
Performance Evaluation of High-Speed Interconnects using Dense

Communication Patterns
1

1

Part of this work was performed under the auspices of the U.S. Dept. of Energy by University of California LLNL under contract W-7405-

Eng-48.

R. Fatoohi, K. Kardys, S. Koshy, S. Sivaramakrishnan
Computer Engineering, San Jose State Univeristy, San Jose,

California, USA, Email: rfatoohi@sjsu.edu

J. S. Vetter
Oak Ridge National Lab,

Oak Ridge, Tennessee, USA

Abstract

We study the performance of high-speed interconnects

using a set of communication micro-benchmarks. The

goal is to identify certain limiting factors and

bottlenecks with these interconnects. Our micro-
benchmarks are based on dense communication

patterns with different communicating partners and

varying degrees of these partners. We tested our

micro-benchmarks on five platforms: an IBM system of

68-node 16-way Power3, interconnected by a SP
switch2; another IBM system of 264-node 4-way

Power PC 604e, interconnected by a SP switch; a

Compaq cluster of 128-node 4-way ES40/EV67

processor, interconnected by an Quadrics

interconnect; an Intel cluster of 16-node dual-CPU

Xeon, interconnected by an Quadrics interconnect; and
a cluster of 22-node Sun Ultra Sparc, interconnected

by an Ethernet network. Our results show many

limitations of these networks including the memory

contention within a node as the number of

communicating processors increased and the

limitations of the network interface for communication
between multiple processors of different nodes.

1. Introduction

Most computer designers of network interconnects
focus on the point-to-point communication
performance of the network. They normally present
performance data in terms of bandwidth and latency of
single communication link. There have been a number
of theoretical studies on the impact of the network
topologies and communication patterns on the
performance of high-performance computing systems
but few empirical studies at scale. Most of the
benchmarking efforts are based on simple routines that
measure latency and bandwidth aspects of a network

and ignoring other factors such as the multiplicity of
communication sessions between multiple nodes and
the locality of these sessions.

There have been several recent studies on
performance of high-performance networks using
different benchmarks. Bell, et al. [1] used a set of
micro-benchmarks for measuring bandwidth, latency,
and software overhead on five supercomputing
networks: Cray T3E, IBM SP, Quadrics, Myrinet, and
Gigabit Ethernet. They showed the benefits of
overlapping communication with computation and
analyzed their results using a variant of LogP model
[3]. Liu, et al. [8] developed another set of benchmarks
to evaluate three cluster interconnects: InfiniBand,
Myrinet, and Quadrics. Their benchmarks include
traditional measures, such as latency and bandwidth, as
well as other features such as user-level access for
performing communication and remote direct memory
access, and showed the performance impact of these
features. Finally, Kurmann, et al. [7] developed yet
another set of micro-benchmarks to find the best cost
performance point for networks in PC clusters. They
designed their benchmark to evaluate the performance
of interconnect for specific communication patterns.
They also experimented with several applications and
concluded that many applications are not very sensitive
to full bisection bandwidth.

Our work was inspired by Kurmann’s work [7] so
we used some of their communication patterns. Our
goal is to develop a methodology in evaluating
interconnects without knowing their topologies or the
mapping of the processes onto the processors. Our
focus is on dense communication patterns in order to
identify certain limiting factors and bottlenecks of
these interconnects. So we designed our benchmark in
such a way that we stress the network with multiple
messages from different nodes to identify hot spots
within the network. Our micro-benchmark avoids
point-to-point as well as collective communication

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

routines (for interested readers, please refer to mpptest
for a point-to-point communication benchmark and
Pallas for both point-to-point and collective
communication benchmarks). In addition to different
communication patterns, we employ different message
sizes and number of nodes to determine the sensitivity
of the network to these changes.

2. Experimental Platforms

We ran our algorithms on five platforms consisting
of two IBM SP (Scalable PowerParallel) systems:
Frost and Blue and three clusters of machines: TC2K,
Pengra, and CE. All these machines except CE are
located at Lawrence Livermore National Laboratory
(LLNL), Livermore, California. The CE (Computer
Engineering) cluster is located at San Jose State
Univeristy (SJSU), San Jose, California. All machines
run different versions of the Unix operating system.

The IBM SP Frost system at LLNL is composed of
68 Symmetric MultiProcessor (SMP) nodes, each with
16 processors totaling 1088 processors with a peak
performance of 1.6 Tflops. Each processor is an IBM
RS/6000 POWER3-II “Nighthawk-2” at 375 MHz.

All Frost nodes are connected by an IBM SP
switch2, a proprietary IBM interconnect [6]. It is a
bidirectional, multistage interconnection network with
2 GB/s peak node-to-node bandwidth. The switch
consists of two basic hardware elements: switch board
and communication adapter. There is one switch board
per an SP frame (SP frame contains 16 nodes on
Frost). The switch board contains eight switch chips
wired as a bidirectional 4-way to 4-way crossbar. Also,
every Frost node has two switch adapters.

The IBM Blue system at LLNL is composed of 264
SMP nodes, each with four processors totaling 1056
processors with a peak performance of 722 Gflops.
Each processor is an IBM PowerPC 604e at 332 MHz.
All Blue nodes are connected by an IBM SP switch. It
is similar to IBM SP switch2 except that the peak
node-to-node bandwidth is 300 MB/s.

The Compaq TC2K system at LLNL is composed
of 128 SMP nodes, each with four processors totaling
512 processors with a peak performance of 681 Gflops.
Each processor is an AlphaServer system ES40, with
the EV67 processor which contains the Alpha 21264
chip at 667 MHz.

The Pengra system at LLNL is composed of 16
dual-CPU nodes with a peak performance of 141
Gflops. Each CPU is a 2.2 GHz Intel Xeon and uses
the Intel E7500 chipset.

Nodes of both TC2K and Pengra are connected by a
Quadrics Network (QsNet) [9]. QsNet is a bidirectional
multistage interconnection network with a transmission

bandwidth of 400 MB/s in each direction. It consists of
two hardware building blocks: a programmable
network interface, Elan, and a switch, Elite. The Elan
network interface connects a processing node via the
PCI bus and a multistage network. In addition to
generating and accepting packets, Elan provides local
processing power, through two processing engines, to
implement high-level, message passing protocols, such
as MPI. The Elite switch is an 8-way bidirectional
crossbar switch. QsNet connects Elite switches in a
quaternary fat-tree topology.

The CE cluster at SJSU is composed of 22 Sun
Ultra Sparc nodes, each with a CPU of 333 MHz. The
nodes are connected by a 10/100 Ethernet network.
The CE cluster is used here mainly for code
development and testing on a bus-based network.

3. Algorithms

We implemented several algorithms to study the
limitations of a set of interconnects.

3.1. Congested-controlled AAPC

In all-to-all personalized communication (AAPC),
each process sends a distinct message to every other
process. AAPC, also called total exchange, is widely
used in many algorithms, such as Fast Fourier
Transform (FFT), matrix transpose, and sorting. There
are many implementations of AAPC on parallel
computers, some of them have been optimized on
specific architectures and can be invoked as library
routines. A simple implementation of AAPC, where all
processes communicate with all other processes
simultaneously, may lead to network congestion on
most networks. Grama, et al. [5] describe AAPC
implementations on ring, mesh, and hypercube
networks based on multiple steps where in each step
every process sends a message to its neighbor.
Kurmann, et al. [7] describe a phased AAPC algorithm
that attempts to reduce network congestion.

A phased AAPC algorithm, also called congestion-
controlled AAPC, proceeds as follows: In the first
phase, each process sends data to its next higher
neighbor (based on its rank) and receives data from its
next lower neighbor. In the next phase, each process
sends data to its next but one higher neighbor and
receives data from next but one lower neighbor and
proceeds such away till the last phase where every
process sends data to its lower neighbor and receives
data from its higher neighbor. Each phase is separated
by global synchronization using barriers, which may
add some overhead. A pseudo code representation of
the algorithm is shown below:

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

Algorithm 1: Congested-controlled AAPC

for stride = 1 to Size - 1 do
1. Start timer

2. Concurrently send bytes to (myRank + stride) %

Size & receive bytes from (myRank - stride) %

Size

3. End timer
4. Wait for barrier

5. Do all-to-one reduction to find maxTime

Where Size is number of processes within the
communicator and maxTime is the maximum time
taken by all processes in each phase.

3.2. Simple pair-wise communication

In this algorithm, a set of processes communicates in
pairs. All pairs send and receive data in parallel and at
full duplex. The algorithm proceeds in phases such that
the stride (hop) or the distance between the
communicating processes increases in each phase until
it reaches its maximum (Size –1), as shown below:

Algorithm 2: Simple pairwise

for stride = 1 to Size - 1 do
1. Start timer

2. Concurrently send bytes to & receive bytes from

(myRank + stride) % Size and (myRank - stride)
% Size

3. End timer

4. Wait for barrier

5. Do all-to-one reduction to find maxTime

The first phase of the algorithm is repeated in the last
phase (Size –1) while the second phase is repeated in
the next to last phase (Size -2) and so on. In the middle
phase (Size /2), process 0 pairs with process Size/2
twice as well as other pairs; i.e., there are Size/2 pairs.
For example, consider an eight process case, phase 1
has the following pairs (0,1), (1,2), (2,3), (3,4), (4,5),
(5,6), (6,7), (7,0); phase 2 has (0,2), (1,3), (2,4), (3,5),
(4,6), (5,7), (6,0), (7,1); phase 3 has (0,3), (1,4), (2,5),
(3,6), (4,7), (5,0), (6,1), (7,2), phase 4 has (0,4), (1,5),
(2,6), (3,7), (4,0), (5,1), (6,2), (7,3), and so on.

3.3. Cumulative pair-wise communication

In this algorithm, the number of communicating pairs
in the network is increased during successive phases of
communication. In the first phase only two processes
communicate with each other (0,1). In the second
phase, the number of communicating processes
increases to four (0,1), (2,3), and that number increases
to six in phase three (0,1), (2,3), (4,5) and so on, as
shown below:

Algorithm 3: Cumulative pairwise

for phase = 1 to Size / 2 do
1. Start timer

2. If (myRank < 2 × phase)

3. Concurrently send bytes to & receive bytes from

(myRank + 1) if myRank is even or (myRank –

1) if myRank is odd
4. End timer

5. Wait for barrier

6. Do all-to-one reduction to find maxTime

3.4. Random pair-wise communication

In this algorithm, the communicating processes are
determined at runtime, randomly. This is done by using
a random-shuffling algorithm, which shuffles the
process array (processArray) in each phase. Here,
initially processArray consists of process ranks in the
ascending order of their ranks. The communicator is
split up into two equal parts, and communication takes
place between the two halves of the communicator. At
the end of each phase, where the number of phases
(maxPhase) is chosen at runtime, the process array is
shuffled so that the two halves, for the next phase,
contain different processes, as shown below:

Algorithm 4: Random pairwise

for phase = 1 to maxPhase do
1. Divide processArray into two halves

2. Partner = processArray [((Size/2) + myRank)

% Size]

3. Start timer

4. Concurrently send bytes to & receive bytes from

partner
5. End timer

6. Wait for barrier

7. Do all-to-one reduction to find maxTime

8. Shuffle processArray randomly

4. Implementations and Results

We implemented the four algorithms, described in
section 3, on different configurations of the five
platforms described in section 2. The code was written
in C with MPI calls for all our implementations. For
each algorithm, there are several implementation
options including: the message size, the number of
repetitions in each routine, and type of communication:
blocking or non-blocking send and receive.

 We ran the four algorithms on LLNL machines
(Frost, Blue, TC2K, and Pengra) through a batch
system. The execution environment was not dedicated:
i.e., there were other jobs running while our jobs were

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

executing. We ran some jobs more than once when we
noticed some abnormality on the timing results. But, in
general, the results were consistent across multiple
runs. The batch system at LLNL schedules submitted
jobs based on the available resources, job sizes, time
limits and job priority. The user has no control over
which processor, a node, or a set of nodes that the job
will run on - it is up to the scheduler. However, the
user can specify that all processes of a job to be
executed on a single node. On the CE machines, we
used a simple machine configuration file to run the
jobs.

We used seven message sizes to run the four
algorithms: 1K, 3K, 10K, 30K, 100K, 300K, and
1000K bytes. We set the number of repetitions to 1000
to get meaningful results. We also used the algorithms
in the non-blocking mode since we found out that in
some cases the blocking mode caused the jobs to hang
due to buffer space limitations. In addition, we set the
number of phases that random shuffling can be
performed in Algorithm 4 to 10.

We tested the four algorithms on three different
configurations: 1) multiple nodes with a single process
per node, 2) multiple processes on a single node, and
3) multiple processes on multiple nodes. Not all
possible combinations of algorithms, platforms and
configurations are reported here for several reasons.
Given the amount of data generated by these
experiments, we focus on the results that have some
significance for the sake of brevity. Also, there were
cases that the results did not meet our quality insurance
standards. In addition, we were also limited by the
number of nodes that we were able to run using the
batch system at LLNL. In our case, the largest number
of nodes we used is four nodes on Pengra and eight
nodes on each of Frost, Blue, TC2K, and CE.

In all cases, we measured the maximum time taken
by all processes. Then we calculated the bandwidth by
multiplying the message size by the number of sends
and receives that each process performs (it is two for
algorithms 1, 3 and 4 while it is four for algorithm 2)
and dividing the result by the measured time.

4.1. Single process per node

We implemented the four algorithms on eight
nodes of Frost, Blue, TC2K, and CE and four nodes of
Pengra and running one process per node. We used the
configuration to find out inter-node network limitation.

Figures 1 through 3 present the results of
implementing algorithm 1 (congested-controlled
AAPC) on Frost, Pengra, and CE (Frost and Blue
results are very similar). The results show different
phases of the algorithm have a minimum impact on the

bandwidth; i.e., as we increase the distance between
the communicating nodes, the bandwidth remains
about the same. An interesting case is the middle phase
(phase 4 for the eight node configuration) since here
each process sends and receives messages to the same
partner in a full-duplex mode. We noticed a minor
bandwidth change in the middle phase compared to the
others. The results also show an increase in bandwidth
as the message size increases. The results for the bus-
based CE cluster show more fluctuation than the others
due to the nature of an Ethernet network.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

P hase
B
n
a
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 1. Congested-controlled AAPC on Frost

(8 processes on 8 nodes)

0

50

100

150

200

250

300

350

400

450

1 2 3

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 2. Congested-controlled AAPC on Pengra

(4 processes on 4 nodes)

Figure 4 shows the results of implementing
algorithm 2 (simple pairwise) on Frost. As for
algorithm 1, algorithm 2 shows similar results on the
other machines – mainly stable bandwidth results
except for minor differences for phase 4.

Figures 5 and 6 present the results of
implementing algorithm 3 (cumulative pairwise) on
Frost and TC2K. The results on Frost, as well as on
Blue, show no performance degradation as the number
of communicating nodes increases, while TC2K shows
some degradation. Consistently, we noticed a drop of
about 20% to 30% in bandwidth as the number of pairs

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

doubled from one pair to two regardless of the total
number of nodes employed.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 3. Congested-controlled AAPC on CE

(8 processes on 8 nodes)

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 4. Simple pairwise on Frost

(8 processes on 8 nodes)

0

50

100

150

200

250

300

350

400

450

1 2 3 4

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 5. Cumulative pairwise on Frost

(8 processes on 8 nodes)

Figure 7 presents the results of implementing
algorithm 4 (random pairwise) on Frost (the Blue and
Pengra results are similar to Frost results, the TC2K
results are noisy with few outliers, and CE results are
similar to CE results for other algorithms). The results,
on Frost, as well as on Blue, are very stable regardless
to which nodes are paired to the others.

0

100

200

300

400

500

600

1 2 3 4

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 6. Cumulative pairwise on TC2K

(8 processes on 8 nodes)

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 1

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 7. Random pairwise on Frost

(8 processes on 8 nodes)

4.2. Multiple processes on a single node

We implemented the four algorithms on Frost,
Blue and TC2K (Pengra is a dual-CPU machine while
CE nodes have a single CPU each). Here we show
samples of these results. Figure 8 presents the results
of implementing algorithm 1 on 16 processors of Frost.
The results show no dependency on the phase value, as
it would be expected. Similar results were obtained in
implementing algorithms 2 and 4 (not shown here) on
these machines with no phase or pairing dependency,
except for some small glitches.

The most interesting results on a single node are
that of algorithm 3 to observe the achieved bandwidth
as we increase the number of processes. Figures 9 and
10 present the results of implementing algorithm 3 on
Frost and TC2K. The Frost results show a significant
drop in bandwidth for messages larger than 3K bytes as
the number of communicating processors increases.
Actually, the drop in bandwidth is about 50% for
messages of size 100K bytes and above (from 600
MB/s for two pairs to 300 MB/s for eight pairs). A
small drop was observed on Blue (not shown here) as

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

the number of pairs doubled from one pair to two.
Also, a larger drop in bandwidth for all messages was
observed on TC2K. These results show the bandwidth
limitation of all SMPs, for larger messages. As Bland,
et al. [2] observed in evaluating a 32-way IBM p690
machine, different demands on the memory subsystem
can cause performance degradation for large messages,
especially in simultaneous swapping of messages
between 16 pairs of distant processors.

0

50

100

150

200

250

300

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 8. Congested-controlled AAPC on Frost

(16 processes on single node)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

P hase

B
a
n
d
w

id
th

 (
M

B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 9. Cumulative pairwise on Frost

(16 processes on single node)

4.3. Multiple processes on multiple nodes

We implemented the four algorithms on different
multiple nodes of Frost, Blue and TC2K using multiple
processes per node. We used several configurations but
here we present the results of 32 processes on eight
nodes. We also implemented 64 processes on four
nodes and 128 processes on eight nodes of Frost.

0

100

200

300

400

500

600

1 2

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 10. Cumulative pairwise on TC2K

(4 processes on single node)

Figure 11 presents the results of implementing
algorithm 1 on eight nodes of Frost using 32 processes
(similar results obtained on Blue). These results show a
drop in bandwidth as we move away from nearby to
farther apart communication. For example, we noticed
a drop of about 40% between phase 1 and phase 16
(the middle phase) on both machines. This drop can
mainly be attributed to the number of network
interfaces that are shared between the processors of a
single node. The four processors of a Blue node share
one network interface while the sixteen processors of a
Frost node share two interfaces. Here each processor
gets only a portion of the available bandwidth when
multiple processors on one node send messages to
processors on another node. This degradation is more
apparent in phase 16 since most communication is
between processes located on different nodes than in
phase 1 where most communication is between
processes within a node. Similar observations were
reported by Dunigan [4].

0

50

100

150

200

250

300

350

400

450

P hase

B
a
n
d
w

id
th

 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 11. Congested-controlled AAPC on Frost

(32 processes on 8 nodes)

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

0

50

100

150

200

250

300

350

400

450

1 9 17 25

P hase

B
a
n
d
w
id

th
 (
M
B
) 1k

3K

10K

30K

100K

300K

1000K

Figure 12. Simple pairwise on Frost

(32 processes on 8 nodes)

0

10

20

30

40

50

60

70

80

P hase

B
a
n
d
w
id

th
 (
M
B
) 1k

3K

10K

30K

100K

300K

1000K

Figure 13. Simple pairwise on Blue

(32 processes on 8 nodes)

0

20

40

60

80

100

120

140

160

1 9 17 25

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 14. Simple pairwise on TC2K

(32 processes on 8 nodes)

Figures 12 through 14 present the results of
implementing algorithm 2 on eight nodes of Frost,
Blue and TC2K using 32 processes. We noticed similar
drop in bandwidth (as in algorithm 1) on Frost and
Blue (about 40%) as the distance between the
communicating nodes increases. On TC2K, we noticed
even a larger drop (by a factor 3) as the distance
between the communicating nodes increases. As for
IBM machines, TC2K suffers from the same network
interface limitation as there is only one network

interface per node. We also observed more noises and
outliers on Blue than on the other two machines.

Figures 15 and 16 present the results of
implementing algorithm 3 on eight nodes of Frost and
TC2K using 32 processes (similar results obtained on
Blue). We noticed a small drop in bandwidth as the
number of communicating nodes increases. Also, these
drops happen only when the number of pairs increases
from one to two for large messages.

Figure 17 presents the results of implementing
algorithm 3 on four nodes of Frost using 64 processes.
The results show a drop by a factor of more than two
as the number of communicating pairs increases from
one to eight for large messages. Beyond eight pairs, the
bandwidth remains constant for all message sizes.

0

100

200

300

400

500

600

700

P hase

B
a
n
d
w

id
th

 (
M

B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 15. Cumulative pairwise on Frost

 (32 processes on 8 nodes)

0

100

200

300

400

500

600

P hase

B
a
n
d
w
id

th
 (
M
B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 16. Cumulative pairwise on TC2K

 (32 processes on 8 nodes)

Finally, Figures 18 presents the results of
implementing algorithms 1 on eight nodes of Frost
using 128 processes (similar results obtained with
algorithm 2). These results are similar to the results of
32 processes on four nodes but with a larger drop in
bandwidth. This again shows the limitation of the IBM
SP switch2 for a large number of processes and
multiple processes per node.

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

0

100

200

300

400

500

600

700

P hase

B
a
n
d
w

id
th

 (
M

B
) 1K

3K

10K

30K

100K

300K

1000K

Figure 17. Cumulative pairwise on Frost

(64 processes on 4 nodes)

0

50

100

150

200

250

300

1 34 67 100

P hase

B
a
n
d
w
id

th
 (
M
B
) 1k

3k

10k

30k

100k

300k

1000k

Figure 18. Congested-controlled AAPC on Frost

(128 processes on 8 nodes)

5. Concluding Remarks and Future Work

In testing network bottlenecks between nodes
(single process per node tests), we found that different
communication patterns have no impact on the IBM SP
switches and the Quadrics switch. However, the
cumulative pairwise test shows a drop in bandwidth for
the Quadrics switch as the number of pairs doubled.

In testing communication bottlenecks within an
SMP (multiple processes on a single node tests), the
cumulative pairwise tests showed the limitation of the
SP switch2 on Frost where for large messages (over
10k bytes) the achieved bandwidth dropped by about
one half as the number of communicating processes
increased from two to eight. We also noticed a drop in
bandwidth on both Blue and TC2K as the number of
communicating processes doubled. This reflects the
limitation of SMP machines mainly for large messages.

In testing communication bottlenecks of the whole
system (multiple processes on multiple nodes tests), we
noticed a drop in bandwidth on all tested platforms
(Frost, Blue and TC2K) as the distance between
communicating nodes increases. That drop is about

40% on IBM based switches and up to 300% on TC2K
for 32 processes on eight nodes. The drop is even more
significant as we increase the number of processes
(128 processes on eight nodes of Frost). We also
noticed a significant drop in bandwidth as the number
of communicating processes increases from two to
eight on Frost. The number of network interfaces per
node might be the limiting factor since multiple
processors of a single node share the interface
bandwidth.

This is our first step in evaluating performance of
overall network interconnects. By selecting specific
dense communication patterns, setting up a procedure
to evaluate SMP machines, and testing them on five
different platforms, we hope that we can start a formal
procedure to evaluate interconnects. Our methodology
requires no prior knowledge of the network topology
nor the mapping of processes onto processors.

We plan to test other systems and networks as well,
such as Columbia, IBM ASC Purple and Blue Gene/L,
Cray X1, and InfiniBand based clusters. We also plan
to add more algorithms to our benchmarks. Moreover,
we are testing some communication intensive
applications and correlating their results with our
communication-only tests.

6. References

[1] C. Bell, et al. An Evaluation of Current High-

Performance Networks, International Parallel and
Distributed Processing Symposium (IPDPS'03), 2003.

[2] A. Bland, et al. Early Evaluation of the IBM p690,

Supercomputing 2002, 2002.
[3] D. Culler, et al. LogP: Towards a realistic model of

parallel computation. Proc. 4th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, pg
1–12, 1993.

[4] T. Dunigan, ORNL Compaq Alpha/ IBM SP evaluation,

Oak Ridge National Lab, Oct. 2001.
[5] A. Grama, et al., Introduction to Parallel Computing,

2nd ed., Addison Wesley, 2003.
[6] IBM Corp., IBM e server pSeries: SP Switch and SP

Switch2 Performance, Ver. 8, Feb. 2003.
[7] C. Kurmann, F. Rauch, & T. Stricker, Cost/Performance

Tradeoffs in Network Interconnects for Clusters of

Commodity PCs, Proc. workshop on Communication
Architecture for Clusters, Nice, 2003.

[8] J. Liu, et al. Micro-Benchmark Level Performance

Comparison of High-Speed Cluster Interconnects, Proc.
11th Symp. On High Performance Interconnects,
Stanford, 2003.

[9] F. Petrini, et al., The Qudarics Network (QsNet): High-

Performance Clustering Technology, IEEE Micro, 22
(1), pp. 46 – 57, 2002.

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

