implement using a global sum and critical

regions.
Write a program to multiply two large matrices together.

a) Compile for single-processor execution. Time the program
b) Compile for multiple processor execution (OpenMP directives) and time for 4,8

and 12 processors
Compile the program alias.f and run on four threads. Can you see the inefficiency in
the program? Write a new version that is more efficient.

112
Parallel Programming with OpenMP

Appendix A: Auto-Parallelization on the Altix 3000

• Using the auto-parallelizer
• Auto-parallelizer files
• Examples

113
Parallel Programming with OpenMP

Using the Auto-Parallelizer

• Syntax:
efc –parallel –par_report2 prog.f –o prog

• What the options do:

-parallel => enable the auto-parallelizer to generate
multi-threaded code for loops that can be safely
executed in parallel

-par_report{0|1|2|3} => control the auto-parallelizer
diagnostic level

• Other compiler options can also be used

114
Parallel Programming with OpenMP

Example Subroutine (successful)

• Original source code (mysub.f)

• AP command:
efc –parallel –par_report2 –c mysub.f90

• Performance report
external subroutine MYSUB
procedure: mysub

mysub.f90(3) : (col. 0) remark: LOOP WAS AUTO-PARALLELIZED.
parallel loop: line 3

7 Lines Compiled

subroutine mysub(a,b,c)
real, dimension(1000) :: a,b,c
do i=1,1000

a(i)=b(i)+c(i)
end do
return

end subroutine mysub

115
Parallel Programming with OpenMP

Data Dependence Example - Indirect Indexing

• Original source code (indirect.f):

• Parallelization report:
[mck-login1]$ efc -parallel -par_report3 -c indirect.f90

external subroutine INDIRECT
procedure: indirect
serial loop: line 4

anti data dependence assumed from line 5 to line 5, due to "a"
output data dependence assumed from line 5 to line 5, due to "a"
flow data dependence assumed from line 5 to line 5, due to "a"

subroutine indirect(a,b,c,idx)
real, dimension(1000)::a,b,c
integer, dimension(1000)::idx
do i=1,1000

a(idx(i))=a(idx(i))+c(i)
end do
return

end subroutine indirect

116
Parallel Programming with OpenMP

Data Dependence Example - Function Call

• Original source code (func.f):

• Parallelization report:
[mck-login1]$ efc -parallel -par_report2 -c funct.f90

external subroutine FUNC
procedure: func
serial loop: line 4: not a parallel candidate due to statement
at line 5

8 Lines Compiled

subroutine func(a,b,c)
real, dimension(1000)::a,b,c
external xfunc
do i=1,1000

a(i)=xfunc(b(i),c(i))
enddo
return

end subroutine func

	Parallel Programming with OpenMP
	Parallel Programming with OpenMP
	Setting the Stage
	Overview of Parallel Computing
	Writing a Parallel Application
	Parallel Architectures
	Parallel Programming Models
	Parallel Computing: Hardware
	Parallel Computing: Software
	Introduction to OpenMP
	The OpenMP Programming Model
	The OpenMP Programming Model
	The OpenMP Programming Model
	How do Threads Interact?
	The Basics of OpenMP
	General Syntax Rules
	General Syntax Rules
	The Parallel Region
	The Parallel Region
	The Parallel Region
	The Parallel Region
	Parallel Regions: Execution Modes
	OpenMP Directive Clauses
	The private,default and if clauses
	firstprivate
	OpenMP Work-Sharing Constructs
	OpenMP work-sharing constructs - for/DO
	Detailed syntax - for
	Detailed syntax - DO
	The schedule(type,[chunk])clause
	schedule(static)
	schedule(static,chunk)
	schedule(dynamic,chunk)
	schedule(guided,chunk)
	schedule(runtime)
	lastprivate
	reduction(operator|intrinsic:var1[,var2])
	reduction(operator|intrinsic:var1[,var2])
	OpenMP Work-Sharing Constructs - sections
	OpenMP Work-Sharing Constructs - sections
	OpenMP Work Sharing Constructs - sections
	OpenMP Work Sharing Constructs - single
	OpenMP Work Sharing Constructs - single
	OpenMP Work Sharing Constructs - single
	Combined Parallel Work-Sharing Constructs
	Parallel DO/for Directive
	Parallel sections Directive
	OpenMP Environment Variables
	OpenMP Environment Variables
	OpenMP Runtime Environment Routines
	OpenMP Runtime Environment Routines
	OpenMP Runtime Environment Routines
	Interlude: Data Dependencies
	Data Dependencies (cont.)
	Data Dependencies (cont.)
	Data Dependencies (cont.)
	Data Dependencies (cont.)
	Minimizing the Cost of a Recurrence
	Loop Nest Parallelization Possibilities
	Loop Nest Parallelization Possibilities
	OpenMP Synchronization Constructs
	OpenMP Synchronization - critical Section
	OpenMP Synchronization - critical Section Example
	OpenMP - Critical Section Problem
	OpenMP Synchronization - atomic Update
	OpenMP Synchronization - atomic Update
	OpenMP Synchronization - barrier
	OpenMP Synchronization - master Region
	OpenMP Synchronization - master Region
	OpenMP Synchronization - ordered Region
	OpenMP Synchronization - ordered Region
	OpenMP Synchronization - flush Directive
	Sample Program: flush Directive
	Sample Program: flush Directive (cont.)
	Some Advanced Features of OpenMP
	Advanced Data Scoping - threadprivate Directive(Fortran)
	Advanced Data Scoping - threadprivate Directive(C/C++)
	Sample Program: threadprivate
	Sample Program: threadprivate
	Initializing threadprivate Variables - The copyin Clause
	Sample Program: The copyin Clause
	“Orphaning” OpenMP Directives
	Sample Program: Orphaned parallel do
	Sample Program: Output
	Advanced Synchronization: Lock Functions (C/C++)
	Advanced Synchronization: Lock Functions (Fortran)
	Lock Functions: Example
	Debugging OpenMP Code
	Debugging OpenMP Code
	Examples: Race Conditions
	Examples: Race Conditions
	Examples: Race Conditions
	Examples: Deadlock
	Examples: Deadlock
	Other Danger Zones
	Performance Tuning and OpenMP
	Basic Strategies
	Automatic Parallelization
	Strategy for Using Auto-Parallelization
	Performance Tuning: Example 1
	Example 1 (cont.)
	Example 1 - Parallel Version
	Performance Tuning: Example 2
	The Memory Hierarchy
	Performance Tuning - Cache Locality
	Performance Tuning - Data Locality
	Altix 3000: Architecture
	References
	OpenMP Problem Set
	Appendix A: Auto-Parallelization on the Altix 3000
	Using the Auto-Parallelizer
	Example Subroutine (successful)
	Data Dependence Example - Indirect Indexing
	Data Dependence Example - Function Call

