
Performance Analysis of an IBM supercluster

Daniele Tessera

Dipartimento di Informatica e Sistemistica

Universit�adegli Studi di P avia

Via Ferrata 1, I-27100 Pavia, Italy

tessera@gilda.unipv.it

Abstract

Cluster computing has emerged as an alternative ap-

proach to deliver high performance to HPC applica-

tions. Cluster machines, built on top of Commodity O�

The Shelf components and based on Open Source Soft-

ware are becoming very popular. Moreover, state of the

art cluster machines rank among the top most powerful

machines, thanks to specialize dhardware and software

components. It is then important to char acterize the

actual performance achieved by these machines.

In this paper, we present a performance char acteri-

zation of a large Linux cluster, that is, the IBM NetFin-

ity located at the Maui High Performance Computing

Center. The novelty of this study is that we have ana-

lyzed the times spent by the allocated processors to ac-

complish the various activities r equir ed by the applica-

tion. Our performance char acterizationfollows a bot-

tom up approach. We initially focus onb asic commu-

nic ation performance. A nalytic almodels of the times

spent in sending and receiving messages, as a func-

tion of their size, will be presented. Then, we will dis-

cuss the behavior of a few widely used numerical al-

gorithms when executed over both a standard Ethernet

and an high performance Myrinet interconnection net-

works. A statistical clustering analysis of these b ehav-

iors will complete our performance study.

1 Introduction

Now ada ys, industrial and scienti�c applications are
increasing their high performance demands. Cluster
computing has emerged as a cost e�ective solution
to match with these demands [10]. Indeed, cluster
computing allo ws the applications to exploit the ag-
gregated computing capabilities of personal comput-
ers and w orkstations connected via local area net-
w orks [16]. This idea, initially exploited by PVM [21],

has been fueled by the increased computation power of
personal computers.

V arious approaches, such as, distributed concurrent
computing [21], netw ork of w orkstation [2, 7], Be-
owulf architectures [6, 20], multicomputer operating
system [5, 13] have been proposed to design machines
with better performance and
exibility.

A very popular approach for building cluster ma-
chines is based on using Commodity O� The Shelf
(COTS) components, such as Intel P entium processors
and Ethernet networks. This approach is often based
on open source software to provide
exibility and ap-
plication code portability. Hence, parallel applications
developed for traditional massively parallel supercom-
puters, can be easily adapted to run on cluster ma-
chines.

Specialized hardware and softw are components have
been developed to improve the performance of cluster
machines, as well as their capabilities to meetthe re-
quirements of HPC applications. F or example, a typi-
cal performance issue of these applications is related to
the times spent by allocated processors in communica-
tion activities. Hence, state of the art cluster machines
are equipped with ATM/Giganet/Quadrix/Myrinet in-
terconnection netw orks to address such an issue. High
performance network interface cards (NIC) and novel
netw ork user level interfaces, such as, the Virtual Inter-
face Architecture [23]), have been proposed to improve
the communication performance.

On the other hand, libraries and tools, as w ellas
optimized middleware, aimed at improving the actual
performance achieved b y specialized hardware and par-
allel task schedulers, are examples of software compo-
nents dev eloped to increase the actual performance of
cluster machines.

These machines, initially developed as prototypes
by researc h centers, are becoming very popular. Many
studies [3, 4, 8, 9, 11 , 12, 14, 15, 17, 18, 22 , 24] present
the c haracteristics of various cluster machines. More-

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

over, commercial clusters are o�ered by various hard-
w are v endors as viable alternatives to traditional paral-
lel supercomputers. It is then important to investigate
the performance that can be achieved by cluster ma-
chines. In this paper we present a performance study
of a large commercial Lin uxcluster, that is, an IBM
NetFinity cluster. In particular, we have analyzed the
performance ofthe cluster when processing a few nu-
merical algorithms resembling the computational cores
of many scienti�c and industrial applications. The
aim of this study is to characterize the performance
achieved by the cluster when processing various nu-
merical algorithms.

The paper is organized as follo ws. Section 2
presents our experimental approach to the characteri-
zation of the cluster performance. An overview of the
IBM NetFinity and of the testbed kernels used to inves-
tigate its performance is presented in Section 3. Sec-
tion 4 describes the performance results, whereas Sec-
tion 5 presents our �nal remarks and outlines future
w orks.

2 Experimental Methodology

The performance actually deliv ered by cluster ma-
chines is the result of complex interactions betw een
softw are and hardware components of the machine, as
w ell as of the application characteristics. Our approach
for benchmarking these machines is based on the anal-
ysis of performance measures collected during appli-
cation run time. The originality of this study is that
it goes beyond the mere w allclock times by focusing
on the times spent to accomplish basic activities, such
as communications and computations. In particular,
the performance results presented in the Section 4 are
based on the analysis of timing measurements collected
during various kernel executions. These measurements
consist of the w allclock times spen tby the allocated
processors in a few selected routines, as well as in their
communication activities. In order to characterize the
machine performance, all the analyzed measures have
been collected by running the kernels on dedicated
nodes, that is, no other applications were running con-
currently with our test kernels. Moreover, an ad hoc
monitoring system has been developed in order to min-
imize the perturbations on kernel executions, due to
monitoring activities. Indeed, the monitoring facili-
ties embedded in communication libraries were not well
suited for pro�ling the kernels since they might issue a
very large number of measurement records.

Note that, our study is aimed at evaluating the long
run behaviors of the various kernels from measurements
collected on testbed runs. Hence, statistical techniques

have been applied to measured timings in order to min-
imize theimpact of non deterministic random e�ects.
Measurements have been then repeated several times,
depending on individual kernel c haracteristics. Statis-
tical outliers deletion, based on the 99th percentile, was
then applied to these measures. Hence, the longest 1%
times are discarded as due to anomalous, sporadic ef-
fects.

Our performance characterization follows a bottom
up approach. Basic low level communication perfor-
mance has been initially analyzed. Analytical models
of the wall clock times required for sending and receiv-
ing messages, as a function of the message size, have
been derived. We have then investigated the behavior
of various numerical kernels, v arying the number of al-
located processors. In particular, we have analyzed the
kernel scalability when executed over a standard Ether-
net interconnection netw ork, as well as over specialized
hardware, such as the Myrinet net work. Finally, the
impact of these networks on the k ernels' performance
has been studied by means of statistical clustering anal-
ysis. The aimof this analysis is to identify classes of
algorithms experiencing similar performance.

3 Hardware & Software Environments

This section describes the hardware and software en-
vironments used for collecting the performance mea-
surements. As a testbed machine w e ha veused an
IBM NetFinity cluster located at the Maui High Per-
formance Computing Center [19]. This machine is a
cluster composed of 260 nodes running Linux as oper-
ating system. Each node consists of two Intel Pentium
III processors, clocked at 933Mhz, and 1Gbyte of mem-
ory . Nodes are connected via both high performance
Myrinet switches and a F ast 100Mbps Ethernet net-
w ork. The cluster ranks among the largest and most
pow erful cluster machines. Note that the architecture
of the IBM NetFinity is the classical architecture of Be-
owulf clusters. Hence, the performance results derived
from our measurements can be extended to standard
Linux clusters. The softw are en vironment consists of
both system softw are, such as commodity tools and li-
braries, as well as of the testbed kernels used for bench-
marking the machine performance. System softw are
includes the communication library, that, in our case,
is the mpich from the Argonne National Laboratory,
and the parallel batch scheduler. The Maui Scheduler
Open Cluster Softw arehas been used to run all the
analyzed testbed kernels on dedicated nodes.

The performance of the IBM NetFinity has been
analyzed by evaluating the behavior of a few kernels
from them w ell known P arkBench suites. In partic-

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

ular, low lev el communication performance has been
benchmarked by means of the comms1 kernel from the
P arkBench suite. The behaviors of various test kernels
from the NAS P arallelBenchmarks suite, ha vebeen
analyzed with the aim to characterize the performance
of the cluster on HPC scienti�c computing. In partic-
ular, the considered numerical algorithms are:

BT multiple, independent, non diagonally dominant,
block tridiagonal equations iterative solver;

CG conjugate gradient evaluation by computing an ap-
proximation of the smallest eigenvalue;

EP integral computing by means of pseudo-random
trials derived by a Monte Carlo process;

FT time integration of a three-dimensional partial dif-
feren tial equations using the FFT;

IS integer sorting;

LU triangular factorization of a matrix by a SSOR
relaxation scheme;

MG V-cycle multigrid algorithm applied to a tw odi-
mensions discrete Poisson problem.

T able 1 presents an overview of the performance re-
quirements of each considered kernel. In particular, the
problem size, the number of iterations to be performed,
and the amount of
oating point operations to be com-
puted are provided. As can be seen from the table,

Kernel Problem size Iterations MFLOP

BT 64�64�64 200 168275.6

CG 14000 15 1495.4

EP 536870912 9 536.8

FT 256�256�128 6 7136.9

IS 8388608 10 83.7

LU 64�64�64 250 119298.7

MG 256�256�256 4 3889.3

Table 1. Static performance characterization
of considered kernels.

the computing demands of the various kernels range
from 83.7 MFLOP up to 168:3 GFLOP. The low er
CPU requirement is for sorting (i.e., IS) an 8388608
distributed integer arra y,whereas the most comput-
ing intensive kernel (i.e., BT) solv es a 64�64�64 block
tridiagonal equation system with a 5�5 block size.

4 Performance Characterization

As a preliminary step tow ards thecharacterization
of the performance of the Linux cluster we have ana-
lyzed the behavior of basic communication statements.
F or suc h a purpose, thecomms1 kernel from the Park-
Bench suite has been used as testbed kernel. Indeed,
this kernel tests the performance of the blocking point-
to-point communications by performing basic ping-
pong data exchanges betw een t w o processors, namely,
master and slave. Within each data exchange, the mas-
ter sends a message to the slave, which sends it back to
the master. Communication time, on a per message ba-
sis, is then derived b y halving the time elapsed since a
message sent from the master is returned by the slave.
Timings related to data exc hanges been collected by
monitoring the kernel runs.

Figure 1 shows the communication time, over both
Myrinet and Ethernet networks, as a function of the
message size. Note that, the �gure uses logarithmic

0.01

0.1

1

10

100

1000

1 10 100 1K 10K 100K 1M 10M

T
im

e
(m

s)

Message size (bytes)

Communication time

Ethernet
Myrinet

Figure 1. Communication time, as a function
of the message size, over Myrinet and Ether-
net.

scales on both diagram axes, that is, message size and
communication time. Messages sizes up to 10 Mbytes
have been considered. Communication times over
Ethernet are about 5.5 times longer with respect to
their Myrinet counterparts for messages shorter than
512 bytes. Larger messages result in further increases
of the ratio betw een communication times over Ether-
net and the corresponding times over Myrinet. For ex-
ample, sending 1 Mbyte of data over Myrinet is about
15 times faster with respect to Ethernet.

F urther insights into the performance of commu-
nication activities have been deriv ed by investigat-
ing the individual contributions due to MPI Send and

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

MPI Recv. Hence, the times accounted, on a per mes-
sage size basis, by the various communication state-
ments, have been analyzed with the aim to derive an-
alytical models for their behavior. We have observed
tw o distinct behaviors, from short and large messages,
respectively. Figure 2 outlines these behaviors by plot-
ting the times spent in MPI Send and MPI Recv over
Myrinet, as a function of the message size. As can be

0.001

0.01

0.1

1

10

100

1000

1 10 100 1K 10K 100K 1M 10M

tim
e

(m
s)

message size (bytes)

Communication time breakdown - Myrinet

MPI_Send
MPI_Recv

Figure 2. Times spent in MPI Send and
MPI Recv over the Myrinet, on a per mes-
sage size basis.

seen from the �gure, MPI Send requires, for sending up
to 10 Kbytes of data, about 10 times less of the cor-
responding timeaccoun ted by MPI Recv. Larger mes-
sages result in almost iden ticallytimes accounted for
either sending or receiving the data. Eager protocols,
embedded in the communication library, are responsi-
ble for such a behavior. Indeed, in order to improve the
communication performance, short messages are imme-
diately sent to the destination processors, whereas large
messages require a rendez-vous protocol. In this case,
the sender processor has to be acknowledged, by the
receiv er processor, that an appropriate bu�ering space
has been reserved. This tw osteps protocol results in
a synchronization of MPI Send and MPI Recv activities.
Such a synchronization results in alike times accounted
by both sending and receiving activities. A similar be-
ha vior is experienced by communications overEther-
net. Our communication time models mimic these be-
ha viors, in that we use t w o analytical expressions, de-
pending on the size of the message. Numerical �tting
techniques have been applied to the measured times.
The analytical expression for the time spent in sending
messages is:

tSEND(n) =

�
a0 + a1n : n � �n
b0 + b1n : n > �n

where:
tSEND is the sending time (in �s);
n is the message size (in bytes);
�n is the eager versus rendez-vous threshold;
a0,a1,b0,b1 are the model parameters.
T able 2 reports the parameters and threshold values

deriv ed for sendingmessages over either Myrinet and
Ethernet. Note that, parameter b0, derived for both
Myrinet and Ethernet does not represent any latency
time and is used, for large message only ,to improve
the numerical accuracy of our model.

Myrinet Ethernet

a0 4.02794 16.03866

a1 0.00188 0.00578

b0 57.43650 -21212.75604

b1 0.00610 0.07966

�n 10K 256K

Table 2. Model parameters for the time spent
in MPI Send over both Myrinet and Ethernet
networks.

Similar models have been derived for the time spent
in receiving messages, that is, in performing MPI Recvs.
Indeed, the identi�ed models have the same analytical
expression of tSEND(n). The main di�erence is that
a tw othresholds model is most appropriate to actu-
ally represent the MPI Recv behavior over the Myrinet.
Hence, the analytical expression of the receive time is:

tRECV (n) =

8<
:

a0 + a1n : n � ~n
c0 + c1n : ~n < n � �n
b0 + b1n : n > �n

Myrinet Ethernet

a0 30. 89969 192.69104

a1 0.03339 0.20585

b0 57. 43650 26084.29131

b1 0.00610 0.09761

c0 37. 23730 {

c1 0.02935 {

�n 10K 256K

~n 100 {

Table 3. Model parameters for time spent in
MPI Recv over both Myrinet and Ethernet
networks.

Table 3 reports the parameter values. Note that,
the receiving time of very short messages (i.e., up to

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

100 bytes) is mostly in
uenced by latency issues. In-
deed, the amount of receiv eddata a�ects the receiv e
time as much as about 10%, only.

F urther insights into the characterization of the per-
formance of the Linux cluster have been derived by an-
alyzing the behaviors of a few kernels from the NAS
P arallelBenchmarks suite. Indeed, these kernels re-
semble the computational cores of popular numerical
algorithms widely adopted by many scienti�c and in-
dustrial applications. The kernels are based on data
parallel paradigms aimed at distributing the computa-
tional load among all the allocated processors. Hence,
the kernels are w ell suited for investigating the scal-
abilit y of these numerical algorithms when executed
on a cluster machine. An overviewof the amount of
computation performed by each kernel is provided in
Figure 3. For each kernel, the time spent, on average,
by each allocated processor in computation activities
is plotted as a function of the number of allocated pro-
cessors themselves. As can be seen from the �gure,

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

T
im

e
(s

)

Number of allocated processors

Computation time

BT
CG
EP
FT
IS

LU
MG

Figure 3. Computation time, on a per kernels
basis, as a function of the number of allocated
processors.

all k ernels are characterized by regular behaviors. In-
deed, the computation time of all kernels, but FT, can
be expressed by:

tcomp(p) = a0 +
a1

p

where p is the number of allocated processors and a0,
a1 are the model parameters, derived on a per kernel
basis. Computation times of FT kernel can be better
expressed by:

tcomp(p) = a0 +
a1

p
�

a2

p2

where a2 addresses an extra time reduction factor.
Such a factor is due to the computation, on each pro-
cessor, of local tw o dimensional FFT which do not have
been optimized for the Pentium Intel architecture.

On the other hand, the time spent by the allocated
processors in communication activities plays a critical
role by limiting the overall performance of the vari-
ous kernels. In what follows, we have analyzed such a
time for runs over either the Myrinet and the Ethernet
networks. Figure 4 depicts the communication time
experienced by each kernel as a function of the number
of allocated processors. In particular, Fig. 4(a) refers
to runs over Myrinet, whereas Fig. 4(b) refers to runs
over Ethernet. As can be seen from the �gure, the be-
havior of communication times over Myrinet is quite
regular, even when large number of processors are allo-
cated. On the other hand, the Ethernet netw ork limits
the performance of the kernels, in that communica-
tion times might overwhelm their computation time
counterparts. F or example, allocating 64 processors to
the FT run over Ethernet results in an execution time
of 11:21s. The FT execution time with 32 processors
is 8:90s, only. Hence, although computation time de-
creases from 1:72s (32 processors) to 0:90s (64 proces-
sors), the communication time increases from 7:19s to
10:32s. Moreover, the times spent in communication
activities over Myrinet are shorter than their Ethernet
counterparts for all kernels, but LU. An in-depth anal-
ysis of the LU behavior has identi�ed a large amount
of short bloc king communications that are performed
during the kernel execution. In particular, blocking re-
ceives (i.e., MPI Recv) account for about 80% of the
communication time, although they collect only 30%
of receiv ed data. On the other hand, Ethernet per-
forms very well short data transfers. Indeed, the 46500
bloc king receives issued by the 16 processors allocated
to an LU execution, account for 14:48s for communica-
tion over Ethernet. When communication takes place
over Myrinet such receives account for 49:99s.

As a �nal step tow ards the performance characteri-
zation, we have applied statistical clustering techniques
to the performance measurements collected for eac h
kernel run. The aim of statistical cluster analysis is to
identify sets of runs which are characterized by similar
performance measures. In what follows we de�ne the
communication rate as the ratio of the overall volume
of exchanged data over thew all clock communication
time. Each run is then described by a set of perfor-
mance parameters, that is, the communication rate,
the volume of exchanged data and the communication
frequency. P arametersrelated to 93 runs over either
Myrinet and Ethernet networks, varying the number
of allocated processors have been considered. The an-

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

0.001

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

T
im

e
(s

)

Number of allocated processors

Communication time - Myrinet

BT
CG
EP
FT
IS

LU
MG

(a)

0.001

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

T
im

e
(s

)

Number of allocated processors

Communication time - Ethernet

BT
CG
EP
FT
IS

LU
MG

(b)

Figure 4. Communication time of each kernel over Myrinet (a) and Ethernet (b) as a function of the
number of allocated processors.

alyzed runs have been subdivided into three clusters
by means of statistical clustering. Figure 5 depicts the
considered runs as points into a 3D-space where the
axes are the communication ratio, the overall amount
of exc hanged data, and the communication frequency.
The various point shapes highlight the identi�ed clus-

Cluster 1
Cluster 2
Cluster 3

0
20

40
60

80
Comm. rate (GBytes/s) 0

30K

60K

90K

Comm. frequency

0

200

400

600

800

Volume of data (MBytes)

Figure 5. Performance measures of analyzed
kernels highlighting identified clusters.

ters. Indeed, crosses, white and solid black rounds refer
to run belonging to Cluster 1, Cluster 2, and Cluster 3,
respectively. T able 4 reports the statistic cen troids,
that is the average values of parameters, of each iden-
ti�ed cluster, as well as the number of kernel runs be-
longing to it. Note that, Cluster 3 consists of only three

Cluster 1 Cluster 2 Cluster 3
(51 runs) (39 runs) (3 runs)

Comm. rate
(GBbyte/s)

1.00 2.78 52.12

Vol. of Data
(MBytes)

35.55 298.32 87.63

Communication
F requency

2310.75 50486.80 1823.00

Table 4. Statistical centroids of the identified
clusters.

kernel runs which are c haracterized by high communi-
cation rate and low communication frequency. Namely,
they are MG runs over Myrinet, with 32, 64, and 128 al-
located processors. On the other hand, BT and LU runs
over both interconnection networks belong to Cluster 2.
These runs are c haracterized by very large communi-
cation frequencies and volumes of exchanged data. CG,
EP, FT, and IS runs belong to Cluster 1. The remaining
MG runs belong to Cluster 1 for all the processor sets
but one with 4 allocated processors which belongs to
Cluster 1.

5 Conclusions

Cluster computing has emerged as an alternative ap-
proach to deliver high performance to scienti�c and in-
dustrial applications. Solutions, ranging from personal
computers and workstations connected by commodity

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

local area netw orks up to large dedicated clusters with
specialized hardware ha vebeen proposed. Cost con-
strain ts and the large availabilit y of open source soft-
w are including the development and runtime environ-
ments enlarge the framework of cluster machines users.
It is then important to characterize the performance of
cluster machines and to investigate the scalability of
numerical algorithms when large number of processors
are allocated.

In this paper we have presented a performance char-
acterization of a large commercial cluster, that is a 520
processors IBM NetFinity. In particular, we have ana-
lyzed the performance measures collected while bench-
marking the machine with kernels from the NAS Paral-
lel Benchmarks suite. The impact of a dedicated inter-
connection netw ork,based on Myrinet switches, with
respect to the standard Ethernet netw ork, has been ad-
dressed. The scalability of all considered kernels ben-
e�ts from Myrinet netw ork, although the correspond-
ing execution times do not always re
ect the the su-
periorit y of Myrinet with respect to Ethernet netw ork.
Indeed, w ehave unexpectedly found out that when a
large number of bloc king communication requests are
issued by a small number of processors Ethernet per-
formance is superior.

F uture works will be dedicated to the analysis of the
performance overhead due to various processors alloca-
tion strategies on the overall application performance
as well as to investigate the performance of real live
applications on cluster machines.

Acknowledgments

This work was partially supported by the Italian Re-
search Council (CNR) under the Project \Agenzia 2000
- Progetto Giovani". This research, in part conducted
at the Maui High Performance Computing Center, was
also sponsored in part by the Air Force Research Lab-
oratory, Air Force Materiel Command, USAF, under
cooperative agreement number UNIVY-0282-U00. The
views and conclusions contained in this document are
those of the author and should not be interpreted as
necessarily representing the oÆcial policies or endorse-
ments, either expressed or implied, of the Air Force
Research Laboratory, the U.S. Government, the Uni-
versity of Haw aii, or the Maui High Performance Com-
puting Center.

References

[1] R. Al�eri et al. Status of APE projects. Nuclear
Physics B, 94:846{853, 2001.

[2] T. Anderson, D. Culler, D. P atterson, and the
NOW Team. A Case for NOW (Networks of Work-
stations). IEEE Micro, 15(1):54{64, 1995.

[3] E. B. Bal et al. The Distributed ASCI supercomputer
project. Operating Systems Review, 34(4):76{96, 2000.

[4] A. Barak, I. Gilderman, and I. Metrik. Performance of
the communication layers of TCP/IP with the Myrinet
gigabit LAN. Computer Communications, 22:989{997,
1999.

[5] A. Barak and O. La'adan. The MOSIX multicomputer
operating system for high performance cluster com-
puting. Future Generation Computer Systems, 13:361{
372, 1998.

[6] The Beowulf Project. http://www.beowulf.org, 2001.
[7] The Berkeley Network of Workstations.

http://now.cs.berkeley.edu, 2002.
[8] R. Brightw ell and S. Plimpton. Scalability and Perfor-

mance of Two Large Linux Clusters. Journal of Par-
allel and Distributed Computing, 61(11):1546{1569,
2001.

[9] F. Capello, O. Richard, and D. Etiemble. Understand-
ing performance of SMP cluster running MPI pro-
grams. Future Generation Computer Systems, 17:711{
720, 2001.

[10] T. Deng and A. Korobka. The performance of a super-
computer built with commodity components. Parallel
Computing, 27:91{108, 2001.

[11] S. Donaldson, J. Hill, and D. Skillicorn. BSP clusters:
High performance, reliable and very low cost. Parallel
Computing, 26:199{242, 2000.

[12] M. Go lbiewski and J. Larsson. MPI-2 One-Sided Com-
m unicationson a Giganet SMP Cluster. In Lecture
Notes in Computer Science, volume 2131, pages 16{
23, 2001.

[13] A. Grimshaw, A. F errari, F. Knabe, and
M. Humphrey. Wide area computing: resource
sharing on a large scale. IEEE Computer, 32(5):29{
37, 1999.

[14] D. Houzet and M. Albegne. A shared memory model
on a cluster of PCs. Microprocessors and Microsys-
tems, 23:125{134, 1999.

[15] J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooho-
lamini. Arc hitectural and Performance Ev aluation
of GigaNet and Myrinet Interconnects on Clusters of
Small-Scale SMP Servers. In Proceedings of Supercom-
puting 2000. IEEE Computer Society Press, 2000.

[16] L. P . Huse and H. Bugge. High-End Computing
on SHV Workstations Connected with High Perfor-
mance Netw ork. Lecture Notes in Computer Science,
1947:324{331, 2001.

[17] Cluster Computing White Paper.
http://www.dcs.port.ac.uk/~mab/tfcc/WhitePaper/�nal-
paper.pdf, 2000.

[18] M. S. Warren and D. J. Becker and M. P . Goda
and J. K. Salmon and T. Sterling. Parallel Super-
computing with Commodity Components. In H. R.
Arabnia, editor, Pr oc. of the Intnl. Conf. on Paral-
lel and Distributed Pr ocessingT echniquesand Appli-
cations (PDPTA'97), pages 1372{1381, 1997.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

[19] Maui High P erformance Computing Center.
http://www.mhpcc.edu, 2002.

[20] T. Ridge, D. Becker, P. Merkey, and T. Sterling. Be-
owulf: Harnessing the Power of Parallelism in a Pile-
of-PCs. In Aerospace Conference, volume 2, pages 79{
91. IEEE Press, 1997.

[21] V. Sunderam, J. Dongarra, A. Geist, and R. Manchek.
The PVM Concurrent Computing System: Evolu-
tion, Experiences, and T rends. Parallel Computing,
20(4):532{547, 1993.

[22] S. Vazhkudai, J. Syed, and T. Maginnis. PODOS - The
design and implementation of a performance oriented
Lin ux cluster. Future Generation Computer Systems,
18(1):335{352, 2002.

[23] Virtual Interface Arc hitecture.
http://www.viarch.org, 1997.

[24] D. Womble, S. Dosanjh, B. Hendrickson, M. Heroux,
S. Plimpton, J. Tomkins, and D. Greenberg. Massively
parallel computing: A Sandia perspective. Parallel

Computing, 25:1853{1876, 1999.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:25 from IEEE Xplore. Restrictions apply.

