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Abstract

InfiniBand is becoming increasingly popular in the

area of cluster computing due to its open standard and

high performance. I/O interfaces like PCI-Express and

GX+ are being introduced as next generation tech-

nologies to drive InfiniBand with very high through-

put. HCAs with throughput of 8x on PCI-Express have

become available. Recently, support for HCAs with

12x throughput on GX+ has been announced. In this

paper, we design a Message Passing Interface (MPI)

on IBM 12x Dual-Port HCAs, which consist of multi-

ple send/recv engines per port. We propose and study

the impact of various communication scheduling poli-

cies (binding, striping and round robin). Based on

this study, we present a new policy, EPC (Enhanced

point-to-point and collective), which incorporates dif-

ferent kinds of communication patterns; point-to-point

(blocking, non-blocking) and collective communica-

tion, for data transfer. We implement our design and

evaluate it with micro-benchmarks, collective commu-

nication and NAS parallel benchmarks. Using EPC on

a 12x InfiniBand cluster with one HCA and one port,

we can improve the performance by 41% with ping-

pong latency test and 63-65% with the unidirectional

and bi-directional bandwidth tests, compared with the

default single-rail MPI implementation. Our evalua-

tion on NAS Parallel Benchmarks shows an improve-

ment of 7-13% in execution time for Integer Sort and

Fourier Transform.
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1 Introduction

InfiniBand Architecture [4] is an industry standard

which offers low latency and high bandwidth, as well as

many advanced features such as Remote Direct Mem-

ory Access (RDMA), multicast and Quality of Ser-

vice (QoS). I/O interfaces like PCI-Express and GX+

are being introduced as next generation technologies to

drive InfiniBand with very high throughput. InfiniBand

Adapters (also known as Host Channel Adapters) with

throughput of 8x on PCI-Express have become avail-

able. Recently, support for HCAs with 12x link speed

on GX+ has been announced. In this paper, we focus

on IBM 12x HCAs with GX+ interface. Each IBM

12x HCA port consists of multiple send and receive

DMA engines providing an aggregate link bandwidth

of 12x in each direction. This leads to the following

challenges:

1. How to design efficient support at the MPI level

for taking advantage of multiple send and receive

engines at the HCA?

2. What are the trade offs in such designs?

3. How much performance benefits can be achieved

at the MPI level for point-to-point, collective com-

munication and applications with the proposed de-

sign?

In this paper, we address these challenges. We propose

a unified MPI design for taking advantage of multiple

send and receive engines on a port, multiple ports and

HCAs. We study the impact of various communication

scheduling policies (binding, striping and round robin)

and discuss the limitations of these individual policies

for different communication patterns, in context of IBM

12x InfiniBand HCA. To overcome this limitation, we

present a new policy, EPC (Enhanced point-to-point

and collective), which incorporates different kinds of
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communication patterns point-to-point (blocking, non-

blocking) and collective communication, for data trans-

fer. To enable this differentiation, we design a commu-

nication marker and discuss the need to integrate it with

the ADI layer for obtaining the optimal performance.

We implement our design and evaluate it with micro-

benchmarks, collective communication and NAS paral-

lel benchmarks. Using EPC on a 12x InfiniBand cluster

with one HCA and one port, we can improve the per-

formance by 41% with ping-pong latency test and 63-

65% with the unidirectional and bi-directional through-

put tests, when compared with the default single-rail

MPI implementation [7]. We can achieve a peak uni-

directional bandwidth of 2745 MB/s and bidirectional

bandwidth of 5362 MB/s. We conclude that none of

the previously proposed policies alone provides optimal

performance for these communication patterns. Us-

ing NAS Parallel Benchmarks, we see an improvement

of 7-13% in execution time along with a signification

improvement in collective communication using Pallas

benchmark suite.

The rest of the paper is organized as follows: In Sec-

tion 2, we provide a brief overview of InfiniBand and

IBM 12x InfiniBand HCA Architecture. In section 3,

we present the MPI design for IBM 12x architecture.

Performance evaluation and discussion are presented in

section 4. In section 5, we present the related work.

In section 6, we conclude and present our future direc-

tions.

2 Background

In this section, we provide background information

for our work. We provide a brief introduction of Infini-

Band and IBM 12x InfiniBand HCAs. We begin with

an overview on InfiniBand.

2.1 InfiniBand

The InfiniBand Architecture (IBA) [4] defines a

switched network fabric for interconnecting processing

nodes and I/O nodes. An InfiniBand network consists

of switches, adapters (called Host Channel Adapters or

HCAs) and links for communication. For communica-

tion, InfiniBand supports different classes of transport

services (Reliable Connection, Unreliable Connection,

Reliable Datagram and Unreliable Datagram). In this

paper, we focus on the reliable connection model. In

this model, each process-pair creates a unique entity

for communication, called queue pair. Each queue pair

consists of two queues; send queue and receive queue.

The requests to send the data to the peer are placed on

the send queue, by using a mechanism called descrip-

tor. A descriptor describes the information necessary

for a executing an operation. For RDMA (Remote Di-

rect Memory Access) operation, it specifies the local

buffer, address of the peer buffer and access rights for

manipulation of remote buffer. InfiniBand also pro-

vides a mechanism, where different queue pairs can

share their receive queues, called shared receive queue

mechanism. The completions of descriptors are posted

on a queue called completion queue. This mechanism

allows a sender to know the status of the data trans-

fer operation. Different mechanisms for notification are

also supported (polling and asynchronous).

2.2 Overview of IBM 12x DualPort Infini
Band HCA

Each IBM 12x HCA consists of two ports. The lo-

cal I/O interconnect used is GX+, which can run over

different clock rates of 633 MHz-950 MHz. Figure 1

shows the block diagram of the IBM 12x InfiniBand

HCA. In this paper, we use GX+ bus with 950MHz fre-

quency. As a result, a theoritical bandwidth of 7.6GB/s

can be provided. However, each port can provide an

aggregate theoritical bandwidth of 12x (3GB/s). Each

port has multiple send and receive DMA engines. How-

ever, the peak bandwidth of each send/recv engine

varies with different implementations. The objective is

to provide a uniform MPI for all these implementations.

IBM 12x Dual Port HCA

GX+ Bus
To GX+

To Network

Figure 1. IBM 12x InfiniBand HCA Block

Diagram

To schedule the data on a send engine, the hardware

send scheduler looks at the send queues of different
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queue pairs with send descriptors, which are not be-

ing serviced currently. Given equal priority, the queue

pairs are serviced in a round robin fashion. As a result,

multiple queue pairs should be used to utilize the send

engines efficiently. In addition, efficient scheduling of

data on these engines is also imperative to efficient uti-

lization.

In the next section, we present an MPI functional-

ity, which is able to take advantage of the presence of

multiple send/recv engines in an efficient manner.

3 MPI Design for IBM 12x InfiniBand Ar-

chitecture

In this section, we focus on designing an MPI sub-

strate for IBM 12x InfiniBand Architecture. We begin

with the introduction of overall design, which is fol-

lowed by discussion on scheduling policies. We also

present a communication marker module, which re-

sides in the ADI layer and differentiates between com-

munication patterns.

MPI Application

InfiniBand Layer

Input from other system components Notification

Communication

Scheduler

Scheduling

Policies

Completion

Filter

MPI Completion

Eager Rendezvous

MPI Completion
Notification

MPI function
Invocation

Communication
Type Marker ADI Layer 

{Blocking,
Non−blocking,
Collective}

Multiple HCAs}
Multiple Ports,

{Multiple QPs/port,

Figure 2. Overall MPI Design for IBM 12x

InfiniBand Architecture

3.1 Overall Design

Figure 2 represents our overall design. Our previ-

ous design presented in [6, 9] supports using multiple

ports and multiple HCAs. In our new design presented

here, we enhance it by adding support for utilizing mul-

tiple send/recv engines per port. As mentioned in the

section 2, multiple queue pairs per port are needed for

such a support. In addition, in our enhanced design, we

present a communication marker schedule, which dif-

ferentiates between communication patterns, to obtain

optimal performance for point-to-point and collective

communication. These enhancements are shown with

dotted boxes in Figure 2.

3.2 Discussion of Scheduling Policies for dif
ferent Communication Patterns

In this section, we present the discussion on schedul-

ing policies. Even though, in our previous work,

we have presented an initial discussion on schedul-

ing policies, we discuss the limitations of the previ-

ously proposed scheduling policies for utilizing multi-

ple send/recv engines in an efficient manner. We begin

with a discussion on point-to-point communication.

3.2.1 Point-to-Point Communication

Point-to-point communication can be classified as

blocking and non-blocking type of communication. In

the blocking communication, only one message is out-

standing in communication between a pair of processes.

The round robin policy uses the available QPs one-by-

one in a circular fashion [6, 9]. Binding policy al-

lows a user to bind to a port of an HCA [6]. Using

round robin policy may lead to under-utilization of the

available send and receive DMA engines for such kind

of communication pattern. Striping divides the mes-

sages among available queue pairs providing a much

better utilization of available DMA engines. Similarly,

for non-blocking communication, striping can provide

benefits by exploiting parallelism in send and receive

DMA engines.

However, a large percentage of MPI applications

mainly use medium size messages for data transfer. In

our previous work [6, 9], our design and evaluation

mostly used two queue pairs (one queue pair per port

or adapter), hence the impact of striping on the perfor-

mance of medium size messages was negligible. How-

ever, using multiple send/recv engines per port requires

usage of multiple queue pairs per port. As the num-

ber of queue pairs increase, the cost of assembly and

disassembly of data due to striping becomes signifi-

cant. This cost is mainly due to posting a descriptor for

each stripe, and acknowledgment overhead of the reli-

able connection transport service of InfiniBand. Hence,

using the round robin policy for communication may

outperform the striping policy.

From the above discussion, the need to differen-

tiate between point-to-point communication patterns

is clear. We incorporate this using a communication

marker presented in the later part of the section.

3
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3.2.2 Collective Communication

Collective communication primitives based on point-

to-point use MPI Sendrecv primitive for various steps

in the algorithm. Each MPI Sendrecv call can fur-

ther be divided in one function call of MPI Isend and

MPI Irecv each to the left and the right neighbor. Since

MPI Collectives are blocking, each step in the algo-

rithm is completed before executing the next step. As

described in the previous section, this is a non-blocking

form of communication, and round robin policy would

be used. However, only one outstanding non-blocking

call is available for each send/receive engine, which

may lead to insufficient usage of available send DMA

engines. Thus, we clearly need to differentiate be-

tween the non-blocking calls received from point-to-

point communication and collective communication.

From the above discussion, we can conclude that a

single scheduling policy is not sufficient for data trans-

fer with different communication patterns. Some poli-

cies benefit blocking communication, while other ben-

efit the non-blocking communication. In addition, for

the non-blocking communication, the usage by collec-

tive communication can further complicate the schedul-

ing policy decision. To resolve the above conflicts of

policy selection, we present a new policy, EPC (En-

hanced point-to-point and collective), which falls back

to optimal policies for respective communication pat-

terns. For non-blocking communication, it uses round

robin, for blocking communication, it uses striping. For

collective communication, even though we have non-

blocking calls, it falls back to striping. The efficiency of

this policy is dependent upon the ADI layer to be able

to differentiate between such communication patterns.

In the next section, called communication marker mod-

ule, which resides in the ADI layer and takes advantage

of ADI layer data structures and parameters for differ-

entiating between communication patterns.

3.3 Communication Marker

The communication marker module resides in the

ADI layer of our design. The main purpose of this mod-

ule is to be able to differentiate among different com-

munication patterns invoked by the MPI Application.

In essence, it differentiates between:

• Point-to-point

– Blocking

– Non-blocking

• Collective

Since our design is based on MPICH, this differentia-

tion at the ADI layer is possible. For collective commu-

nication, a separate tag is used, which can be used to

differentiate an ADI function call from point-to-point

communication. In addition, the ADI layer decides

the communication protocol eager/rendezvous depend-

ing upon the message size. We have used a rendezvous

threshold of 16KBytes in performance evaluation. This

value is also used as the striping threshold, the mes-

sages of size equal and above are striped on all available

queue pairs equally.

4 Performance Evaluation

In this section, we present performance evaluation

of IBM 12x HCAs using MPI Benchmarks. We have

used MVAPICH [7], a high performance MPI imple-

mentation as the framework for implementing our new

design. We compare the performance of our enhanced

design with MVAPICH release version (referred to as

original from here on). The 1QP/port case is referred to

as the original version of MVAPICH. We show the per-

formance results for simple micro-benchmarks, latency,

bandwidth and bi-directional bandwidth followed by

collective communication. This is followed by perfor-

mance evaluation on NAS Parallel Benchmarks [1].

4.1 Experimental Testbed

Our experimental testbed consists of an InfiniBand

cluster with IBM nodes built with Power6 processor.

The cluster is connected using IBM 12x Dual-Port

HCAs. Each node in the cluster comprises 4 proces-

sors, shared L2 and L3 caches along-with 32 GB DDR2

533MHz main memory. Each node has multiple GX+

slots, which run at a speed of 950 MHz and CPU speed

of 2.4 GHz. We have used 2.6.16 linux kernel and

InfiniBand drivers from OpenIB-Gen2, revision 6713.

For our experimentation, we have used only one GX+

bus, one HCA and one port of an HCA. The objective

is to evaluate the performance of multiple send/recv en-

gines on one HCA. However, the experimentation can

definitely be extended to usage of multiple ports, HCAs

and combinations. In future, we plan to evaluate such

combinations.

4.2 Overview of Experiments

In this section, we present a brief overview of the

experiments. For micro-benchmarks, we have used

latency, uni-directional and bi-directional bandwidth

tests. The tests are written using two processes.

• Latency Test: This test performs communication

between the processes in a ping-pong fashion. The

4
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objective is to calculate the performance during

the steady state. Hence, we ignore the first couple

of iterations. The test is run for 1000 iterations,

and the first 10 are not measured.

• Uni-directional Bandwidth Test: This test per-

forms ping-ping type of communication. The

sender issues a window of messages using

MPI Isend and waits for the acknowledgement

from the receiver. The receiver waits for window

receives to finish and sends the acknowledgement.

This step is repeated for 20 iterations, the first cou-

ple of iterations are ignored as a warm-up phase.

Since the idea is to observe the potential capacity

of the network, we use a large window size, which

is 64 in this case.

• Bi-directional Bandwidth Test: This test per-

forms exchange form of communication. Both

processes issue 64 MPI Isend messages to each

other after posting 64 MPI Irecvs. The messages

from the peer are used as acknowledgements, and

hence no explicit acknowledgement is used. We

use the warmup phase and the same number of it-

erations as the unidirectional bandwidth test.

The source code which we have used for these

tests is available publicly [7].

4.3 Performance Evaluation with Micro
Benchmarks and Collective Communica
tion

In Figure 3, we present the results for the latency

test. For small messages, it is not beneficial to stripe

the message across multiple queue pairs as the startup

time is dominant. Hence, even with increasing number

of queue pairs, we use only one of the QPs for com-

munication. The objective is to see the performance

degradation from our design compared to the original

case. From the figure, it is clear that our design adds

negligible overhead compared to the original case.

Figure 4 shows the results for large message la-

tency, comparing a set of parameters; scheduling policy

and number of queue pairs used per port. The objec-

tive is to understand the efficiency of the communica-

tion marker for differentiating between communication

types. Hence we compare the performance of EPC and

policies proposed in the previous work. We notice that

using 4QPs/port, EPC and striping perform compara-

bly. Both binding and round robin are not able to take

advantage of multiple queue pairs, since they use only

one queue pair for an MPI message. An improvement

of 33% is observed using EPC and striping.

Figure 5 compares the performance of EPC and

round robin policy with the original case. Since mes-
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sages are still on a smaller range, we do not use strip-

ing. Comparing 2QPs with 4QPs, we observe that

performance gains are observed after 1KBytes. For

very small messages (less thank 1KBytes), the startup

time limits the usage of multiple queue pairs efficiently.

However, from 1KBytes-8KBytes message range, as

the transfer time increases, 4QPs show improvement in

performance. The performance is similar to the round

robin policy.
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Figure 5. Impact of Scheduling Policies on

Small Message Unidirectional Bandwidth

Figures 6 and 7 show the performance of uni-

directional and bi-directional bandwidth tests for large

messages. We compare the performance of EPC with

the originally proposed even striping [6, 9]. Using both

policies we are able to achieve, 2745 MB/s and 5263

MB/s results respectively for the above tests in com-

parison to 1661 MB/s and 3079 MB/s using the origi-

nal implementation. However, even striping performs

much worse than EPC for medium size messages (16K

- 64K). This can be attributed to the fact that divid-

ing the data into multiple chunks leads to inefficient

use of send engines, as they do not have enough data

to pipeline, posting of descriptors for each send en-

gine and receipt of multiple acknowledgments. For

very large messages, the data transfer time is reason-

ably high, and as a result, the performance graphs con-

verge.

Figures8 show the performance of MPI Alltoall us-

ing our enhanced design. We use 2x4 configuration for

performance evaluation, where two nodes and four pro-

cesses per node are used for communication. However,

for MPI Alltoall, even for medium range of messages,

we can see an improvement, due to efficient utilization

of available send and receive DMA engines in compar-

ison to single-rail implementation. Hence, differentia-
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tion at the ADI layer between non-blocking communi-

cation and collective communication significantly helps

the performance of collective operations.
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Benchmarks, Class A

4.4 Performance Evaluation with NAS Paral
lel Benchmarks

Figures 9 and 10 show the results for Integer Sort,

Class A and Class B, respectively. We compare the

performance for 2 (2x1), 4 (2x2) and 8 (2x4) processes,

respectively. Using two processes on Class A and B,

the execution time improves by 13% and 9% respec-

tively with 4 QPs/port. We use only EPC policy for

comparison, since it performs equal or better than pre-

viously proposed policies, as shown by results from

micro-benchmarks. For 4 processes, the execution time

improves by 8% and 7%, respectively. Since we use

shared-memory communication for processes on the

same node, the percentage of network communication

decreases with increasing number of processes and the

performance benefits follow a similar trend. However,

we do not see any performance degradation using our
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Figure 10. Integer Sort, NAS Parallel
Benchmarks, Class B

enhanced design. Figures 11 and 12 show the results

for Fourier Transform, Class A and Class B, respec-

tively. We see around 5-7% improvement with increas-

ing number of processes. Although, not included in the

paper, we have not seen performance degaradation us-

ing other NAS Parallel Benchmarks.
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Figure 11. Fourier Transform, NAS Parallel

Benchmarks, Class A

5 Related Work

Studies on the performance of high perfor-

mance interconnects including InfiniBand, Myrinet and

Quadrics have been carried out in the literature [5].

We have also conducted performance evaluation of

multirail configurations at the MPI level for Infini-

Band [6, 9]. In this paper, we focus on the interaction

between InfiniBand Architecture ,local I/O bus tech-

nologies and the number of send and receive engines in

an HCA. OpenMPI [2] is a high performance MPI im-

plementation capable of supporting InfiniBand, myrinet

and TCP based devices. It allows striping across differ-

ent interconnects. VMI2 [8] is a messaging layer devel-

oped by the researchers at NCSA. An MPI implementa-

tion over VMI2, which runs over multiple interconnects

like InfiniBand, Myrinet and Ethernet. LA-MPI [3] is

an MPI implementation developed at Los Alamos Na-

7
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Figure 12. Fourier Transform, NAS Parallel
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tional Labs. LA-MPI was designed with the ability to

stripe message across several network paths. However,

none of the above works have focussed on designing

high performance MPI substrate over IBM 12x Infini-

Band HCAs and exploiting the capability of multiple

send/recv engine architecture.

6 Conclusions and Future Work

In this paper, we have designed an MPI for IBM

12x InfiniBand architecture comprising of multiple

send/recv DMA engines. We have studied the impact

of various communication scheduling policies (bind-

ing, striping, and round robin), and presented a new

policy, EPC (Enhanced point-to-point and collective),

which incorporates different kinds of communication

patterns; point-to-point blocking, non-blocking and col-

lective communication, for data transfer. We have dis-

cussed the need to strongly integrate our design with

the ADI layer to obtain optimal performance. We have

implemented our design and evaluated it with micro-

benchmarks, collective communication and NAS par-

allel benchmarks. Our performance results show that

12x HCAs can significantly improve MPI communi-

cation performance. Using EPC on a 12x InfiniBand

cluster with one HCA and one port, we can improve

the performance by 41% with ping-pong latency test

and 63-65% with the unidirectional and bi-directional

throughput tests compared with the default single-rail

MPI implementation. We have concluded that none

of the previously proposed policies alone provide opti-

mal performance in these communication patterns. Us-

ing NAS Parallel Benchmarks, we see an improvement

of 7-13% in execution time along with a signification

improvement in collective communication using Pallas

benchmark suite. In future, we plan to study the im-

pact of these policies on other communication types

like stencil communication, along with scalability is-

sues for large scale clusters for different MPI Applica-

tions.
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