
1

Atomic Page Update Methods for OpenMP-Aware Software DSM

Yang-Suk Kee

Institute of Computer Technology

Seoul National University

yskee@iris.snu.ac.kr

Jin-Soo Kim

Division of Computer Science

KAIST

jinsoo@cs.kaist.ac.kr

Woo-Chul Jeun, Soonhoi Ha

School of Computer Science and Engineering

Seoul National University

{wcjeun,sha}@iris.snu.ac.kr

Abstract

When software distributed shared memory (SDSM) is

extended to utilize threads in support of OpenMP, a

challenge is how to preserve memory consistency in a

thread-safe way, which is known as “atomic page update

problem”. In this paper, we show that this problem can

be solved by creating two independent access paths to a

physical page and by assigning different access

permissions to them. Especially, we discuss three new

methods using System V shared memory IPC, a new

mdup() system call, and a fork() system call as well as a

known method using file mapping. The main contribution

of this paper is to introduce various solutions to the

atomic page update problem and to compare their

characteristics extensively. Experiments carried out on a

Linux-based cluster of SMPs and an IBM SP Nighthawk

system show that the proposed methods achieve better

performance than the file mapping method and the

method using the process creation mechanism is the best

candidate for the IBM SP system.

1. Introduction

OpenMP [1] is becoming the de facto standard for shared-

address-space programming model. In addition to

programming easiness inherent in shared-address-space

model, OpenMP anticipates high performance in

scientific applications. Even though the general target

architecture of OpenMP is a single multiprocessor node,

this model can be applicable to a cluster of

multiprocessors. An intuitive way to extend OpenMP to

cluster of multiprocessors is to use software distributed

shared memory (SDSM), which emulates a shared

address space over distributed memories.

Many SDSM systems are implemented at user-level by

using the page fault handling mechanisms, assuming

uniprocessor nodes. This kind of SDSM system detects an

unprivileged access to a shared page by catching a

SIGSEGV signal and a user-defined signal handler

updates the invalid page with a valid one. From the

application point of view, this page-update is atomic since

program control is returned to the application only after

the signal handler completes the service on the fault.

However, these single-threaded systems are inadequate

to the thread-based parallelism of OpenMP. The

conventional fault-handling process will fail in

multithreaded environments because other threads may

try to access the same page during the update period. The

SDSM system faces a dilemma when multiple threads

compete to access an invalid page within a short interval.

On the first access to an invalid page, the system should

set the page writable to replace with a valid one.

Unfortunately, this change also allows other application

threads to access the same page freely. This phenomenon

is known as atomic page update and change right problem

[2] or mmap() race condition [3]. For short, we call this

the atomic page update problem.

A known solution to this problem adopted by major

multithreaded SDSM systems like TreadMarks [4],

Brazos [5], and Strings [6] is to map a file to two different

virtual addresses. Even though the systems using file

mapping achieve fair good performance on dedicated

systems, file mapping is not always the best solution.

Operating system and working environment severely

affect the performance of these systems. Moreover, file

mapping has high initialization cost, experiences buffer

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

2

caches flushing overhead, and reduces the available

address space because SDSM and application partition

the address space.

We note the cause of this problem is that SDSM and

application share the same address space. When SDSM

changes a page writable, the page is also accessible to the

application. A general solution to this problem is to

separate the application address space from the system

address space for the same physical memory, and to

assign different access permission to each address space.

Then, the system can guarantee the atomic page update by

changing the access permission of a virtual page in the

application address space only after it completes the page

update through the system address space.

In this paper, we present three new solutions using

System V shared memory IPC, a new mdup() system call,

and a fork() system call as well as a known solution using

file mapping. The main contribution of this paper is to

present various solutions to the atomic page update

problem and to compare their characteristics extensively.

However, it is observed that it is not always possible to

implement all of them in a given SMP cluster system due

to the various limitations of a given operating system.

Experiments on a Linux-based cluster and on an IBM SP2

machine show that the proposed methods overcome the

drawbacks of the file mapping method such as high

initialization cost and buffer cache flushing overhead.

Moreover, the method using a fork() system call exploits

whole the address space and is a robust method for

dynamic environments.

This paper is organized as follows. In section 2, we

discuss the atomic page update problem in detail. We

briefly introduce our OpenMP-aware SDSM system in

section 3 and present four methods to solve the problem

in section 4. We investigate four methods by using micro-

benchmarks and give experimental results with several

applications in section 5. Section 6 concludes the paper.

2. The Atomic Page Update Problem

A typical page fault handling process of conventional

page-based SDSM is illustrated in Figure 1. In general,

this kind of SDSM uses SIGIO and SIGSEGV signals to

implement memory consistency protocols. When the

application (T2) accesses the invalid page denoted by A,

the operating system generates a SIGSEGV signal and

hands over program control to SDSM by invoking a user-

defined SIGSEGV handler. Inside the handler, the system

allocates a writable page by dynamically creating an

anonymous page or by retrieving a page from the shared

memory pool prepared in the initialization step. Then, the

system requests the most up-to-date page from a remote

node and waits for the page. When the page request

arrives at the remote node, the remote operating system

generates a SIGIO signal and a user-defined SIGIO

handler serves the request. After that, the local SDSM

replaces the invalid page with the new one and sets the

page readable by using an mprotect() system call.

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

Request

Page

SIGSEGV Handler
SIGIO Handler

mmap(A, PROT_WRITE)

Read(A) : garbage

T2T1 T1

Process 1 Process 2

Figure 1. A typical procedure of page fault handling in

a conventional page-based SDSM system

In a single-threaded system, this page update is atomic

with respect to the application since the program control

is returned to the application only after the system

completes in replacing the invalid page with a valid one.

Atomicity, however, is not guaranteed when multiple

threads compete to access a page. Figure 1 illustrates the

situation where T1 accesses the same page while T2 is

waiting for the up-to-date page after it has set the page

writable. T1 continues its computation with garbage data

without raising any protection fault. This depicts the

atomic page update problem.

A known solution to this problem is to map a file to two

virtual addresses and to create two independent access

paths to the file: one for application and the other for

SDSM. The system can update the file through the virtual

address mapped to it while the access from an application

thread is controlled by a memory consistency protocol.

From the viewpoint of operating system, file mapping is

to attach physical pages, used as cache for a file, to the

process's virtual address space. When a file is mapped to

two virtual addresses, each physical page is pointed by

two page table entries and different access permission can

be assigned to different virtual addresses. In consequence,

the SDSM system guarantees the atomic page update with

respect to all application threads by changing the access

permission of the virtual pages mapped for application

only after it updates the physical pages through the virtual

address mapped for system.

A scenario of thread-safe page update in data race by

separating the access paths is illustrated in Figure 2.

When an application thread tries to access the invalid

page denoted by A, SDSM updates the invalid page with

the up-to-date page through the system address denoted

by S. After the page update is completed, the system

changes the page A in the application address space

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

3

readable and hands over program control to the

application thread again. If another threads attempt to

access the same page during the update period, they see

the page is still invalid and are blocked inside the

SIGSEGV handler. When the page update is completed,

the signal handler wakes up all the threads waiting for the

page.

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

SIGSEGV Handler

Read(A)

T2T1

mprotect(S, PROT_WRITE)

Wait
SIGSEGV

Wakeup

Process 1 Process 2

T1

Request

Page

Tc

Figure 2. A scenario of the thread-safe page update in

data race

File mapping, however, is not the only way to create

multiple access paths to a physical page. We seek for

other methods to achieve the same goal without

performance degradation. In this paper, we propose three

more methods and study their characteristics.

3. The ParADE System

Communication protocols

(VIA, TCP/IP)

Communication protocols

(VIA, TCP/IP)

OpenMP applicationsOpenMP applications
OpenMP

translator

Runtime

system

Kernel

Message passing library

(MPI)

System calls

(Page fault and protection)

OS kernel

Multithreaded DSM

(POSIX threads)

ParADE APIs

Figure 3. Architecture of the ParADE system

Our SDSM is a component of an OpenMP-based parallel

programming environment for SMP clusters called

ParADE [7]. Figure 3 depicts the architecture of the

ParADE system. Two key components of ParADE are the

ParADE runtime system and the OpenMP translator. A

multi-threaded SDSM and a message-passing library

compose the runtime system. To provide thread-safe

communication, we implemented a subset of MPI [8]

library for Virtual Interface Architecture (VIA) [9]. We

also developed our own SDSM system, which provides a

home-based lazy release consistency (HLRC) [10] with

migratory home to exploit data locality. Meanwhile, the

OpenMP translator converts an OpenMP program to a

multi-threaded program with hybrid communication

interfaces by using the ParADE runtime library, and

enables the program to be executable on the SMP cluster.

For more information about ParADE, refer to [7].

4. Four Atomic Page Update Methods

In this section, we present four methods to provide

multiple access paths to a physical page: file mapping,

System V shared memory IPC, a new mdup() system call,

and a fork() system call. All the methods except the

mdup() method are implemented at user-level.

4.1. File mapping

An mmap() system call enables a process to access a file

through memory operations by mapping the file to the

process address space. Moreover, the system call with the

MAP_SHARED flag enables a file to be mapped to a

process multiple times. Figure 4 illustrates how to make

two virtual addresses refer to the same file by mapping a

file multiple times.

Application View System View

A = mmap(0, Size,

PROT_READ|PROT_WRITE,

MAP_SHARED|MAP_FILE,

fd, 0);
mprotect(A, Size, PROT_NONE)

S = mmap(0, Size,

PROT_READ|PROT_WRITE,

MAP_SHARED|MAP_FILE,

fd, 0);

fd = open(FileName, O_RDWR|O_CREAT, S_IRWXU)

write(fd, zero, Size)

Protected Address Space Freely Accessible Address Space

File

Figure 4. Mapping a file to two virtual addresses

File mapping is very portable and the performance of

SDSM with this method is fairly good. Nevertheless, this

method has several drawbacks. First, the size of the

shared address space should be smaller than the size of

the file. When the area beyond the file size is accessed,

the operating system signals an error. To avoid this

unexpected error, the SDSM system should create a large

regular file enough to contain the shared pages or it

should dynamically enlarge the file size by explicitly

using the write() or ftruncate() operations. However, this

initialization cost is not negligible.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

4

Another drawback is unnecessary disk writes at runtime.

Although FreeBSD supports the MAP_NOSYNC flag to

avoid dirty pages to be flushed to disk at runtime, many

operating systems flush buffer caches to disk regularly, or

explicitly when the munmap() system call is invoked to

eliminate the mapping. Disk write is a costly operation so

that it may damage performance significantly. In

consequence, the performance of a system based on the

file mapping method depends on the system buffer cache

(page cache) size and the buffer cache management

scheme. Experiments on IBM SP Night Hawk system

with an AIX 4.3.3 PSSP 3.2 version revealed significant

performance degradation when the machine is not wholly

dedicated to SDSM.

4.2. System V shared memory IPC

Another method to map a physical page to different

virtual addresses is to use System V shared memory IPC.

An shmget() system call enables a process to create a

shared memory object in the kernel and the shmat()

system call enables the process to attach the object to its

address space. In addition, shown in Figure 5, a process

can attach the shared memory object to its address space

more than once and a different virtual address is assigned

to each attachment.

Segment Segment Segment

Application View System View

A = shmat(ID, 0, 0) S = shmat(ID,0,0)

ID = shmget(IPC_PRIVATE, Size, IPC_CREAT|IPC_EXCL|SHM_R|SHM_W)

mprotect(A, Size, PROT_NONE)

Freely Accessible Address SpaceProtected Address Space

Figure 5. Attaching shared memory segments to two

virtual addresses

Compared to file mapping, creating shared memory

segments is very cheap. Nevertheless, this mechanism has

several restrictions. In some operating systems, the size

and the number of shared memory segments are limited.

Solaris systems determine the size and the number of

segments at boot time by checking the shmsys field of the

/etc/system file. In the case of Linux systems, the

maximum size of a segment is 32 megabytes and the

system-wide maximum number of segments is limited to

128. Some operating systems just allow less than 10

segments whose size should be smaller than tens of

kilobytes. As a result, they fail to allocate large shared

memory with this method. Moreover, observed in the

IBM SP Night Hawk system, the mprotect() system may

not be used to change the access permission of shared

memory segments allocated by System V shared memory

IPC.

Another problem is that a group of segments should be

mapped to a continuous address space. When one forces

to attach a shared memory segment to a user-assigned

address, the attachment will fail if the address is not a

predefined address for segment low boundaries.

Therefore, we should allocate a segment according to the

low boundary address and attach it to a continuous

address space. The last consideration is memory leak.

Shared memory segments are not released automatically

when a program terminates. SDSM should make sure that

shared memory segments are released at termination,

even at abnormal termination.

4.3. mdup() system call

We implement a new system call, mdup(), to easily

duplicate the per-process page table. The prototype of

mdup() is as follows.

void* mdup(void* addr, int size),

where addr is the virtual address of the anonymous

memory region created by the mmap() system call with

the MAP_ANONYMOUS and MAP_SHARED flags

and size is the size of the region.

The basic mechanism of mdup() is to allocate new page

table entries for the detour and to copy the page table

entries of the anonymous memory to new ones. The

reasons why we use anonymous memory are following:

(1) no initialization step is required and (2) there is no

size limit. Even though kernel modification damages

portability of SDSM, the mdup() system call is easy to

use and overcomes many drawbacks of the previous

methods.

4.4. fork() system call

The total amount of physical memory in a cluster system

increases with the size of cluster. Nevertheless, the size of

the virtual address space is fixed and puts restriction on

the problem size of applications. The previous methods

reduce the virtual address space available for applications

because the application and the system partition the

address space. Therefore, we propose another method to

support thread-safe memory management without

sacrificing the address space.

When a process forks a child process, the child process

inherits the execution image of the parent process. The

parent process creates shared memory regions and forks a

child process. Then, they have independent access paths

even though they use the same virtual address to access

the same physical page. We let the parent process execute

applications and the child process perform memory

consistency mechanisms. Hence, the SDSM system can

successfully update the shared memory region in a thread-

safe way through the child process's address space.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

5

However, this method experiences additional latency

due to communication and synchronization overheads

between the parent and the child processes. Nonetheless,

this method is very portable and it survives even under a

harsh working environment like IBM SP Night Hawk.

5. Experiments

We have implemented four methods in the ParADE

runtime system. We first measured the costs of basic

operations and compared the performance of the methods

with several applications. Our experiments were

performed on an IBM SP Night Hawk system and a

Linux cluster. The IBM SP system consists of nine

375Mhz POWER3 SMP nodes with sixteen processors

and 16GB main memory per node. The Linux cluster

consists of four dual-Pentium III 550Mhz SMP nodes and

four dual-Pentium III 600Mhz SMP nodes. Each node has

512 MB main memory and it is connected to a Giganet's

cLAN VIA switch. Redhat 8.0 with a kernel of 2.4.18-14

SMP version runs on each node. We used a GNU gcc

compiler with the -O2 option for Linux cluster and an xlc

complier with the -O2 -qarch=pwr3 -qtune=pwr3 -

qmaxmem=-1 -qstrict options for the IBM SP system.

5.1. Costs of basic operations

Table 1 shows the costs of the basic operations used by

four methods. The operations in the top group are used in

the initialization step, those in the middle are used at

runtime, and those in the bottom are used at finalization.

We take the average execution time after 100 executions

of micro-benchmark programs.

Since the top operations are used to create a shared

memory pool, the execution time for handling large

memory is important. Note that creating a 64-megabyte

file is very expensive compared to System V shared

memory and anonymous memory. The main difference

between file mapping and the others is the time of actual

memory allocation. In the case of file mapping, physical

pages are allocated at the initialization step in the form of

buffer cache or page cache. However, the other methods

delay the page allocation until a page is actually

referenced at runtime.

Since the page size of both operating systems is 4

kilobytes, the costs for the operations handling 4

kilobytes memory are important at runtime. The cost of

memcpy() operation for the mapped file is lower than that

for the other methods. The shorter elapsed time mainly

stems from the fact that the other methods experience

additional memory allocation overhead. However, the

results with 64-megabyte memory are different. For file

mapping on the IBM SP machine, the copy operation

suffers from long latency because of buffer cache

flushing overhead.

To understand how these basic operations affect the

system actually at runtime, we analyze the page fetch

latency. Figure 6 shows the factors in fetching a page

from a remote node on a read fault on two dual-Pentium

III 600 MHz nodes. To avoid caching effect, we allocate

Linux

Pentium III 600Mhz

IBM SP

POWER3 375Mhz

Operations 4 KB 64 MB 4 KB 64 MB

mmap()-file mapping 5.0 35.9 21.2 88.9

mmap()-anonymous memory 6.5 43.9 19.4 82.7

shmget() 7.2 54.7 10.4 57.0

shmat() 4.9 31.4 6.7 25.4

mdup() 316.6 1720.7 N/A N/A

fork() 94.0 17348.8 2998.7 5777.1

write() 43.6 849617.2 47.6 865767.7

mprotect()-file mapping 3.4 37.5 10.9 40074.4

mprotect()-anonymous memory 2.9 33.7 9.4 20.7

mprotect()-System V shared memory 4.4 34.1 N/A N/A

memcpy()-file mapping 5.0 472543.6 16.2 1371498.1

memcpy()-anonymous memory 7.8 492053.5 32.6 659901.3

memcpy()-System V shared memory 7.9 530368.3 27.1 499294.0

SIGSEGV handler 9.8 10.2

munmap()-file mapping 5.7 17117.9 19.1 108993.7

munmap()-anonymous memory 10.2 46934.5 27.1 174688.1

shmdt() 28.0 14528.1 6.0 30.2

shmctrl() 8.6 30821.6 16.8 110888.6

Table 1. Costs of basic operations (us)

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

6

large shared memory and measure the page fetch latency

changing the accessing points in the shared memory area.

Executing the SIGSEGV handler (Fault handler call) and

sending a page request to the home node (Request

transfer) are independent of the methods. In the case of

protocol overhead, the fork() method experiences about

twice longer latency than the others due to inter-process

communication overhead between the parent and the

child processes. The page preparation and page transfer

factors are dependent on the methods. However, as shown

in Table 1, all the methods have comparable performance

of the mprotect() and the memcpy() system calls with 4

kilobyte page. Figure 6 shows the similar result that these

two factors little influence on the total page fetch latency

regardless of the methods.

0

50

100

150

200

250

300

File mapping Shared segment mdup() Process creation

L
at

en
cy

 (
u

s)

Fault handler call Protocol overhead Request transfer Page preparation Page transfer

Figure 6. Page fetch latency on two Pentium III 600Mhz

nodes (us)

5.2. Application performance

We compare the performance of four methods by

measuring the execution time of the NPB CG kernel [11]

and two real applications [12,13]. We ported the Fortran

programs to the C versions. We take the average

execution time after 10 executions of the programs. Only

the results on the Linux cluster are presented because the

System V shared memory method and the mdup() system

call cannot be implemented in the SP system and the file

mapping method reveals extremely long execution time

due to the high memory copy overhead in a shared

working environment. We use the vmstat command to

monitor the system dynamics.

The characteristics of the programs and the initialization

costs of the methods are shown in Table 2 and Table 3,

respectively. The CG and the Helmholtz programs have

large shared memory while the MD program has small

one. As shown in Table 1, the initialization cost of the file

mapping method with large shared memory is very

expensive. In case an application has relatively short

execution time, this high initialization cost can be critical

to overall performance. However, applications with small

shared memory are little influenced by the initialization

cost regardless of methods.

One fundamental question about the atomic page update

problem is whether it is serious in real applications.

Figure 7 shows the ratio of the number of faults in the

racing condition to the number of total read faults. It

demonstrates that the atomic page problem is common

and it is dependent on the computing pattern, not on the

amount of shared memory.

14.6

0

80.8

7.8

0

84.5

5.3
0

67.5

0

10

20

30

40

50

60

70

80

90

C
G

H
el

m
h

o
lt

z

M
D

C
G

H
el

m
h

o
lt

z

M
D

C
G

H
el

m
h

o
lt

z

M
D

2 nodes 4 nodes 8 nodes

R
at

io
 (

%
)

Figure 7. Ratio of the number of racing faults to the

number of read faults

Application Input size Declared shared memory (MB)

CG A-class 64

Helmholtz 1000 x 1000 matrix 32

MD 1000 iterations 1

Table 2. Application characteristics

Application File mapping System V shared memory mdup() fork()

CG 0.891 0.002 0.002 0.001

Helmholtz 0.446 0.001 0.002 0.002

MD 0.015 0.001 0.002 0.001

Table 3. Initialization costs on a dual-Pentium III 600 MHz node (s)

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

7

Figure 8 shows the execution time of the CG kernel of

A class varying the number of nodes. With respect to the

overall execution time, file mapping shows the worst

performance though the performance difference is not

huge. To understand the performance of file mapping, we

monitor the number of block transfers. At the

initialization step, over fifteen thousand blocks are read

from disk and over one hundred thousand blocks are

written to disk. However, only about one hundred blocks

are written to disk at runtime. Therefore, the disk-write

penalty affects the system severely at the initialization

step but little at runtime. This phenomenon occurs

consistently regardless of the number of nodes. As the

portion of CPU resource assigned to communication

increases with the number of nodes, the performance with

8 nodes becomes worse than with 4 nodes.

In the case of MD, the size of shared memory is only

about 1 megabyte and the initialization cost does not

affect the overall performance severely. The net execution

time of file mapping is a few seconds longer than the

others but it is hardly noticeable in Figure 9. Meanwhile,

Helmholtz requires 32 megabytes shared memory but the

initialization cost is amortized over the computation. One

interesting result in Figure 10 is that the process creation

method achieves the best performance. In fact, the

number of context switchings of the process creation

method is twice of the number of the others. However,

other system dynamics overwhelm the context-switching

overhead.

6. Conclusions

In this paper, we presented four methods to solve the

atomic page update problem and studied their

characteristics extensively. Experiments on a Linux based

cluster and on an IBM SP2 machine showed that the three

proposed methods overcome the drawbacks of the file

mapping method such as high initialization cost and

buffer cache flushing overhead. In particular, the method

using a fork() system call is portable and preserves the

whole address space to the application even though the

others can use only the half of the virtual address space.

The System V shared memory method shows low

initialization cost and runtime overhead, and the new

mdup() system call method has the least coding overhead

in the application code. Not all the methods can be

implemented on a given SMP cluster system due to the

limitations of the operating system as observed in the

IBM SP System. The methods proposed for thread-safe

memory management will allow us to port the ParADE

environment to various systems.

7. Acknowledgements

This work was supported by National Research

Laboratory Program (No. M1-0104-00-0015) and Brain

Korea 21 Project. The ICT at Seoul National University

provides research facilities for this study.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

m
m

ap

sh
m

at

m
d

u
p

fo
rk

m
m

ap

sh
m

at

m
d

u
p

fo
rk

m
m

ap

sh
m

at

m
d

u
p

fo
rk

m
m

ap

sh
m

at

m
d

u
p

fo
rk

1 node 2 nodes 4 nodes 8 nodes

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Body

Initialization

Figure 8. Execution time of CG of A class using two

processors

0

50

100

150

200

250

300

m
m

ap

sh
m

at

m
d
u
p

fo
rk

m
m

ap

sh
m

at

m
d
u
p

fo
rk

m
m

ap

sh
m

at

m
d
u
p

fo
rk

m
m

ap

sh
m

at

m
d
u
p

fo
rk

1 node 2 nodes 4 nodes 8 nodes

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Body

Initialization

Figure 9. Execution time of MD using two processors

0

20

40

60

80

100

120

140

160

m
m

ap

sh
m

at

m
d
u
p

fo
rk

m
m

ap

sh
m

at

m
d
u
p

fo
rk

m
m

ap

sh
m

at

m
d
u
p

fo
rk

m
m

ap

sh
m

at

m
d
u
p

fo
rk

1 node 2 nodes 4 nodes 8 nodes

E
x
ec

u
ti

o
n
 T

im
e

(s
)

Body

Initialization

Figure 10. Execution time of Helmholtz using two

processors

8. References

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

8

[1] OpenMP C and C++ Application Programming

Interface, Version 1.0, http://www.openmp.org, Oct. 1998.

[2] F. Mueller. ”Distributed Shared-Memory Threads:

DSM-Threads”. Workshop on RunTime systems for

Parallel Programming, pp. 31–40, Apr. 1997.

[3] M. Pizka and C. Rehn, ”Murks-A POSIX Threads

Based DSM System”, In the proceedings of the

international conference on Parallel and Distributed

Computing Systems, 2001.

[4] Y. Charlie Hu, Honghui Lu, Alan L. Cox, and Willy

Zwaenepoel, ”OpenMP for Networks of SMPs,” Journal

of Parallel and Distributed Computing, vol. 60, no.12,

Dec. 2000, pp. 1512-1530.

[5] Evan Speight and John K. Bennett, ”Brazos: A Third

Generation DSM System”, USENIXWindows NT

Workshop, Aug. 1997, pp. 95-106.

[6] Sumit Roy and Vipin Chaudhary, ”Strings: A High-

Performance Distributed Shared Memory for Symmetric

Multiprocessor Clusters”, International Symposium on

High Performance Distributed Computing, July 1998, pp.

90-97.

[7] Yang-Suk Kee, Jin-Soo Kim, Soonhoi Ha, “ParADE:

An OpenMP Programming Environment for SMP Cluster

Systems”, Proceedings of ACM/IEEE Supercomputing

(SC'03), Nov. 2003

[8] Message-passing Interface Forum, "MPI: A message-

passing interface standard," International Journal of

Supercomputer Applications and High Performance

Computing, 8(3/4), pp. 159-416, 1994.

[9] Dave Dunning, Greg Regnier, Gary McAlpine, Don

Cameron, Bill Shubert, Frank Berry, Anne Marie Merritt,

Ed Gronke, Chris Dodd, ”The Virtual Interface

Architecture,” IEEE Micro, vol. 18, no. 2, Mar./Apr.

1998, pp. 66-76.

[10]L. Iftode. ”Home-based Shared Virtual Memory”.

(PhD thesis), 1998.

[11]David Bailey, Tim Harris, William Saphir, Rob van

der Wijngaart, Alex Woo, and Maurice Yarrow, ”The

NAS Parallel Benchmarks”, Report NAS-95-020, 1995,

http://www.nas.nasa.gov/Software/NPB.

[12] Joseph Robicheaux,

http://www.openmp.org/samples/jacobi.f, 1998.

[13]Bill Magro, Kuck, and Associates,

http://www.openmp.org/samples/md.f, 1998.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on March 5, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

