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Abstract 

We study the performance of high-speed interconnects 

using a set of communication micro-benchmarks. The 

goal is to identify certain limiting factors and 

bottlenecks with these interconnects. Our micro-
benchmarks are based on dense communication 

patterns with different communicating partners and 

varying degrees of these partners.  We tested our 

micro-benchmarks on five platforms: an IBM system of 

68-node 16-way Power3, interconnected by a SP 
switch2; another IBM system of 264-node 4-way 

Power PC 604e, interconnected by a SP switch; a 

Compaq cluster of 128-node 4-way ES40/EV67 

processor, interconnected by an Quadrics 

interconnect; an Intel cluster of 16-node dual-CPU 

Xeon, interconnected by an Quadrics interconnect; and 
a cluster of 22-node Sun Ultra Sparc, interconnected 

by an Ethernet network. Our results show many 

limitations of these networks including the memory 

contention within a node as the number of 

communicating processors increased and the 

limitations of the network interface for communication 
between multiple processors of different nodes.  

1. Introduction 

Most computer designers of network interconnects 
focus on the point-to-point communication 
performance of the network. They normally present 
performance data in terms of bandwidth and latency of 
single communication link. There have been a number 
of theoretical studies on the impact of the network 
topologies and communication patterns on the 
performance of high-performance computing systems 
but few empirical studies at scale. Most of the 
benchmarking efforts are based on simple routines that 
measure latency and bandwidth aspects of a network 

and ignoring other factors such as the multiplicity of 
communication sessions between multiple nodes and 
the locality of these sessions. 

There have been several recent studies on 
performance of high-performance networks using 
different benchmarks. Bell, et al. [1] used a set of 
micro-benchmarks for measuring bandwidth, latency, 
and software overhead on five supercomputing 
networks: Cray T3E, IBM SP, Quadrics, Myrinet, and 
Gigabit Ethernet. They showed the benefits of 
overlapping communication with computation and 
analyzed their results using a variant of LogP model 
[3]. Liu, et al. [8] developed another set of benchmarks 
to evaluate three cluster interconnects: InfiniBand, 
Myrinet, and Quadrics. Their benchmarks include 
traditional measures, such as latency and bandwidth, as 
well as other features such as user-level access for 
performing communication and remote direct memory 
access, and showed the performance impact of these 
features. Finally, Kurmann, et al. [7] developed yet 
another set of micro-benchmarks to find the best cost 
performance point for networks in PC clusters. They 
designed their benchmark to evaluate the performance 
of interconnect for specific communication patterns. 
They also experimented with several applications and 
concluded that many applications are not very sensitive 
to full bisection bandwidth.  

Our work was inspired by Kurmann’s work [7] so 
we used some of their communication patterns. Our 
goal is to develop a methodology in evaluating 
interconnects without knowing their topologies or the 
mapping of the processes onto the processors. Our 
focus is on dense communication patterns in order to 
identify certain limiting factors and bottlenecks of 
these interconnects. So we designed our benchmark in 
such a way that we stress the network with multiple 
messages from different nodes to identify hot spots 
within the network. Our micro-benchmark avoids 
point-to-point as well as collective communication 
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routines (for interested readers, please refer to mpptest 
for a point-to-point communication benchmark and 
Pallas for both point-to-point and collective 
communication benchmarks). In addition to different 
communication patterns, we employ different message 
sizes and number of nodes to determine the sensitivity 
of the network to these changes. 

2. Experimental Platforms 

We ran our algorithms on five platforms consisting 
of two IBM SP (Scalable PowerParallel) systems: 
Frost and Blue and three clusters of machines: TC2K, 
Pengra, and CE. All these machines except CE are 
located at Lawrence Livermore National Laboratory 
(LLNL), Livermore, California. The CE (Computer 
Engineering) cluster is located at San Jose State 
Univeristy (SJSU), San Jose, California. All machines 
run different versions of the Unix operating system. 

The IBM SP Frost system at LLNL is composed of 
68 Symmetric MultiProcessor (SMP) nodes, each with 
16 processors totaling 1088 processors with a peak 
performance of 1.6 Tflops. Each processor is an IBM 
RS/6000 POWER3-II “Nighthawk-2” at 375 MHz.  

All Frost nodes are connected by an IBM SP 
switch2, a proprietary IBM interconnect [6]. It is a 
bidirectional, multistage interconnection network with 
2 GB/s peak node-to-node bandwidth. The switch 
consists of two basic hardware elements: switch board 
and communication adapter. There is one switch board 
per an SP frame (SP frame contains 16 nodes on 
Frost). The switch board contains eight switch chips 
wired as a bidirectional 4-way to 4-way crossbar. Also, 
every Frost node has two switch adapters.  

The IBM Blue system at LLNL is composed of 264 
SMP nodes, each with four processors totaling 1056 
processors with a peak performance of 722 Gflops. 
Each processor is an IBM PowerPC 604e at 332 MHz. 
All Blue nodes are connected by an IBM SP switch. It 
is similar to IBM SP switch2 except that the peak 
node-to-node bandwidth is 300 MB/s. 

The Compaq TC2K system at LLNL is composed 
of 128 SMP nodes, each with four processors totaling 
512 processors with a peak performance of 681 Gflops. 
Each processor is an AlphaServer system ES40, with 
the EV67 processor which contains the Alpha 21264 
chip at 667 MHz. 

The Pengra system at LLNL is composed of 16 
dual-CPU nodes with a peak performance of 141 
Gflops. Each CPU is a 2.2 GHz Intel Xeon and uses 
the Intel E7500 chipset.  

Nodes of both TC2K and Pengra are connected by a 
Quadrics Network (QsNet) [9]. QsNet is a bidirectional 
multistage interconnection network with a transmission 

bandwidth of 400 MB/s in each direction. It consists of 
two hardware building blocks: a programmable 
network interface, Elan, and a switch, Elite. The Elan 
network interface connects a processing node via the 
PCI bus and a multistage network. In addition to 
generating and accepting packets, Elan provides local 
processing power, through two processing engines, to 
implement high-level, message passing protocols, such 
as MPI. The Elite switch is an 8-way bidirectional 
crossbar switch. QsNet connects Elite switches in a 
quaternary fat-tree topology.  

The CE cluster at SJSU is composed of 22 Sun 
Ultra Sparc nodes, each with a CPU of 333 MHz. The 
nodes are connected by a 10/100 Ethernet network. 
The CE cluster is used here mainly for code 
development and testing on a bus-based network.  

3. Algorithms 

We implemented several algorithms to study the 
limitations of a set of interconnects. 

3.1. Congested-controlled AAPC 

In all-to-all personalized communication (AAPC), 
each process sends a distinct message to every other 
process. AAPC, also called total exchange, is widely 
used in many algorithms, such as Fast Fourier 
Transform (FFT), matrix transpose, and sorting. There 
are many implementations of AAPC on parallel 
computers, some of them have been optimized on 
specific architectures and can be invoked as library 
routines. A simple implementation of AAPC, where all 
processes communicate with all other processes 
simultaneously, may lead to network congestion on 
most networks. Grama, et al. [5] describe AAPC  
implementations on ring, mesh, and hypercube 
networks based on multiple steps where in each step 
every process sends a message to its neighbor. 
Kurmann, et al. [7] describe a phased AAPC algorithm 
that attempts to reduce network congestion.  

A phased AAPC algorithm, also called congestion-
controlled AAPC, proceeds as follows: In the first 
phase, each process sends data to its next higher 
neighbor (based on its rank) and receives data from its 
next lower neighbor. In the next phase, each process 
sends data to its next but one higher neighbor and 
receives data from next but one lower neighbor and 
proceeds such away till the last phase where every 
process sends data to its lower neighbor and receives 
data from its higher neighbor. Each phase is separated 
by global synchronization using barriers, which may 
add some overhead. A pseudo code representation of 
the algorithm is shown below: 
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Algorithm 1: Congested-controlled AAPC 

for stride = 1 to Size - 1 do  
1. Start timer  

2. Concurrently send bytes to (myRank + stride) % 

Size & receive bytes from (myRank - stride) % 

Size 

3. End timer 
4. Wait for barrier 

5. Do all-to-one reduction to find maxTime

Where Size is number of processes within the 
communicator and maxTime is the maximum time 
taken by all processes in each phase.   

3.2. Simple pair-wise communication 

In this algorithm, a set of processes communicates in 
pairs. All pairs send and receive data in parallel and at 
full duplex. The algorithm proceeds in phases such that 
the stride (hop) or the distance between the 
communicating processes increases in each phase until 
it reaches its maximum (Size –1), as shown below: 

Algorithm 2: Simple pairwise 

for stride = 1 to Size - 1 do 
1. Start timer  

2. Concurrently send bytes to & receive bytes from 

(myRank + stride) % Size and (myRank - stride) 
% Size 

3. End timer 

4. Wait for barrier 

5. Do all-to-one reduction to find maxTime

The first phase of the algorithm is repeated in the last 
phase (Size –1) while the second phase is repeated in 
the next to last phase (Size -2) and so on. In the middle 
phase (Size /2), process 0 pairs with process Size/2 
twice as well as other pairs; i.e., there are Size/2 pairs. 
For example, consider an eight process case, phase 1 
has the following pairs (0,1), (1,2), (2,3), (3,4), (4,5), 
(5,6), (6,7), (7,0); phase 2 has (0,2), (1,3), (2,4), (3,5), 
(4,6), (5,7), (6,0), (7,1); phase 3 has (0,3), (1,4), (2,5), 
(3,6), (4,7), (5,0), (6,1), (7,2), phase 4 has (0,4), (1,5), 
(2,6), (3,7), (4,0), (5,1), (6,2), (7,3), and so on.  

3.3. Cumulative pair-wise communication 

In this algorithm, the number of communicating pairs 
in the network is increased during successive phases of 
communication. In the first phase only two processes 
communicate with each other (0,1). In the second 
phase, the number of communicating processes 
increases to four (0,1), (2,3), and that number increases 
to six in phase three (0,1), (2,3), (4,5) and so on, as 
shown below: 

Algorithm 3: Cumulative pairwise 

for phase = 1 to Size / 2 do 
1. Start timer  

2. If (myRank < 2 × phase) 

3. Concurrently send bytes to & receive bytes from 

(myRank + 1) if myRank is even or (myRank – 

1) if myRank is odd 
4. End timer 

5. Wait for barrier 

6. Do all-to-one reduction to find maxTime

3.4. Random pair-wise communication 

In this algorithm, the communicating processes are 
determined at runtime, randomly. This is done by using 
a random-shuffling algorithm, which shuffles the 
process array (processArray) in each phase. Here, 
initially processArray consists of process ranks in the 
ascending order of their ranks. The communicator is 
split up into two equal parts, and communication takes 
place between the two halves of the communicator. At 
the end of each phase, where the number of phases 
(maxPhase) is chosen at runtime, the process array is 
shuffled so that the two halves, for the next phase, 
contain different processes, as shown below: 

Algorithm 4: Random pairwise 

for phase = 1 to maxPhase do 
1. Divide processArray into two halves 

2. Partner = processArray [( (Size/2) + myRank) 

% Size ] 

3. Start timer  

4. Concurrently send bytes to & receive bytes from 

partner 
5. End timer 

6. Wait for barrier 

7. Do all-to-one reduction to find maxTime  

8. Shuffle processArray randomly

4. Implementations and Results 

We implemented the four algorithms, described in 
section 3, on different configurations of the five 
platforms described in section 2. The code was written 
in C with MPI calls for all our implementations. For 
each algorithm, there are several implementation 
options including: the message size, the number of 
repetitions in each routine, and type of communication: 
blocking or non-blocking send and receive. 

 We ran the four algorithms on LLNL machines 
(Frost, Blue, TC2K, and Pengra) through a batch 
system. The execution environment was not dedicated: 
i.e., there were other jobs running while our jobs were 
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executing. We ran some jobs more than once when we 
noticed some abnormality on the timing results. But, in 
general, the results were consistent across multiple 
runs. The batch system at LLNL schedules submitted 
jobs based on the available resources, job sizes, time 
limits and job priority. The user has no control over 
which processor, a node, or a set of nodes that the job 
will run on - it is up to the scheduler. However, the 
user can specify that all processes of a job to be 
executed on a single node. On the CE machines, we 
used a simple machine configuration file to run the 
jobs. 

We used seven message sizes to run the four 
algorithms: 1K, 3K, 10K, 30K, 100K, 300K, and 
1000K bytes. We set the number of repetitions to 1000 
to get meaningful results. We also used the algorithms 
in the non-blocking mode since we found out that in 
some cases the blocking mode caused the jobs to hang 
due to buffer space limitations. In addition, we set the 
number of phases that random shuffling can be 
performed in Algorithm 4 to 10. 

We tested the four algorithms on three different 
configurations: 1) multiple nodes with a single process 
per node, 2) multiple processes on a single node, and 
3) multiple processes on multiple nodes. Not all 
possible combinations of algorithms, platforms and 
configurations are reported here for several reasons. 
Given the amount of data generated by these 
experiments, we focus on the results that have some 
significance for the sake of brevity. Also, there were 
cases that the results did not meet our quality insurance 
standards. In addition, we were also limited by the 
number of nodes that we were able to run using the 
batch system at LLNL. In our case, the largest number 
of nodes we used is four nodes on Pengra and eight 
nodes on each of Frost, Blue, TC2K, and CE. 

In all cases, we measured the maximum time taken 
by all processes. Then we calculated the bandwidth by 
multiplying the message size by the number of sends 
and receives that each process performs (it is two for 
algorithms 1, 3 and 4 while it is four for algorithm 2) 
and dividing the result by the measured time. 

4.1. Single process per node 

We implemented the four algorithms on eight 
nodes of Frost, Blue, TC2K, and CE and four nodes of 
Pengra and running one process per node. We used the 
configuration to find out inter-node network limitation.  

Figures 1 through 3 present the results of 
implementing algorithm 1 (congested-controlled 
AAPC) on Frost, Pengra, and CE (Frost and Blue 
results are very similar). The results show different 
phases of the algorithm have a minimum impact on the 

bandwidth; i.e., as we increase the distance between 
the communicating nodes, the bandwidth remains 
about the same. An interesting case is the middle phase 
(phase 4 for the eight node configuration) since here 
each process sends and receives messages to the same 
partner in a full-duplex mode. We noticed a minor 
bandwidth change in the middle phase compared to the 
others. The results also show an increase in bandwidth 
as the message size increases. The results for the bus-
based CE cluster show more fluctuation than the others 
due to the nature of an Ethernet network. 
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Figure 1.  Congested-controlled AAPC on Frost  

(8 processes on 8 nodes) 
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Figure 2. Congested-controlled AAPC on Pengra  

(4 processes on 4 nodes) 

Figure 4 shows the results of implementing 
algorithm 2 (simple pairwise) on Frost. As for 
algorithm 1, algorithm 2 shows similar results on the 
other machines – mainly stable bandwidth results 
except for minor differences for phase 4.  

Figures 5 and 6 present the results of 
implementing algorithm 3 (cumulative pairwise) on 
Frost and TC2K. The results on Frost, as well as on 
Blue, show no performance degradation as the number 
of communicating nodes increases, while TC2K shows 
some degradation. Consistently, we noticed a drop of 
about 20% to 30% in bandwidth as the number of pairs 
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doubled from one pair to two regardless of the total 
number of nodes employed. 
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Figure 3. Congested-controlled AAPC on CE  

(8 processes on 8 nodes) 
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Figure 4.  Simple pairwise on Frost  

(8 processes on 8 nodes) 
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Figure 5. Cumulative pairwise on Frost 

(8 processes on 8 nodes) 

Figure 7 presents the results of implementing 
algorithm 4 (random pairwise) on Frost (the Blue and 
Pengra results are similar to Frost results, the TC2K 
results are noisy with few outliers, and CE results are 
similar to CE results for other algorithms). The results, 
on Frost, as well as on Blue, are very stable regardless 
to which nodes are paired to the others. 
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Figure 6. Cumulative pairwise on TC2K  

(8 processes on 8 nodes) 
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Figure 7. Random pairwise on Frost  

(8 processes on 8 nodes) 

4.2. Multiple processes on a single node 

We implemented the four algorithms on Frost, 
Blue and TC2K (Pengra is a dual-CPU machine while 
CE nodes have a single CPU each). Here we show 
samples of these results. Figure 8 presents the results 
of implementing algorithm 1 on 16 processors of Frost. 
The results show no dependency on the phase value, as 
it would be expected. Similar results were obtained in 
implementing algorithms 2 and 4 (not shown here) on 
these machines with no phase or pairing dependency, 
except for some small glitches.  

The most interesting results on a single node are 
that of algorithm 3 to observe the achieved bandwidth 
as we increase the number of processes. Figures 9 and 
10 present the results of implementing algorithm 3 on 
Frost and TC2K. The Frost results show a significant 
drop in bandwidth for messages larger than 3K bytes as 
the number of communicating processors increases. 
Actually, the drop in bandwidth is about 50% for 
messages of size 100K bytes and above (from 600 
MB/s for two pairs to 300 MB/s for eight pairs). A 
small drop was observed on Blue (not shown here) as 
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the number of pairs doubled from one pair to two. 
Also, a larger drop in bandwidth for all messages was 
observed on TC2K. These results show the bandwidth 
limitation of all SMPs, for larger messages. As Bland, 
et al. [2] observed in evaluating a 32-way IBM p690 
machine, different demands on the memory subsystem 
can cause performance degradation for large messages, 
especially in simultaneous swapping of messages 
between 16 pairs of distant processors. 
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(16 processes on single node) 
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Figure 9. Cumulative pairwise on Frost  

(16 processes on single node) 

4.3. Multiple processes on multiple nodes 

We implemented the four algorithms on different 
multiple nodes of Frost, Blue and TC2K using multiple 
processes per node. We used several configurations but 
here we present the results of 32 processes on eight 
nodes. We also implemented 64 processes on four 
nodes and 128 processes on eight nodes of Frost. 
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(4 processes on single node) 

Figure 11 presents the results of implementing 
algorithm 1 on eight nodes of Frost using 32 processes 
(similar results obtained on Blue). These results show a 
drop in bandwidth as we move away from nearby to 
farther apart communication. For example, we noticed 
a drop of about 40% between phase 1 and phase 16 
(the middle phase) on both machines. This drop can 
mainly be attributed to the number of network 
interfaces that are shared between the processors of a 
single node. The four processors of a Blue node share 
one network interface while the sixteen processors of a 
Frost node share two interfaces. Here each processor 
gets only a portion of the available bandwidth when 
multiple processors on one node send messages to 
processors on another node. This degradation is more 
apparent in phase 16 since most communication is 
between processes located on different nodes than in 
phase 1 where most communication is between 
processes within a node. Similar observations were 
reported by Dunigan [4]. 
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Figure 11.  Congested-controlled AAPC on Frost 

(32 processes on 8 nodes) 
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(32 processes on 8 nodes) 

0

10

20

30

40

50

60

70

80

P hase

B
a
n
d
w
id

th
 (
M
B
) 1k

3K

10K

30K

100K

300K

1000K

Figure 13. Simple pairwise on Blue  

(32 processes on 8 nodes) 
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Figure 14.  Simple pairwise on TC2K  

(32 processes on 8 nodes) 

Figures 12 through 14 present the results of 
implementing algorithm 2 on eight nodes of Frost, 
Blue and TC2K using 32 processes. We noticed similar 
drop in bandwidth (as in algorithm 1) on Frost and 
Blue (about 40%) as the distance between the 
communicating nodes increases. On TC2K, we noticed 
even a larger drop (by a factor 3) as the distance 
between the communicating nodes increases. As for 
IBM machines, TC2K suffers from the same network 
interface limitation as there is only one network 

interface per node. We also observed more noises and 
outliers on Blue than on the other two machines. 

Figures 15 and 16 present the results of 
implementing algorithm 3 on eight nodes of Frost and 
TC2K using 32 processes (similar results obtained on 
Blue). We noticed a small drop in bandwidth as the 
number of communicating nodes increases. Also, these 
drops happen only when the number of pairs increases 
from one to two for large messages.  

Figure 17 presents the results of implementing 
algorithm 3 on four nodes of Frost using 64 processes. 
The results show a drop by a factor of more than two 
as the number of communicating pairs increases from 
one to eight for large messages. Beyond eight pairs, the 
bandwidth remains constant for all message sizes. 
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Figure 15. Cumulative pairwise on Frost 
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Figure 16. Cumulative pairwise on TC2K 

 (32 processes on 8 nodes) 

Finally, Figures 18 presents the results of 
implementing algorithms 1 on eight nodes of Frost 
using 128 processes (similar results obtained with 
algorithm 2). These results are similar to the results of 
32 processes on four nodes but with a larger drop in 
bandwidth. This again shows the limitation of the IBM 
SP switch2 for a large number of processes and 
multiple processes per node. 
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Figure 17.  Cumulative pairwise on Frost  

(64 processes on 4 nodes) 
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Figure 18. Congested-controlled AAPC on Frost 

(128 processes on 8 nodes) 

5. Concluding Remarks and Future Work 

In testing network bottlenecks between nodes 
(single process per node tests), we found that different 
communication patterns have no impact on the IBM SP 
switches and the Quadrics switch. However, the 
cumulative pairwise test shows a drop in bandwidth for 
the Quadrics switch as the number of pairs doubled. 

In testing communication bottlenecks within an 
SMP (multiple processes on a single node tests), the 
cumulative pairwise tests showed the limitation of the 
SP switch2 on Frost where for large messages (over 
10k bytes) the achieved bandwidth dropped by about 
one half as the number of communicating processes 
increased from two to eight. We also noticed a drop in 
bandwidth on both Blue and TC2K as the number of 
communicating processes doubled. This reflects the 
limitation of SMP machines mainly for large messages. 

In testing communication bottlenecks of the whole 
system (multiple processes on multiple nodes tests), we 
noticed a drop in bandwidth on all tested platforms 
(Frost, Blue and TC2K) as the distance between 
communicating nodes increases. That drop is about 

40% on IBM based switches and up to 300% on TC2K 
for 32 processes on eight nodes. The drop is even more 
significant as we increase the number of processes 
(128 processes on eight nodes of Frost). We also 
noticed a significant drop in bandwidth as the number 
of communicating processes increases from two to 
eight on Frost. The number of network interfaces per 
node might be the limiting factor since multiple 
processors of a single node share the interface 
bandwidth.  

This is our first step in evaluating performance of 
overall network interconnects. By selecting specific 
dense communication patterns, setting up a procedure 
to evaluate SMP machines, and testing them on five 
different platforms, we hope that we can start a formal 
procedure to evaluate interconnects. Our methodology 
requires no prior knowledge of the network topology 
nor the mapping of processes onto processors.  

We plan to test other systems and networks as well, 
such as Columbia, IBM ASC Purple and Blue Gene/L, 
Cray X1, and InfiniBand based clusters. We also plan 
to add more algorithms to our benchmarks. Moreover, 
we are testing some communication intensive 
applications and correlating their results with our 
communication-only tests.  
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