
 
 
 

 

Abstract 
This paper describes a novel methodology for 
implementing a common set of collective communication 
operations on clusters based on symmetric multiprocessor 
(SMP) nodes. Called Shared-Remote-Memory collectives, 
or SRM, our approach replaces the point-to-point message 
passing, traditionally used in implementation of collective 
message-passing operations, with a combination of shared 
and remote memory access (RMA) protocols that are used 
to implement semantics of the collective operations 
directly. Appropriate embedding of the communication 
graphs in a cluster maximizes the use of shared memory 
and reduces network communication. Substantial 
performance improvements are achieved over the highly 
optimized commercial IBM implementation and the open- 
source MPICH implementation of MPI across a wide 
range of message sizes on the IBM SP. For example, 
depending on the message size and number of processors, 
SRM implementation of broadcast, reduce, and barrier 
outperforms IBM MPI_Bcast by 27-84%, MPI_Reduce by 
24- 79%, and MPI_Barrier by 73% on 256 processors, 
respectively. 

1. Introduction 
Collective communication operations such as barrier, 
broadcast, reduce, allreduce [18] are important for many 
scientific applications based on the MPI model, e.g., [19]. 
For example, they are used for synchronizing processes, 
broadcasting data, updating distributed vectors, calculating 
stopping criteria in iterative algorithms, and for many other 
purposes. This paper describes a novel methodology for 
implementing this common set of collective 
communication operations on clusters of symmetric 
multiprocessor (SMP) nodes equipped with a network that 
supports remote memory access (RMA) operations. Called 
Shared-Remote-Memory collectives, or SRM, this 
approach replaces the point-to-point message passing (MPI 
send/receive), traditionally used in implementation of 
message-passing collectives, with a direct implementation 
of these operations based on a combination of shared and 
remote memory. These two protocols are carefully coupled 
to minimize data movements, streamline flow control, and 
eliminate internal overheads associated with 
implementations based on higher-level protocols, i.e., of 

MPI send/receive. The current paper extends on our 
previous work [17] on the implementation of barrier based 
on shared and remote memory access protocols for the 
SMP clusters with VIA networks. We take the next step 
extending this methodology to address challenges 
presented by the other common collective operations. 

The paper shows that by eliminating point-to-point 
message passing as the communication protocol 
underlying the usual implementations of collective 
operations and building the semantics of the collective 
operations at a much lower level, significant performance 
gains can be achieved. This is accomplished by 
implementing collectives directly on top of the fastest 
communication method for two of the hardware domains 
in a cluster -- shared memory on the SMP node and RMA 
across the network. The performance is improved due to a 
combination of several other factors as well. First, the 
number of data movement operations in SRM is less than 
that in the point-to-point message-passing implementations 
of collectives. Second, additional savings are achieved by 
avoiding overheads associated with tag matching and 
dealing with early message arrivals and buffer 
management complexities associated with 
implementations of general-purpose point-to-point 
message-passing protocols. Third, appropriate embedding 
of the multi-method communication graphs is critical to 
exploit locality information and maximize the benefit of 
the fastest communication protocol on an SMP cluster —
shared memory. Finally, pipelined data transfers across the 
two communication domains can be employed and tuned 
to maximize performance without running into scalability 
issues due to extensive buffer space consumption. 

Indeed, the proposed approach achieves substantial 
performance improvements over the collective operations 
in the highly optimized commercial IBM implementation 
of MPI over the entire tested range of message sizes (up to 
8 MB) on the IBM SP in all tested processor 
configurations. For example, depending on the message 
size and number of processors, our implementation of 
broadcast, reduce, and barrier outperforms the IBM 
MPI_Bcast by 27% to 84%, MPI_Reduce by 24% to 79%, 
MPI_Allreduce by 30%-73%, and MPI_Barrier by 73% on 
256 processors, respectively. In addition, SRM 
outperforms MPICH, an open source implementation of 
MPI, by similar or better margins.  
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The SRM approach is most appropriate for clusters with 
“fat” SMP nodes such as those used in the current 
generation IBM SP, clusters built around the HP 
Superdome or Sun Fire servers. The current trend of 
increased size of SMP nodes in the high-end commercial 
systems is exemplified by the evolution of processing 
nodes in the IBM SP, from uniprocessor in 1993 to two- 
four- eight-, 16-, and 32-processor node (“Regatta”) 
systems today. With improved scalability in the Linux 
kernel and the Intel-based processor chipsets (especially in 
the IA-64 line), we also expect larger SMP nodes to appear 
in commodity Linux clusters. The SRM collective 
operations, in addition to shared memory, rely on the 
remote memory access and, in particular, the put operation. 
This capability is offered by supercomputer vendors in 
their low-level communication interfaces (e.g., LAPI on 
the IBM SP, RDMA on the Hitachi SR-8000, MPlib on the 
Fujitsu VPP) and is supported by all the popular high- 
performance networks like Myrinet, Giganet/VIA, 
Quadrics, SCI, and InfiniBand networks. For this study, 
we used LAPI, the lowest-level interface available on the 
IBM SP. LAPI offers RMA interfaces in addition to the 
first commercial implementation of Active Messages [20]. 

This paper is organized as follows. First, we provide 
technical details of the SRM implementation for SMP and 
network domains in a cluster, then present results of 
experiments conducted on the IBM SP using SRM and two 
implementations of MPI, IBM’s and Argonne’s MPICH. 
Next, we compare our approach to previous work in this 
area and conclude with suggestions for future work.  

2. Technical Approach 
The SRM implementation of collective operations relies on 
the performance and flexibility advantages of shared and 
remote memory protocols and the appropriate embedding 
of the broadcast/reduce trees to match the SMP cluster 
topology so that the full benefit of these protocols can be 
realized. Specifically, the primary goal is to maximize the 
usage of the fastest protocol, shared memory. 

2.1 Embedding Collective Communication 
Trees in SMP Clusters 
The previous implementations of collective operations on 
clusters relied on binary, Fibonacci (also known as 

�
-trees) 

[5], or binomial trees. We implemented and experimented 
with the three tree types and found binomial trees (distance 
power-of-two [6]) perform the best, for inter-node 
communication, in our target environment (IBM SP). 
These trees also are used in the MPICH implementation of 
collective operations, such as reduce and broadcast.  

The fastest communication protocol available on SMP 
clusters is shared memory. However, shared memory is 
applicable only to the intra-node communication. Our 
implementation attempts to maximize the amount of 
processing that can be done using shared memory. 
Maximization is accomplished by the appropriate 
embedding of the broadcast and reduce trees into a cluster 
(see Figure 1). For example, the binomial tree for reduce 
operation is built by assembling binomial subtrees, each 
embedded in a different SMP node. The height (h) of a 
binomial tree for P processor is defined by 

)log()( PPh =                        (1) 

We observe that if the number of tasks p on each of the n 
SMP nodes is the same, then the embedding of a binomial 
tree into an SMP cluster does not add more steps to the 
execution of the reduce operation (does not increase the 
tree height). Evidently, this is true because: 

)log()log()log( pnP +≥ . 

To minimize the impact of the system daemons running on 
each node, some applications on the IBM SP leave out one 
processor and use only 15 of the 16 processors per node. 
For that case, too, our embedding is optimal. By using the 
SMP-oriented embedding of binomial trees, we can 
effectively decouple and optimize the broadcast/reduce 
operations for the intra-node and inter-node sub-domains. 
In the following subsections, we describe the algorithms 
used for these sub-domains and then how they are 
combined. 

2.2 Collective Operations on the SMP Node 

Shared Memory Reduce 
The reduce operation is used often in message-passing 
applications. It combines data stored on each processor to 
make the final result available on one specified process. 
Examples of operators available through MPI_Reduce 
include sum, min, or max. Figure 2 explains the 
implementation and demonstrates some of the benefits of 
shared memory in the reduce operation. SRM reduce 
within an SMP node involves a memory copy for 
processes that are at lowest level in a binomial tree. This 
operation is required to make contributions of these 

Figure 1: Embedding of the 128-processor binomial 
tree in an 8-node 16-way SMP cluster 
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processes available to processes that execute the operation. 
For eight processes, there are four memory copies. The 
remainder of the tree simply involves execution of the 
operator by the CPU and is free of any additional data 
movements. For the same eight-process tree, the message-
passing implementation requires seven data movement 
operations (message passing between sender and receiver 
buffers). Depending on the MPI implementation, these 
seven operations might internally involve 7 or even 14 
memory copies. Note that even the collective 
communication operations based on the very efficient 
message passing implementations on shared memory (like 
the one described in [1,12,14]) will have at least 7 memory 
copies in the example described in Figure 2. Because the 
implementation based on the message passing requires 
data movement at every level of the tree, the shared 
memory approach is even more competitive as the tree 
(process count) grows.  

Shared Memory Broadcast 

We implemented binomial, binary and Fibonacci broadcast 
trees using shared memory buffers and flags. The flags 

synchronize access to the shared memory buffers between 
parent and child tasks in the tree. Our tree-based 
algorithms divide data into chunks and use two sets of 
buffers on each non-parent task in a tree. The two sets are 
needed to implement a two-stage pipeline that overlaps 
memory copies between the root and its leaves at each 
node of the tree. Pipelining also was used to overlap 
memory copy operations in and out of shared memory 
area. Surprisingly, experiments showed that the most 
successful approach is even more straightforward. It relies 
on the SMP hardware to manage simultaneous read and 
write operations by the multiple processes.  

The algorithm uses one set of two shared memory buffers 
(A and B) per node and two sets of shared memory flags 
(READY A, B), with each flag associated with a single 
process (see Figure 3). In addition, each buffer is protected 
by a corresponding flag located in shared memory. Root 
process in a broadcast acquires a shared memory buffer (A 
or B) copies data to the buffer and then sets READY flags 
for the other processes to indicate that the buffer is full. 
The other processes copy data from that buffer to their 
destination user buffer. When the copy operation is 
complete, each process clears its shared memory flag. Two 
buffers are used to allow the root process to copy the next 
chunk of a message to the second buffer while the other 
processes access the data in the first buffer, i.e., facilitate 
pipelining. For small message sizes, pipelining is not used. 
However, consecutive broadcast operations alternate 
between the buffers to improve concurrency. The 
algorithm supports the arbitrary root without any extra 
copies. Despite the contention in simultaneous read access 
to the shared memory buffer, this algorithm has achieved a 
much better performance than the tree-based algorithms. 

Shared Memory Barrier 
An SMP barrier algorithm is implemented using a flat tree. 
For moderately sized SMP nodes such as in the IBM SP, 
we found this approach faster than tree-based algorithms 

 1

 1  0 

 1  1  1  0  0  0  0 

buffer A

 READY flags A
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 READY flags B 

Figure 3: Broadcast using two shared memory buffers on a 
4-way SMP node 
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and sufficiently scalable. The algorithm is very simple and 
requires only one flag variable per process. That flag is 
located in shared memory, and we ensure that each flag is 
located on a different cache line. The flag is set by the 
corresponding process to indicate its arrival at a barrier. 
Each process waits until its flag is reset, which indicates 
that all the processes on the SMP node were synchronized. 
One process on an SMP node is selected as a master. The 
master process waits for all processes to check in by 
setting their flags, and then it resets the value of flags for 
all the other processes.  

Shared Memory Allreduce 
The allreduce operation is normally implemented using 
reduce followed by broadcast. Although a combination of 
the two could be implemented as a single operation in 
shared memory, we did not do it due to its limited 
usefulness. In nontrivial (more than one node) clustered 
environments, the SMP reduce is followed by the 
internode reduce operation. Then the internode broadcast 
is followed by the SMP broadcast.  

2.3 Inter-Node Protocols Using LAPI 
LAPI offers RMA capabilities such as put, get, atomic 
read-modify-write, and active messages operations [20]. It 
is the lowest-level protocol offered by IBM on the SP. 
LAPI is a complementary and alternative protocol to MPI 
(IBM MPI is not relying on LAPI despite successful 
research experiences [4]). Performance of LAPI RMA 
operations is similar to that of MPI send-receive. LAPI has 
several advantages over MPI point-to-point operations for 
implementing collective communications. First, LAPI 
eliminates dependence on internal MPI protocols (e.g., 
Eager, Rendezvous) designed and tuned for a general-
purpose point-to-point communication rather than 
collective operations. Second, it provides full control and 
ability to monitor progress in the actual data movement 
thanks to its origin, target and completion counter 
interfaces. A value of the counter is incremented by LAPI 
dispatcher when a corresponding phase of the 
communication completes, and a process can probe or 
block waiting for a counter to reach a certain value [20]. 
Finally, LAPI decouples synchronization from data 
transfer present in the message-passing operations, thus 
increasing the opportunities for overlapping shared 
memory operations on the SMP node with the inter-node 
communication. SRM relies primarily on the LAPI put 
operation to implement communication trees between the 
SMP nodes. On each node, only one selected process 
(“master”) communicates across the network. 

Management of LAPI Interrupts 

Special care is required to manage interrupts generated by 
LAPI when data arrives before the destination task makes 

a LAPI library call (e.g., LAPI_Waitcntr). We attempt to 
minimize the number of interrupts, especially for small 
messages, but cannot completely avoid them. The interrupt 
mode of data reception is needed to overlap intra-node 
processing with network communication. Usually, 
interrupts are disabled in SRM when entering a collective 
operation for small message size and enabled when the 
operation is completed. For larger messages the relative 
cost of interrupt compared to the time it takes to transfer a 
message is less significant. It is important for LAPI to 
make progress as the put operation would not be able to 
complete without implicit cooperation of the destination 
task (e.g., polling in another LAPI call) if interrupts are 
disabled while the calling process is engaged in the SMP 
communication through shared memory.  

Buffer Space Management in Network 
Communication 

One of the issues in implementation of collective 
operations on top of point-to-point message passing is the 
implicit reliance on internal data transfer protocols in MPI 
(e.g., Eager and Rendezvous) and the corresponding 
tradeoffs between performance and memory consumption. 
On each task, the Eager mode usually requires P-1 buffers 
of size sufficient to accommodate the largest message sent 
in that mode. Larger messages are sent in the Rendezvous 
mode, which involves an extra short control message that 
notifies the sender about the posted receive buffer. The 
IBM MPI switches between Eager and Rendezvous 
protocols at different message sizes, depending on the 
number of tasks, to reduce the overall consumption of 
memory for larger task counts. It means that for a larger 
number of tasks, messages that normally should be sent 
using the faster Eager mode protocol; end up being sent 
using the slower Rendezvous protocol. By replacing point-
to-point message passing with RMA, we are able to 
explicitly control buffer space consumption and tailor 
buffer sizes to performance characteristics of the collective 
operations. Unlike the Eager mode of MPI that requires P-
1 buffers on each task, SRM on each SMP node needs to 
maintain only as many buffers as the degree of the master 
process in the internode binomial tree. Thus, the optimal 
buffer size can be used without running into resource 
scalability problems that motivated IBM MPI to vary the 
switch point between Eager and Rendezvous protocols as a 
function of the number of tasks. 

2.4 Integration of Shared Memory and RMA 
Protocols in SRM 
Shared memory buffers are used as targets of the LAPI put 
operations on each node to implement reduce, allreduce, 
barrier, and broadcast for short to medium-sized messages. 
Network and shared memory protocols are tightly 
integrated to ensure (whenever it is appropriate) that the 
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data moved by LAPI is directly available to all the tasks 
running on that node without the need for copying the data.  

Another issue to consider is the thread and CPU 
management. The implementation of LAPI uses two 
additional threads created implicitly at the startup time for 
each single-threaded user task. For example, on a 16-way 
node, 48 threads are used (96 if the application uses MPI 
and LAPI). To ensure efficient operation of LAPI, the 
SMP protocols that control access to buffers by spinning 
on the flag variables located in shared memory (see 
Section 2.2) had to be modified to yield the CPU (the 
current time slice) after a certain number of unsuccessful 
spins. This provides CPU cycles to the LAPI threads and 
improves the overall efficiency of the integrated protocols. 

Broadcast 

Two protocols are used, one for small messages and one 
for large messages (see Figure 4). The switching point is 
64 KB. For small messages, two shared memory buffers 
are used. In addition, two LAPI counters are used to 
communicate the state of the two buffers on a leaf node to 
the parent. The parent alternates between the two buffers 
and sends the data after verifying that the appropriate 
buffer is free. If it is not, the process blocks in 
LAPI_Waitcntr call for the corresponding counter. The 
reason for using LAPI counter rather than spin on an 
integer variable is to avoid an interrupt when a message 
arrives and pass control to the LAPI dispatcher that polls 
the network. In Step 1, the process issues a nonblocking 
put call to initiate data transfer to the shared memory 
buffer on a leaf node, and returns immediately. In Step 2, 
SMP broadcast is performed on node A. On leaf node B, 
the received data is sent down the tree, and then SMP 
broadcast is performed. The SMP broadcast recognizing 

that the data is in shared memory avoids unnecessary data 
copies. Upon completion of this operation, a zero-byte 
LAPI nonblocking put is sent to the parent node to 
increment the counter corresponding to the current buffer 
(Step 3). As a further refinement, messages larger than 8 
KB and smaller than 32 KB are split into 4KB chunks and 
sent in a pipelined fashion using the two buffers. 

The SRM broadcast operation for larger messages does not 
rely on intermediate buffers whatsoever (Figure 4, right 
side). The operation involves four stages: 1) initialization, 
in which each leaf in an inter-node tree sends an address of 
the user buffer to its parent; 2) data movement across the 
network to the user buffer followed by SMP broadcasts on 
root 3) and 4) leaf nodes. To facilitate efficient pipelining 
in the SMP broadcast, two buffers are used as shown in 
Figure 3. We alternate between them to overlap memory 
copies within the SMP node with the internode 
communication. This approach enables the inter-node 
broadcast to proceed at its own natural rate and not be 
slowed by the availability of the intermediate buffer space. 
Because the message size is not small, the cost of that 
memory copy is at least partially hidden by pipelining in 
the SMP broadcast (Figure 3).  

Reduce 

The SRM reduce operation relies on pipelining to overlap 
memory copy, network communication, and computations 
within each SMP node. The intra- and inter-node protocols 
are tightly integrated to maximize the degree of 
overlapping. The reduce operation uses a binomial tree 
within each node and between the master task on the SMP 
nodes. The combined algorithm uses sets of two buffers 
and pipelining to overlap data movement in intra and 
internode communication.  

SMP bcast 

SMP bcast SMP bcast 
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Figure 4: Integrated broadcast for small (left) and large (right) messages 
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Allreduce 

In principle, the allreduce algorithm can be represented as 
the reduce operation followed by broadcast. However, for 
messages up to 16 KB, we use an integrated pairwise 
exchange based on recursive doubling [15] between the 
nodes, and reduce followed by broadcast within each node. 
For larger messages, we are combining reduce and 
broadcast in a manner that allows pipelining over the entire 
message range (see Figure 5). 

Barrier 

In the SRM barrier algorithm, the master task first waits 
until all other tasks on the node check in at the barrier. It 
then participates in the inter-node barrier algorithm 
(similar to pairwise exchange with recursive doubling 
[15]) involving one master on each node. Finally, it resets 
the value of all flags to notify the other tasks on the node 
that the global barrier operation is complete [17]. 

3. Experimental Results 
The numerical experiments were carried out on up to 256 
processors of the IBM SP equipped with 16-way SMP 
nodes and the high-performance “Colony” switch. For 
performance comparison, we timed the equivalent 
collective operations available in two different MPI 
implementations: 1) IBM’s implementation of MPI and 2) 
ANL’s MPICH implementation on top of MPL (native 
message passing interface for the original SP-2). MPL and 
MPI are implemented on top of a lower-level messaging 
layer called MPCI (Message Passing Client Interface). In 
that comparison, MPI (MPCI) was configured to use 
shared memory. Within the SMP node, the primary 
difference between SRM and MPI was that in MPI, shared 
memory was used to implement point-to-point message 
passing topped by collective operations, whereas SRM 
used shared memory to implement collective operations 
directly. The experimental results presented in Figures 6 
through 12 correspond to the average execution time for 
1000 calls of a given operation in SRM or MPI using the 
16 tasks per node configuration. For reduce and allreduce 
operations, the sum operator, and double data type were 
tested. The number of elements was varied from one 
element to two million. Similarly, in the broadcast 
operation, message size varied from 8 bytes to 8MB.   

On the left-hand side, in Figures 6 through 8, absolute 
performance numbers for the SRM broadcast, reduce, and 

allreduce are given as functions of the data size for 16, 32, 
64, 128, and 256 processors (one curve for each fixed 
processor count) on a log-log scale. On the right-hand side, 
the SRM execution times are compared IBM-MPI and 
MPICH counterpart operations for messages up to 64KB 
on a log-linear scale.  

The performance comparison between SRM and MPI 
implementations for the entire broad range of tested 
message sizes is shown in Figures 9 through 11 on the log-
log scale for broadcast, reduce, and allreduce operations. 
The graphs represent the ratio of the SRM execution time, 

SRMT , relative to the execution time of the same operation 

in MPI, MPIT , i.e., the quantity: SRMT / %100⋅MPIT  for 

the IBM MPI (left) and MPICH (right). The numbers less 
than 100% indicate that SRM is faster than MPI, which is 
the case for all our test runs in Figures 9 through 11. For 
example, the value of 20% indicates SRM is five times 
faster than MPI. The figures provide additional insight 
regarding the performance advantages of SRM. 

The rate of improvement of SRM performance over MPI 
varies primarily as a function of the message size and 
processor count. This is due to a combination of several 
factors, including how protocols are switched internally in 
the MPI implementation and in SRM, and different 
buffering, pipelining and protocol/method coupling 
schemes. For example, the MPI implementation switches 
between the Eager and Rendezvous modes for different 
message size, depending on the number of tasks, to 
conserve the overall buffer consumption on each node. The 
buffer sizes and pipelining scheme in SRM do not depend 
on the number of processors. However, the number of 
leaves in the binomial tree for the internode 
communication does. In addition, some amount of 
variability visible in the graphs is attributed to the system 
daemons running on each node of the IBM SP.  

For very small and large messages, the performance 
differences are easier to analyze than for medium-sized 
messages since the protocols are not switched. We can 
assume that both implementations of MPI use the Eager 
mode for shortest messages and Rendezvous for largest 
messages for all the processor configurations in Figures 9 
through 11. Due to the embedding scheme for the binomial 
trees in SRM (Figure 1), the performance advantage of 
shared memory is maximized. It has a more profound 
effect when a larger fraction of the processors can 
communicate through shared memory. Therefore, the 
performance advantage of SRM over MPI is somewhat 
lower for the largest processor counts due to the increased 
height of the tree and corresponding increased amount of 
the inter-node communication. However, the higher 
efficiency from the one-sided nature of the RMA protocols 
helps SRM to remain competitive to the message-passing 
implementation for inter-node communication as well. 

internode broadcast 

internode reduce

SMP reduce

SMP broadcast

Figure 5: Four-stage pipeline in Allreduce operation for 
large messages 
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Figure 6: Performance of SRM broadcast: on left - performance on log-log scale for 8byte-8MB range on 16-256 CPUs, on 
right- in comparison to IBM and MPICH MPI_Bcast on log-linear scale for 8byte-64KB sub-ranges on 256 CPUs 

Figure 7: Performance of SRM reduce: left - absolute performance  on log-log scale for 8byte-8MB range on 16-256 CPUs, 
on right- in comparison to MPI and MPICH MPI_Reduce on log-linear scale for 8byte-64KB sub-range on 256 CPUs. 

Figure 8: Performance of SRM allreduce. Left: absolute performance on log-log scale for 8byte-8MB range on 16-256 CPUs. Right: 
in comparison to MPI and MPICH MPI_Allreduce  on log-linear scale for 8byte-64KB sub-range on 256 CPUs 
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Figure 11: SRM allreduce time as a fraction of the execution time in IBM MPI (left) and MPICH (right ) MPI_Allreduce               
(the lower the better) 
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Figure 10: SRM reduce time as a fraction of the execution time in IBM MPI (left) and MPICH (right) MPI_Reduce              
(the lower the better) 
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Figure 9: SRM broadcast time as a fraction of the execution time in IBM MPI (left) and MPICH (right) MPI_Bcast                
(the lower the better) 
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Figure 12: Performance of barrier operation 

Depending on the message size and number of processors, 
SRM broadcast outperforms IBM MPI_Bcast by 27% to 
84%. Similarly, for the reduce operation, savings ranged 
from 24% to 79% over MPI_Reduce. For allreduce, SRM 
is faster than MPI by 30% to 73%, again depending on the 
number of processors and message sizes.  

Figure 12 compares performance of the SRM barrier with 
both MPI implementations on up to 256 processors. The 
performance and scaling advantage of our approach is 
clear — on 256 processors, an improvement of over 73% 
was achieved. 

4. Related Work 
With exception of our earlier paper devoted to barrier [17], 
to our knowledge, there is no published work that employs 
combined shared memory and RMA-based protocols for 
direct implementation of collective communication 
operations on SMP clusters. Multiple papers described 
issues and methods involved in implementation of point-
to-point message passing on top of one-sided 
communication protocols e.g., [4] or shared memory e.g., 
[1,14]. A sizable number of papers on collective 
communications focused on aspects other than selection of 
communication protocols. 

Several previous efforts focused on designing algorithms 
and communication structures for collective 
communication operations. Banikazemi et al [2] discuss  
multicast operations on heterogeneous networks of 
workstations. Paper [5] describes degree-D trees and 
generalized Fibonacci trees in the context of message 
passing and discusses methods for pipelining and repeating 
a collective operation. Huse [6] compares different 
communication structures for collective operations. 
Sophisticated algorithms are available to determine non-
binomial optimal spanning trees. The interplay between 
cluster organizations and broadcast algorithms was 
investigated in [21]. Some studies [7,10] focused on 

collective algorithms designed within the framework of 
LogP model [7]. Other algorithms [5, 8] were discussed in 
context of the postal model [5]. Both of the models were 
created for operations based on point-to-point message-
passing communication.  

With a few exceptions, previous implementations of 
collective operations have been based on point-to-point 
message passing. One exception is the paper by Sistare et 
al. that describes SMP optimization of collective 
operations performed on a 64-way Sun server and a small 
4-node cluster of 8-way Sun machines [11]. However, 
between the nodes, we use RMA instead of message 
passing in [11]. Despite both using shared memory; there 
are several key differences. First, in [11] a barrier was used 
to synchronize access to shared memory buffers, whereas 
SRM uses shared memory flags to coordinate access to 
buffers between the interacting task pairs. This weaker 
form of synchronization makes the overall algorithm faster 
and less susceptible to the processor late arrivals and 
delays. Second, the SMP reduce operation in [11] involves 
an extra memory copy by the SMP node root task, which 
SRM avoids by placing the result of the last reduce 
operation directly in the destination rather an intermediate 
buffer. Third, the reduce and allreduce operations based on 
shared memory in [11] are not competitive with the 
message-passing implementation in the SUN MPI for 
small messages, most likely due to the internal barrier used 
to arbitrate access to shared memory buffers, and the extra 
memory copy. The SRM counterparts of these operations 
do not use barrier and are faster than MPI for all message 
sizes. Finally, the SRM barrier employs RMA protocols 
and a less costly synchronization scheme within the SMP 
node while the barrier in [11] uses a spanning tree within 
each node and message passing between. Our barrier 
scales very well whereas it is hard to evaluate scalability of 
the barrier in [11] based on the 4-node results. 

Some previous papers dealt with the shared memory 
barrier, as a topic independent of other collective 
operations (even outside the message-passing model 
context). For example, [3] describes the collection of 
efficient barrier algorithms for the scalable shared-memory 
COMA architecture of the KSR-2. These ideas could be 
considered in the SMP part of the SRM barrier for clusters 
with larger than the current shared memory nodes. A 
shared memory broadcast on the Sun Enterprise-10000 
was discussed in [9]. It is similar to the SMP broadcast in 
[11] but it targets a single large machine. The 
dissemination algorithm described in [22] has similar 
properties to the pairwise exchange -like algorithm in 
SRM. Because SRM relies on RMA operations that allow 
overlapping communication between the process pairs to 
proceed simultaneously on modern networks, this 
effectively reduces for each process the number of 
operations on the critical path to ~log(P), the same as in 
the dissemination algorithm. 
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5. Summary and Future Work 
This paper outlined a novel approach for optimizing 
collective operations using a combination of shared and 
remote memory access protocols. The experimental results 
obtained on the IBM SP show that SRM outperforms the 
highly optimized IBM implementation of MPI and the 
open source MPICH implementation across a wide range 
of message sizes and processor counts.  

Despite the current performance improvements, more work 
is needed to exploit the full potential of integrated shared 
and remote memory protocols. Our plans for future work 
involve development of an analytical performance model 
of the SRM collectives to better understand, model, and 
evaluate effectiveness of this technique under different 
assumptions and parameter values such as the SMP node 
size, intra-SMP memory bandwidth, and performance of 
inter-node communication. That model also should be 
helpful in tuning the pipeline parameters in SRM. Some 
research issues related to the optimal embedding spanning 
trees for arbitrary MPI task groups in the SMP clusters 
remain open and we plan to pursue them in another paper.  
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