

Abstract
This paper describes a novel methodology for
implementing a common set of collective communication
operations on clusters based on symmetric multiprocessor
(SMP) nodes. Called Shared-Remote-Memory collectives,
or SRM, our approach replaces the point-to-point message
passing, traditionally used in implementation of collective
message-passing operations, with a combination of shared
and remote memory access (RMA) protocols that are used
to implement semantics of the collective operations
directly. Appropriate embedding of the communication
graphs in a cluster maximizes the use of shared memory
and reduces network communication. Substantial
performance improvements are achieved over the highly
optimized commercial IBM implementation and the open-
source MPICH implementation of MPI across a wide
range of message sizes on the IBM SP. For example,
depending on the message size and number of processors,
SRM implementation of broadcast, reduce, and barrier
outperforms IBM MPI_Bcast by 27-84%, MPI_Reduce by
24- 79%, and MPI_Barrier by 73% on 256 processors,
respectively.

1. Introduction
Collective communication operations such as barrier,
broadcast, reduce, allreduce [18] are important for many
scientific applications based on the MPI model, e.g., [19].
For example, they are used for synchronizing processes,
broadcasting data, updating distributed vectors, calculating
stopping criteria in iterative algorithms, and for many other
purposes. This paper describes a novel methodology for
implementing this common set of collective
communication operations on clusters of symmetric
multiprocessor (SMP) nodes equipped with a network that
supports remote memory access (RMA) operations. Called
Shared-Remote-Memory collectives, or SRM, this
approach replaces the point-to-point message passing (MPI
send/receive), traditionally used in implementation of
message-passing collectives, with a direct implementation
of these operations based on a combination of shared and
remote memory. These two protocols are carefully coupled
to minimize data movements, streamline flow control, and
eliminate internal overheads associated with
implementations based on higher-level protocols, i.e., of

MPI send/receive. The current paper extends on our
previous work [17] on the implementation of barrier based
on shared and remote memory access protocols for the
SMP clusters with VIA networks. We take the next step
extending this methodology to address challenges
presented by the other common collective operations.

The paper shows that by eliminating point-to-point
message passing as the communication protocol
underlying the usual implementations of collective
operations and building the semantics of the collective
operations at a much lower level, significant performance
gains can be achieved. This is accomplished by
implementing collectives directly on top of the fastest
communication method for two of the hardware domains
in a cluster -- shared memory on the SMP node and RMA
across the network. The performance is improved due to a
combination of several other factors as well. First, the
number of data movement operations in SRM is less than
that in the point-to-point message-passing implementations
of collectives. Second, additional savings are achieved by
avoiding overheads associated with tag matching and
dealing with early message arrivals and buffer
management complexities associated with
implementations of general-purpose point-to-point
message-passing protocols. Third, appropriate embedding
of the multi-method communication graphs is critical to
exploit locality information and maximize the benefit of
the fastest communication protocol on an SMP cluster —
shared memory. Finally, pipelined data transfers across the
two communication domains can be employed and tuned
to maximize performance without running into scalability
issues due to extensive buffer space consumption.

Indeed, the proposed approach achieves substantial
performance improvements over the collective operations
in the highly optimized commercial IBM implementation
of MPI over the entire tested range of message sizes (up to
8 MB) on the IBM SP in all tested processor
configurations. For example, depending on the message
size and number of processors, our implementation of
broadcast, reduce, and barrier outperforms the IBM
MPI_Bcast by 27% to 84%, MPI_Reduce by 24% to 79%,
MPI_Allreduce by 30%-73%, and MPI_Barrier by 73% on
256 processors, respectively. In addition, SRM
outperforms MPICH, an open source implementation of
MPI, by similar or better margins.

Fast Collective Operations Using Shared and Remote Memory Access
Protocols on Clusters

Vinod Tipparaju Jarek Nieplocha
 Computational Sciences & Mathematics
 Pacific Northwest National Laboratory

{vinod.tipparaju, jarek.nieplocha}@pnl.gov

Dhabaleswar Panda
Department of Computer &Information Sciences

Ohio State University
panda@cis.ohio-state.edu

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

The SRM approach is most appropriate for clusters with
“fat” SMP nodes such as those used in the current
generation IBM SP, clusters built around the HP
Superdome or Sun Fire servers. The current trend of
increased size of SMP nodes in the high-end commercial
systems is exemplified by the evolution of processing
nodes in the IBM SP, from uniprocessor in 1993 to two-
four- eight-, 16-, and 32-processor node (“Regatta”)
systems today. With improved scalability in the Linux
kernel and the Intel-based processor chipsets (especially in
the IA-64 line), we also expect larger SMP nodes to appear
in commodity Linux clusters. The SRM collective
operations, in addition to shared memory, rely on the
remote memory access and, in particular, the put operation.
This capability is offered by supercomputer vendors in
their low-level communication interfaces (e.g., LAPI on
the IBM SP, RDMA on the Hitachi SR-8000, MPlib on the
Fujitsu VPP) and is supported by all the popular high-
performance networks like Myrinet, Giganet/VIA,
Quadrics, SCI, and InfiniBand networks. For this study,
we used LAPI, the lowest-level interface available on the
IBM SP. LAPI offers RMA interfaces in addition to the
first commercial implementation of Active Messages [20].

This paper is organized as follows. First, we provide
technical details of the SRM implementation for SMP and
network domains in a cluster, then present results of
experiments conducted on the IBM SP using SRM and two
implementations of MPI, IBM’s and Argonne’s MPICH.
Next, we compare our approach to previous work in this
area and conclude with suggestions for future work.

2. Technical Approach
The SRM implementation of collective operations relies on
the performance and flexibility advantages of shared and
remote memory protocols and the appropriate embedding
of the broadcast/reduce trees to match the SMP cluster
topology so that the full benefit of these protocols can be
realized. Specifically, the primary goal is to maximize the
usage of the fastest protocol, shared memory.

2.1 Embedding Collective Communication
Trees in SMP Clusters
The previous implementations of collective operations on
clusters relied on binary, Fibonacci (also known as

�
-trees)

[5], or binomial trees. We implemented and experimented
with the three tree types and found binomial trees (distance
power-of-two [6]) perform the best, for inter-node
communication, in our target environment (IBM SP).
These trees also are used in the MPICH implementation of
collective operations, such as reduce and broadcast.

The fastest communication protocol available on SMP
clusters is shared memory. However, shared memory is
applicable only to the intra-node communication. Our
implementation attempts to maximize the amount of
processing that can be done using shared memory.
Maximization is accomplished by the appropriate
embedding of the broadcast and reduce trees into a cluster
(see Figure 1). For example, the binomial tree for reduce
operation is built by assembling binomial subtrees, each
embedded in a different SMP node. The height (h) of a
binomial tree for P processor is defined by

)log()(PPh = (1)

We observe that if the number of tasks p on each of the n
SMP nodes is the same, then the embedding of a binomial
tree into an SMP cluster does not add more steps to the
execution of the reduce operation (does not increase the
tree height). Evidently, this is true because:

)log()log()log(pnP +≥ .

To minimize the impact of the system daemons running on
each node, some applications on the IBM SP leave out one
processor and use only 15 of the 16 processors per node.
For that case, too, our embedding is optimal. By using the
SMP-oriented embedding of binomial trees, we can
effectively decouple and optimize the broadcast/reduce
operations for the intra-node and inter-node sub-domains.
In the following subsections, we describe the algorithms
used for these sub-domains and then how they are
combined.

2.2 Collective Operations on the SMP Node

Shared Memory Reduce
The reduce operation is used often in message-passing
applications. It combines data stored on each processor to
make the final result available on one specified process.
Examples of operators available through MPI_Reduce
include sum, min, or max. Figure 2 explains the
implementation and demonstrates some of the benefits of
shared memory in the reduce operation. SRM reduce
within an SMP node involves a memory copy for
processes that are at lowest level in a binomial tree. This
operation is required to make contributions of these

Figure 1: Embedding of the 128-processor binomial
tree in an 8-node 16-way SMP cluster

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

processes available to processes that execute the operation.
For eight processes, there are four memory copies. The
remainder of the tree simply involves execution of the
operator by the CPU and is free of any additional data
movements. For the same eight-process tree, the message-
passing implementation requires seven data movement
operations (message passing between sender and receiver
buffers). Depending on the MPI implementation, these
seven operations might internally involve 7 or even 14
memory copies. Note that even the collective
communication operations based on the very efficient
message passing implementations on shared memory (like
the one described in [1,12,14]) will have at least 7 memory
copies in the example described in Figure 2. Because the
implementation based on the message passing requires
data movement at every level of the tree, the shared
memory approach is even more competitive as the tree
(process count) grows.

Shared Memory Broadcast

We implemented binomial, binary and Fibonacci broadcast
trees using shared memory buffers and flags. The flags

synchronize access to the shared memory buffers between
parent and child tasks in the tree. Our tree-based
algorithms divide data into chunks and use two sets of
buffers on each non-parent task in a tree. The two sets are
needed to implement a two-stage pipeline that overlaps
memory copies between the root and its leaves at each
node of the tree. Pipelining also was used to overlap
memory copy operations in and out of shared memory
area. Surprisingly, experiments showed that the most
successful approach is even more straightforward. It relies
on the SMP hardware to manage simultaneous read and
write operations by the multiple processes.

The algorithm uses one set of two shared memory buffers
(A and B) per node and two sets of shared memory flags
(READY A, B), with each flag associated with a single
process (see Figure 3). In addition, each buffer is protected
by a corresponding flag located in shared memory. Root
process in a broadcast acquires a shared memory buffer (A
or B) copies data to the buffer and then sets READY flags
for the other processes to indicate that the buffer is full.
The other processes copy data from that buffer to their
destination user buffer. When the copy operation is
complete, each process clears its shared memory flag. Two
buffers are used to allow the root process to copy the next
chunk of a message to the second buffer while the other
processes access the data in the first buffer, i.e., facilitate
pipelining. For small message sizes, pipelining is not used.
However, consecutive broadcast operations alternate
between the buffers to improve concurrency. The
algorithm supports the arbitrary root without any extra
copies. Despite the contention in simultaneous read access
to the shared memory buffer, this algorithm has achieved a
much better performance than the tree-based algorithms.

Shared Memory Barrier
An SMP barrier algorithm is implemented using a flat tree.
For moderately sized SMP nodes such as in the IBM SP,
we found this approach faster than tree-based algorithms

 1

 1 0

 1 1 1 0 0 0 0

buffer A

 READY flags A

 buffer B

 READY flags B

Figure 3: Broadcast using two shared memory buffers on a
4-way SMP node

 user buffers

data access in operation

data movement

data source

shared memory buffer

operation execution

final result

intermediate buffer

message passing shared memory

Figure 2: Reduce operation using shared memory and point-to-point message passing on eight processors

 P0

 P1 P3 P5 P7

 P2 P6

 P4

 P1 P3 P5 P7

 P2 P6

 P4

 P0

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

and sufficiently scalable. The algorithm is very simple and
requires only one flag variable per process. That flag is
located in shared memory, and we ensure that each flag is
located on a different cache line. The flag is set by the
corresponding process to indicate its arrival at a barrier.
Each process waits until its flag is reset, which indicates
that all the processes on the SMP node were synchronized.
One process on an SMP node is selected as a master. The
master process waits for all processes to check in by
setting their flags, and then it resets the value of flags for
all the other processes.

Shared Memory Allreduce
The allreduce operation is normally implemented using
reduce followed by broadcast. Although a combination of
the two could be implemented as a single operation in
shared memory, we did not do it due to its limited
usefulness. In nontrivial (more than one node) clustered
environments, the SMP reduce is followed by the
internode reduce operation. Then the internode broadcast
is followed by the SMP broadcast.

2.3 Inter-Node Protocols Using LAPI
LAPI offers RMA capabilities such as put, get, atomic
read-modify-write, and active messages operations [20]. It
is the lowest-level protocol offered by IBM on the SP.
LAPI is a complementary and alternative protocol to MPI
(IBM MPI is not relying on LAPI despite successful
research experiences [4]). Performance of LAPI RMA
operations is similar to that of MPI send-receive. LAPI has
several advantages over MPI point-to-point operations for
implementing collective communications. First, LAPI
eliminates dependence on internal MPI protocols (e.g.,
Eager, Rendezvous) designed and tuned for a general-
purpose point-to-point communication rather than
collective operations. Second, it provides full control and
ability to monitor progress in the actual data movement
thanks to its origin, target and completion counter
interfaces. A value of the counter is incremented by LAPI
dispatcher when a corresponding phase of the
communication completes, and a process can probe or
block waiting for a counter to reach a certain value [20].
Finally, LAPI decouples synchronization from data
transfer present in the message-passing operations, thus
increasing the opportunities for overlapping shared
memory operations on the SMP node with the inter-node
communication. SRM relies primarily on the LAPI put
operation to implement communication trees between the
SMP nodes. On each node, only one selected process
(“master”) communicates across the network.

Management of LAPI Interrupts

Special care is required to manage interrupts generated by
LAPI when data arrives before the destination task makes

a LAPI library call (e.g., LAPI_Waitcntr). We attempt to
minimize the number of interrupts, especially for small
messages, but cannot completely avoid them. The interrupt
mode of data reception is needed to overlap intra-node
processing with network communication. Usually,
interrupts are disabled in SRM when entering a collective
operation for small message size and enabled when the
operation is completed. For larger messages the relative
cost of interrupt compared to the time it takes to transfer a
message is less significant. It is important for LAPI to
make progress as the put operation would not be able to
complete without implicit cooperation of the destination
task (e.g., polling in another LAPI call) if interrupts are
disabled while the calling process is engaged in the SMP
communication through shared memory.

Buffer Space Management in Network
Communication

One of the issues in implementation of collective
operations on top of point-to-point message passing is the
implicit reliance on internal data transfer protocols in MPI
(e.g., Eager and Rendezvous) and the corresponding
tradeoffs between performance and memory consumption.
On each task, the Eager mode usually requires P-1 buffers
of size sufficient to accommodate the largest message sent
in that mode. Larger messages are sent in the Rendezvous
mode, which involves an extra short control message that
notifies the sender about the posted receive buffer. The
IBM MPI switches between Eager and Rendezvous
protocols at different message sizes, depending on the
number of tasks, to reduce the overall consumption of
memory for larger task counts. It means that for a larger
number of tasks, messages that normally should be sent
using the faster Eager mode protocol; end up being sent
using the slower Rendezvous protocol. By replacing point-
to-point message passing with RMA, we are able to
explicitly control buffer space consumption and tailor
buffer sizes to performance characteristics of the collective
operations. Unlike the Eager mode of MPI that requires P-
1 buffers on each task, SRM on each SMP node needs to
maintain only as many buffers as the degree of the master
process in the internode binomial tree. Thus, the optimal
buffer size can be used without running into resource
scalability problems that motivated IBM MPI to vary the
switch point between Eager and Rendezvous protocols as a
function of the number of tasks.

2.4 Integration of Shared Memory and RMA
Protocols in SRM
Shared memory buffers are used as targets of the LAPI put
operations on each node to implement reduce, allreduce,
barrier, and broadcast for short to medium-sized messages.
Network and shared memory protocols are tightly
integrated to ensure (whenever it is appropriate) that the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

data moved by LAPI is directly available to all the tasks
running on that node without the need for copying the data.

Another issue to consider is the thread and CPU
management. The implementation of LAPI uses two
additional threads created implicitly at the startup time for
each single-threaded user task. For example, on a 16-way
node, 48 threads are used (96 if the application uses MPI
and LAPI). To ensure efficient operation of LAPI, the
SMP protocols that control access to buffers by spinning
on the flag variables located in shared memory (see
Section 2.2) had to be modified to yield the CPU (the
current time slice) after a certain number of unsuccessful
spins. This provides CPU cycles to the LAPI threads and
improves the overall efficiency of the integrated protocols.

Broadcast

Two protocols are used, one for small messages and one
for large messages (see Figure 4). The switching point is
64 KB. For small messages, two shared memory buffers
are used. In addition, two LAPI counters are used to
communicate the state of the two buffers on a leaf node to
the parent. The parent alternates between the two buffers
and sends the data after verifying that the appropriate
buffer is free. If it is not, the process blocks in
LAPI_Waitcntr call for the corresponding counter. The
reason for using LAPI counter rather than spin on an
integer variable is to avoid an interrupt when a message
arrives and pass control to the LAPI dispatcher that polls
the network. In Step 1, the process issues a nonblocking
put call to initiate data transfer to the shared memory
buffer on a leaf node, and returns immediately. In Step 2,
SMP broadcast is performed on node A. On leaf node B,
the received data is sent down the tree, and then SMP
broadcast is performed. The SMP broadcast recognizing

that the data is in shared memory avoids unnecessary data
copies. Upon completion of this operation, a zero-byte
LAPI nonblocking put is sent to the parent node to
increment the counter corresponding to the current buffer
(Step 3). As a further refinement, messages larger than 8
KB and smaller than 32 KB are split into 4KB chunks and
sent in a pipelined fashion using the two buffers.

The SRM broadcast operation for larger messages does not
rely on intermediate buffers whatsoever (Figure 4, right
side). The operation involves four stages: 1) initialization,
in which each leaf in an inter-node tree sends an address of
the user buffer to its parent; 2) data movement across the
network to the user buffer followed by SMP broadcasts on
root 3) and 4) leaf nodes. To facilitate efficient pipelining
in the SMP broadcast, two buffers are used as shown in
Figure 3. We alternate between them to overlap memory
copies within the SMP node with the internode
communication. This approach enables the inter-node
broadcast to proceed at its own natural rate and not be
slowed by the availability of the intermediate buffer space.
Because the message size is not small, the cost of that
memory copy is at least partially hidden by pipelining in
the SMP broadcast (Figure 3).

Reduce

The SRM reduce operation relies on pipelining to overlap
memory copy, network communication, and computations
within each SMP node. The intra- and inter-node protocols
are tightly integrated to maximize the degree of
overlapping. The reduce operation uses a binomial tree
within each node and between the master task on the SMP
nodes. The combined algorithm uses sets of two buffers
and pipelining to overlap data movement in intra and
internode communication.

SMP bcast

SMP bcast SMP bcast

SMP bcast

1

2

3

4

user buffer

user buffer

Node A
Root

address of
user buffer

LAPI counters

shared memory
buffers

1

2

3

4

user buffers

user buffers

Node A
Root

Node B
Node B

Figure 4: Integrated broadcast for small (left) and large (right) messages

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

Allreduce

In principle, the allreduce algorithm can be represented as
the reduce operation followed by broadcast. However, for
messages up to 16 KB, we use an integrated pairwise
exchange based on recursive doubling [15] between the
nodes, and reduce followed by broadcast within each node.
For larger messages, we are combining reduce and
broadcast in a manner that allows pipelining over the entire
message range (see Figure 5).

Barrier

In the SRM barrier algorithm, the master task first waits
until all other tasks on the node check in at the barrier. It
then participates in the inter-node barrier algorithm
(similar to pairwise exchange with recursive doubling
[15]) involving one master on each node. Finally, it resets
the value of all flags to notify the other tasks on the node
that the global barrier operation is complete [17].

3. Experimental Results
The numerical experiments were carried out on up to 256
processors of the IBM SP equipped with 16-way SMP
nodes and the high-performance “Colony” switch. For
performance comparison, we timed the equivalent
collective operations available in two different MPI
implementations: 1) IBM’s implementation of MPI and 2)
ANL’s MPICH implementation on top of MPL (native
message passing interface for the original SP-2). MPL and
MPI are implemented on top of a lower-level messaging
layer called MPCI (Message Passing Client Interface). In
that comparison, MPI (MPCI) was configured to use
shared memory. Within the SMP node, the primary
difference between SRM and MPI was that in MPI, shared
memory was used to implement point-to-point message
passing topped by collective operations, whereas SRM
used shared memory to implement collective operations
directly. The experimental results presented in Figures 6
through 12 correspond to the average execution time for
1000 calls of a given operation in SRM or MPI using the
16 tasks per node configuration. For reduce and allreduce
operations, the sum operator, and double data type were
tested. The number of elements was varied from one
element to two million. Similarly, in the broadcast
operation, message size varied from 8 bytes to 8MB.

On the left-hand side, in Figures 6 through 8, absolute
performance numbers for the SRM broadcast, reduce, and

allreduce are given as functions of the data size for 16, 32,
64, 128, and 256 processors (one curve for each fixed
processor count) on a log-log scale. On the right-hand side,
the SRM execution times are compared IBM-MPI and
MPICH counterpart operations for messages up to 64KB
on a log-linear scale.

The performance comparison between SRM and MPI
implementations for the entire broad range of tested
message sizes is shown in Figures 9 through 11 on the log-
log scale for broadcast, reduce, and allreduce operations.
The graphs represent the ratio of the SRM execution time,

SRMT , relative to the execution time of the same operation

in MPI, MPIT , i.e., the quantity: SRMT / %100⋅MPIT for

the IBM MPI (left) and MPICH (right). The numbers less
than 100% indicate that SRM is faster than MPI, which is
the case for all our test runs in Figures 9 through 11. For
example, the value of 20% indicates SRM is five times
faster than MPI. The figures provide additional insight
regarding the performance advantages of SRM.

The rate of improvement of SRM performance over MPI
varies primarily as a function of the message size and
processor count. This is due to a combination of several
factors, including how protocols are switched internally in
the MPI implementation and in SRM, and different
buffering, pipelining and protocol/method coupling
schemes. For example, the MPI implementation switches
between the Eager and Rendezvous modes for different
message size, depending on the number of tasks, to
conserve the overall buffer consumption on each node. The
buffer sizes and pipelining scheme in SRM do not depend
on the number of processors. However, the number of
leaves in the binomial tree for the internode
communication does. In addition, some amount of
variability visible in the graphs is attributed to the system
daemons running on each node of the IBM SP.

For very small and large messages, the performance
differences are easier to analyze than for medium-sized
messages since the protocols are not switched. We can
assume that both implementations of MPI use the Eager
mode for shortest messages and Rendezvous for largest
messages for all the processor configurations in Figures 9
through 11. Due to the embedding scheme for the binomial
trees in SRM (Figure 1), the performance advantage of
shared memory is maximized. It has a more profound
effect when a larger fraction of the processors can
communicate through shared memory. Therefore, the
performance advantage of SRM over MPI is somewhat
lower for the largest processor counts due to the increased
height of the tree and corresponding increased amount of
the inter-node communication. However, the higher
efficiency from the one-sided nature of the RMA protocols
helps SRM to remain competitive to the message-passing
implementation for inter-node communication as well.

internode broadcast

internode reduce

SMP reduce

SMP broadcast

Figure 5: Four-stage pipeline in Allreduce operation for
large messages

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000 10000000

bytes

ti
m

e
(u

s)

P=16

P=32

P=64

P=128

P=256

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000 10000000

bytes

ti
m

e
(u

s)

P=16

P=32

P=64

P=128

P=256

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000 1E+07

bytes

ti
m

e
(u

s)

P=16

P=32

P=64

P=128

P=256

Figure 6: Performance of SRM broadcast: on left - performance on log-log scale for 8byte-8MB range on 16-256 CPUs, on
right- in comparison to IBM and MPICH MPI_Bcast on log-linear scale for 8byte-64KB sub-ranges on 256 CPUs

Figure 7: Performance of SRM reduce: left - absolute performance on log-log scale for 8byte-8MB range on 16-256 CPUs,
on right- in comparison to MPI and MPICH MPI_Reduce on log-linear scale for 8byte-64KB sub-range on 256 CPUs.

Figure 8: Performance of SRM allreduce. Left: absolute performance on log-log scale for 8byte-8MB range on 16-256 CPUs. Right:
in comparison to MPI and MPICH MPI_Allreduce on log-linear scale for 8byte-64KB sub-range on 256 CPUs

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000

bytes

ti
m

e
(u

s)

M PICH

M PI

SRM

0

2000

4000

6000

8000

10000

12000

1 10 100 1000 10000 100000

bytes

ti
m

e
(u

s)

M PICH

M PI

SRM

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100 1000 10000 100000

bytes

ti
m

e
(u

s)
M PICH

M PI

SRM

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Bytes

Pe
rc

en
t

p=16
p=32
p=64
p=128
p=256

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Bytes

Pe
rc

en
t

P=16

P=32
P=64
P=128
P=256

Figure 11: SRM allreduce time as a fraction of the execution time in IBM MPI (left) and MPICH (right) MPI_Allreduce
(the lower the better)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Bytes

P
er

ce
n

t
p=16

p=32

p=64

p=128

p=256

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Bytes

Pe
rc

en
t

p=16

p=32

p=64

p=128

p=256

Figure 10: SRM reduce time as a fraction of the execution time in IBM MPI (left) and MPICH (right) MPI_Reduce
(the lower the better)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Bytes

Pe
rc

en
t

P=16
P=32
P=64
P=128
P=256

0

10

20

30

40

50

60

70

80

90

100

1 100 10000 1000000 100000000

Bytes

Pe
rc

en
t

P=16
P=32

P=64

P=128

P=256

Figure 9: SRM broadcast time as a fraction of the execution time in IBM MPI (left) and MPICH (right) MPI_Bcast
(the lower the better)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

0

200

400

600

800

0 64 128 192 256

number of processors

ti
m

e
[u

s]

SRM

MPI

MPICH

Figure 12: Performance of barrier operation

Depending on the message size and number of processors,
SRM broadcast outperforms IBM MPI_Bcast by 27% to
84%. Similarly, for the reduce operation, savings ranged
from 24% to 79% over MPI_Reduce. For allreduce, SRM
is faster than MPI by 30% to 73%, again depending on the
number of processors and message sizes.

Figure 12 compares performance of the SRM barrier with
both MPI implementations on up to 256 processors. The
performance and scaling advantage of our approach is
clear — on 256 processors, an improvement of over 73%
was achieved.

4. Related Work
With exception of our earlier paper devoted to barrier [17],
to our knowledge, there is no published work that employs
combined shared memory and RMA-based protocols for
direct implementation of collective communication
operations on SMP clusters. Multiple papers described
issues and methods involved in implementation of point-
to-point message passing on top of one-sided
communication protocols e.g., [4] or shared memory e.g.,
[1,14]. A sizable number of papers on collective
communications focused on aspects other than selection of
communication protocols.

Several previous efforts focused on designing algorithms
and communication structures for collective
communication operations. Banikazemi et al [2] discuss
multicast operations on heterogeneous networks of
workstations. Paper [5] describes degree-D trees and
generalized Fibonacci trees in the context of message
passing and discusses methods for pipelining and repeating
a collective operation. Huse [6] compares different
communication structures for collective operations.
Sophisticated algorithms are available to determine non-
binomial optimal spanning trees. The interplay between
cluster organizations and broadcast algorithms was
investigated in [21]. Some studies [7,10] focused on

collective algorithms designed within the framework of
LogP model [7]. Other algorithms [5, 8] were discussed in
context of the postal model [5]. Both of the models were
created for operations based on point-to-point message-
passing communication.

With a few exceptions, previous implementations of
collective operations have been based on point-to-point
message passing. One exception is the paper by Sistare et
al. that describes SMP optimization of collective
operations performed on a 64-way Sun server and a small
4-node cluster of 8-way Sun machines [11]. However,
between the nodes, we use RMA instead of message
passing in [11]. Despite both using shared memory; there
are several key differences. First, in [11] a barrier was used
to synchronize access to shared memory buffers, whereas
SRM uses shared memory flags to coordinate access to
buffers between the interacting task pairs. This weaker
form of synchronization makes the overall algorithm faster
and less susceptible to the processor late arrivals and
delays. Second, the SMP reduce operation in [11] involves
an extra memory copy by the SMP node root task, which
SRM avoids by placing the result of the last reduce
operation directly in the destination rather an intermediate
buffer. Third, the reduce and allreduce operations based on
shared memory in [11] are not competitive with the
message-passing implementation in the SUN MPI for
small messages, most likely due to the internal barrier used
to arbitrate access to shared memory buffers, and the extra
memory copy. The SRM counterparts of these operations
do not use barrier and are faster than MPI for all message
sizes. Finally, the SRM barrier employs RMA protocols
and a less costly synchronization scheme within the SMP
node while the barrier in [11] uses a spanning tree within
each node and message passing between. Our barrier
scales very well whereas it is hard to evaluate scalability of
the barrier in [11] based on the 4-node results.

Some previous papers dealt with the shared memory
barrier, as a topic independent of other collective
operations (even outside the message-passing model
context). For example, [3] describes the collection of
efficient barrier algorithms for the scalable shared-memory
COMA architecture of the KSR-2. These ideas could be
considered in the SMP part of the SRM barrier for clusters
with larger than the current shared memory nodes. A
shared memory broadcast on the Sun Enterprise-10000
was discussed in [9]. It is similar to the SMP broadcast in
[11] but it targets a single large machine. The
dissemination algorithm described in [22] has similar
properties to the pairwise exchange -like algorithm in
SRM. Because SRM relies on RMA operations that allow
overlapping communication between the process pairs to
proceed simultaneously on modern networks, this
effectively reduces for each process the number of
operations on the critical path to ~log(P), the same as in
the dissemination algorithm.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

5. Summary and Future Work
This paper outlined a novel approach for optimizing
collective operations using a combination of shared and
remote memory access protocols. The experimental results
obtained on the IBM SP show that SRM outperforms the
highly optimized IBM implementation of MPI and the
open source MPICH implementation across a wide range
of message sizes and processor counts.

Despite the current performance improvements, more work
is needed to exploit the full potential of integrated shared
and remote memory protocols. Our plans for future work
involve development of an analytical performance model
of the SRM collectives to better understand, model, and
evaluate effectiveness of this technique under different
assumptions and parameter values such as the SMP node
size, intra-SMP memory bandwidth, and performance of
inter-node communication. That model also should be
helpful in tuning the pipeline parameters in SRM. Some
research issues related to the optimal embedding spanning
trees for arbitrary MPI task groups in the SMP clusters
remain open and we plan to pursue them in another paper.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest
National Laboratory (PNNL) and Ohio State University.
PNNL is operated for DOE by Battelle. This work was
supported by the Center for Programming Models for
Scalable Parallel Computing sponsored by the
MICS/ASCR program in the DOE Office of Science.
Computational resources at the National Energy Research
Scientific Computing Center (NERSC) and Environmental
Molecular Sciences Laboratory (EMSL) at PNNL were
used in this research.

References
1. W. Gropp and E. Lusk. A High-Performance MPI
Implementation on a Shared-Memory Vector
Supercomputer. Parallel Computing, 22, 1997.
2. M. Banikazemi, V. Moorthy, D. Panda. Efficient
Collective Communication on Heterogeneous Networks of
Workstations. ICPP, 1998.
3. D. Grunwald, S. Vajracharya, Efficient barriers for
distributed shared memory computers, 8th IPPS, 1994.
4. M. Banikazemi, R.K. Govindaraju R. Blackmore,
D.K. Panda. Implementing Efficient MPI on LAPI for
IBM RS/6000 SP Systems: Experiences and Performance
Evaluation, IPPS’99, 1999.
5. Bar-Noy and S. Kipnis. Designing broadcasting
algorithms in the postal model for message-passing
systems. ACM Symposium on Parallel Algorithms and
Architectures, 1992.

6. L.P Huse. Collective Communication on Dedicated
Clusters of Workstations. 6th EuroPVM/MPI'99.
7. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, T. von Eicken.
LogP: Towards a realistic model of parallel computation.
4th ACM SIGPLAN Symp. Principles and Practice of
Parallel Programming, 1993.
8. L. Gargano, A.A. Rescigno, Fast Collective
Communication by Packets in the Postal Model. Networks,
31, pp. 67-79, 1998.
9. M. Bernaschi and G. Richelli. MPI Collective
Communication Operations on Large Shared Memory
Systems. 9th Euromicro Workshop PDP'01.
10. R. M. Karp, A. Sahay, E. E. Santos, and K. E.
Schauser. Optimal Broadcast and Summation in the LogP
model. Symposium on Parallel Algorithms and
Architectures, 1993.
11. S. Sistare, R. van de Vaart, E Loh. Optimization of
MPI collectives on clusters of large-scale SMPs, SC’99.
12. M. Bernaschi. Efficient Message Passing on UNIX
Shared Memory Multiprocessors. Future Generation
Computer System Journal, vol. 13, 443, 1998.
13. M. Bernaschi and G. Iannello. Collective
Communication Operations: Experimental Results vs.
Theory. Concurrency: Practice and Experience, vol. 10,
no. 5, pp. 359-386, 1998.
14. MPI Collective Communication on the Convex
Exemplar SPP-1000 Series Scalable Parallel Computer
www.mpi.nd.edu/downloads/mpidc95/abstracts/html/fleischman
15. Eric F. Van de Velde, Concurrent Scientific
Computing, Springer-Verlag 1994..
16. Luo. Y. Shared memory vs. message passing: the
COMOPS benchmark experiment., 31st Hawaii
International Conference on System Sciences, Vol: 7, 1998
17. R. Gupta, V. Tipparaju, J. Nieplocha, D.K. Panda,
Efficient Barrier using Remote Memory Operations on
VIA based Clusters, Proc. IEEE Cluster Computing, 2002.
18. W. Gropp, E. Lusk, A. Skjellum, Using MPI, 2nd ed.
MIT Press, 1999.
19. J.S. Vetter, F. Mueller, Communication
Characteristics of Large-Scale Scientific Applications for
Contemporary Cluster Architectures, Proc. IPDPS’2002.
20. G.H. Shah, J. Nieplocha, J. Mirza, C. Kim, R. K.
Govindaraju, K. J. Gildea, R. Harrison, C. A. Bender,
“LAPI: A Low Level Communication Interface on the
IBM RS/6000 SP: Experience and Performance
Evaluation”, Proc. IPPS’98. 1998.
21. D. Basak, D.K. Panda, Designing processor-cluster
based systems: Interplay between cluster organizations and
broadcasting algorithms, Proc. ICPP’96, 1996.
22. D. Hengsen, R. Finkel, and U. Manber, Two
Algorithms for Barrier Synchronization, International
Journal of Parallel Programming, vol. 17, no. 1, 1988.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:20 from IEEE Xplore. Restrictions apply.

