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Abstract

When software distributed shared memory (SDSM) is 

extended to utilize threads in support of OpenMP, a 

challenge is how to preserve memory consistency in a 

thread-safe way, which is known as “atomic page update 

problem”. In this paper, we show that this problem can 

be solved by creating two independent access paths to a 

physical page and by assigning different access 

permissions to them. Especially, we discuss three new 

methods using System V shared memory IPC, a new 

mdup() system call, and a fork() system call as well as a  

known method using file mapping. The main contribution 

of this paper is to introduce various solutions to the 

atomic page update problem and to compare their 

characteristics extensively. Experiments carried out on a 

Linux-based cluster of SMPs and an IBM SP Nighthawk 

system show that the proposed methods achieve better 

performance than the file mapping method and the 

method using the process creation mechanism is the best 

candidate for the IBM SP system. 

1. Introduction

OpenMP [1] is becoming the de facto standard for shared-

address-space programming model. In addition to 

programming easiness inherent in shared-address-space 

model, OpenMP anticipates high performance in 

scientific applications. Even though the general target 

architecture of OpenMP is a single multiprocessor node, 

this model can be applicable to a cluster of 

multiprocessors. An intuitive way to extend OpenMP to 

cluster of multiprocessors is to use software distributed 

shared memory (SDSM), which emulates a shared 

address space over distributed memories. 

Many SDSM systems are implemented at user-level by 

using the page fault handling mechanisms, assuming 

uniprocessor nodes. This kind of SDSM system detects an 

unprivileged access to a shared page by catching a 

SIGSEGV signal and a user-defined signal handler 

updates the invalid page with a valid one. From the 

application point of view, this page-update is atomic since 

program control is returned to the application only after 

the signal handler completes the service on the fault. 

However, these single-threaded systems are inadequate 

to the thread-based parallelism of OpenMP. The 

conventional fault-handling process will fail in 

multithreaded environments because other threads may 

try to access the same page during the update period. The 

SDSM system faces a dilemma when multiple threads 

compete to access an invalid page within a short interval. 

On the first access to an invalid page, the system should 

set the page writable to replace with a valid one. 

Unfortunately, this change also allows other application 

threads to access the same page freely. This phenomenon 

is known as atomic page update and change right problem 

[2] or mmap() race condition [3]. For short, we call this 

the atomic page update problem.

A known solution to this problem adopted by major 

multithreaded SDSM systems like TreadMarks [4], 

Brazos [5], and Strings [6] is to map a file to two different 

virtual addresses. Even though the systems using file 

mapping achieve fair good performance on dedicated 

systems, file mapping is not always the best solution. 

Operating system and working environment severely 

affect the performance of these systems. Moreover, file 

mapping has high initialization cost, experiences buffer 
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caches flushing overhead, and reduces the available 

address space because SDSM and application partition 

the address space. 

We note the cause of this problem is that SDSM and 

application share the same address space. When SDSM 

changes a page writable, the page is also accessible to the 

application. A general solution to this problem is to 

separate the application address space from the system 

address space for the same physical memory, and to 

assign different access permission to each address space. 

Then, the system can guarantee the atomic page update by 

changing the access permission of a virtual page in the 

application address space only after it completes the page 

update through the system address space. 

In this paper, we present three new solutions using 

System V shared memory IPC, a new mdup() system call, 

and a fork() system call as well as a known solution using 

file mapping. The main contribution of this paper is to 

present various solutions to the atomic page update 

problem and to compare their characteristics extensively. 

However, it is observed that it is not always possible to 

implement all of them in a given SMP cluster system due 

to the various limitations of a given operating system. 

Experiments on a Linux-based cluster and on an IBM SP2 

machine show that the proposed methods overcome the 

drawbacks of the file mapping method such as high 

initialization cost and buffer cache flushing overhead. 

Moreover, the method using a fork() system call exploits 

whole the address space and is a robust method for 

dynamic environments. 

This paper is organized as follows. In section 2, we 

discuss the atomic page update problem in detail. We 

briefly introduce our OpenMP-aware SDSM system in 

section 3 and present four methods to solve the problem 

in section 4. We investigate four methods by using micro-

benchmarks and give experimental results with several 

applications in section 5. Section 6 concludes the paper. 

2. The Atomic Page Update Problem 

A typical page fault handling process of conventional 

page-based SDSM is illustrated in Figure 1. In general, 

this kind of SDSM uses SIGIO and SIGSEGV signals to 

implement memory consistency protocols. When the 

application (T2) accesses the invalid page denoted by A, 

the operating system generates a SIGSEGV signal and 

hands over program control to SDSM by invoking a user-

defined SIGSEGV handler. Inside the handler, the system 

allocates a writable page by dynamically creating an 

anonymous page or by retrieving a page from the shared 

memory pool prepared in the initialization step. Then, the 

system requests the most up-to-date page from a remote 

node and waits for the page. When the page request 

arrives at the remote node, the remote operating system 

generates a SIGIO signal and a user-defined SIGIO 

handler serves the request. After that, the local SDSM 

replaces the invalid page with the new one and sets the 

page readable by using an mprotect() system call. 

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

Request

Page

SIGSEGV Handler
SIGIO Handler

mmap(A, PROT_WRITE)

Read(A) : garbage

T2T1 T1

Process 1 Process 2

Figure 1. A typical procedure of page fault handling in 

a conventional page-based SDSM system 

In a single-threaded system, this page update is atomic 

with respect to the application since the program control 

is returned to the application only after the system 

completes in replacing the invalid page with a valid one. 

Atomicity, however, is not guaranteed when multiple 

threads compete to access a page. Figure 1 illustrates the 

situation where T1 accesses the same page while T2 is 

waiting for the up-to-date page after it has set the page 

writable. T1 continues its computation with garbage data 

without raising any protection fault. This depicts the 

atomic page update problem. 

A known solution to this problem is to map a file to two 

virtual addresses and to create two independent access 

paths to the file: one for application and the other for 

SDSM. The system can update the file through the virtual 

address mapped to it while the access from an application 

thread is controlled by a memory consistency protocol. 

From the viewpoint of operating system, file mapping is 

to attach physical pages, used as cache for a file, to the 

process's virtual address space. When a file is mapped to 

two virtual addresses, each physical page is pointed by 

two page table entries and different access permission can 

be assigned to different virtual addresses. In consequence, 

the SDSM system guarantees the atomic page update with 

respect to all application threads by changing the access 

permission of the virtual pages mapped for application 

only after it updates the physical pages through the virtual 

address mapped for system. 

A scenario of thread-safe page update in data race by 

separating the access paths is illustrated in Figure 2. 

When an application thread tries to access the invalid 

page denoted by A, SDSM updates the invalid page with 

the up-to-date page through the system address denoted 

by S. After the page update is completed, the system 

changes the page A in the application address space 
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readable and hands over program control to the 

application thread again. If another threads attempt to 

access the same page during the update period, they see 

the page is still invalid and are blocked inside the 

SIGSEGV handler. When the page update is completed, 

the signal handler wakes up all the threads waiting for the 

page.

Read(A)

SIGSEGV

mprotect(A, PROT_READ)

SIGSEGV Handler

Read(A)

T2T1

mprotect(S, PROT_WRITE)

Wait
SIGSEGV

Wakeup

Process 1 Process 2

T1

Request

Page

Tc

Figure 2. A scenario of the thread-safe page update in 

data race 

File mapping, however, is not the only way to create 

multiple access paths to a physical page. We seek for 

other methods to achieve the same goal without 

performance degradation. In this paper, we propose three 

more methods and study their characteristics. 

3. The ParADE System 

Communication protocols

(VIA, TCP/IP)

Communication protocols

(VIA, TCP/IP)

OpenMP applicationsOpenMP applications
OpenMP

translator

Runtime

system

Kernel

Message passing library

(MPI)

System calls

(Page fault and protection)

OS kernel

Multithreaded DSM

(POSIX threads)

ParADE APIs

Figure 3. Architecture of the ParADE system 

Our SDSM is a component of an OpenMP-based parallel 

programming environment for SMP clusters called 

ParADE [7]. Figure 3 depicts the architecture of the 

ParADE system. Two key components of ParADE are the 

ParADE runtime system and the OpenMP translator. A 

multi-threaded SDSM and a message-passing library 

compose the runtime system. To provide thread-safe 

communication, we implemented a subset of MPI [8] 

library for Virtual Interface Architecture (VIA) [9]. We 

also developed our own SDSM system, which provides a 

home-based lazy release consistency (HLRC) [10] with 

migratory home to exploit data locality. Meanwhile, the 

OpenMP translator converts an OpenMP program to a 

multi-threaded program with hybrid communication 

interfaces by using the ParADE runtime library, and 

enables the program to be executable on the SMP cluster. 

For more information about ParADE, refer to [7]. 

4. Four Atomic Page Update Methods 

In this section, we present four methods to provide 

multiple access paths to a physical page: file mapping, 

System V shared memory IPC, a new mdup() system call, 

and a fork() system call. All the methods except the 

mdup() method are implemented at user-level. 

4.1. File mapping 

An mmap() system call enables a process to access a file 

through memory operations by mapping the file to the 

process address space. Moreover, the system call with the 

MAP_SHARED flag enables a file to be mapped to a 

process multiple times. Figure 4 illustrates how to make 

two virtual addresses refer to the same file by mapping a 

file multiple times. 

Application View System View

A = mmap(0, Size, 

PROT_READ|PROT_WRITE, 

MAP_SHARED|MAP_FILE,

fd, 0);
mprotect(A, Size, PROT_NONE)

S = mmap(0, Size, 

PROT_READ|PROT_WRITE, 

MAP_SHARED|MAP_FILE,

fd, 0);

fd = open(FileName, O_RDWR|O_CREAT, S_IRWXU)

write(fd, zero, Size)

Protected Address Space Freely Accessible Address Space

File

Figure 4. Mapping a file to two virtual addresses 

File mapping is very portable and the performance of 

SDSM with this method is fairly good. Nevertheless, this 

method has several drawbacks. First, the size of the 

shared address space should be smaller than the size of 

the file. When the area beyond the file size is accessed, 

the operating system signals an error. To avoid this 

unexpected error, the SDSM system should create a large 

regular file enough to contain the shared pages or it 

should dynamically enlarge the file size by explicitly 

using the write() or ftruncate() operations. However, this 

initialization cost is not negligible. 
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Another drawback is unnecessary disk writes at runtime. 

Although FreeBSD supports the MAP_NOSYNC flag to 

avoid dirty pages to be flushed to disk at runtime, many 

operating systems flush buffer caches to disk regularly, or 

explicitly when the munmap() system call is invoked to 

eliminate the mapping. Disk write is a costly operation so 

that it may damage performance significantly. In 

consequence, the performance of a system based on the 

file mapping method depends on the system buffer cache 

(page cache) size and the buffer cache management 

scheme. Experiments on IBM SP Night Hawk system 

with an AIX 4.3.3 PSSP 3.2 version revealed significant 

performance degradation when the machine is not wholly 

dedicated to SDSM. 

4.2. System V shared memory IPC 

Another method to map a physical page to different 

virtual addresses is to use System V shared memory IPC. 

An shmget() system call enables a process to create a 

shared memory object in the kernel and the shmat() 

system call enables the process to attach the object to its 

address space. In addition, shown in Figure 5, a process 

can attach the shared memory object to its address space 

more than once and a different virtual address is assigned 

to each attachment. 

Segment Segment Segment

Application View System View

A = shmat(ID, 0, 0) S = shmat(ID,0,0)

ID = shmget(IPC_PRIVATE, Size, IPC_CREAT|IPC_EXCL|SHM_R|SHM_W)

mprotect(A, Size, PROT_NONE)

Freely Accessible Address SpaceProtected Address Space

Figure 5. Attaching shared memory segments to two 

virtual addresses 

Compared to file mapping, creating shared memory 

segments is very cheap. Nevertheless, this mechanism has 

several restrictions. In some operating systems, the size 

and the number of shared memory segments are limited. 

Solaris systems determine the size and the number of 

segments at boot time by checking the shmsys field of the 

/etc/system file. In the case of Linux systems, the 

maximum size of a segment is 32 megabytes and the 

system-wide maximum number of segments is limited to 

128. Some operating systems just allow less than 10 

segments whose size should be smaller than tens of 

kilobytes. As a result, they fail to allocate large shared 

memory with this method. Moreover, observed in the 

IBM SP Night Hawk system, the mprotect() system may 

not be used to change the access permission of shared 

memory segments allocated by System V shared memory 

IPC.

Another problem is that a group of segments should be 

mapped to a continuous address space. When one forces 

to attach a shared memory segment to a user-assigned 

address, the attachment will fail if the address is not a 

predefined address for segment low boundaries. 

Therefore, we should allocate a segment according to the 

low boundary address and attach it to a continuous 

address space. The last consideration is memory leak. 

Shared memory segments are not released automatically 

when a program terminates. SDSM should make sure that 

shared memory segments are released at termination, 

even at abnormal termination. 

4.3. mdup() system call 

We implement a new system call, mdup(), to easily 

duplicate the per-process page table. The prototype of 

mdup() is as follows. 

void* mdup(void* addr, int size),

where addr is the virtual address of the anonymous 

memory region created by the mmap() system call with 

the MAP_ANONYMOUS and MAP_SHARED  flags 

and size is the size of the region. 

The basic mechanism of mdup() is to allocate new page 

table entries for the detour and to copy the page table 

entries of the anonymous memory to new ones. The 

reasons why we use anonymous memory are following: 

(1) no initialization step is required and (2) there is no 

size limit. Even though kernel modification damages 

portability of SDSM, the mdup() system call is easy to 

use and overcomes many drawbacks of the previous 

methods. 

4.4. fork() system call 

The total amount of physical memory in a cluster system 

increases with the size of cluster. Nevertheless, the size of 

the virtual address space is fixed and puts restriction on 

the problem size of applications. The previous methods 

reduce the virtual address space available for applications 

because the application and the system partition the 

address space. Therefore, we propose another method to 

support thread-safe memory management without 

sacrificing the address space. 

When a process forks a child process, the child process 

inherits the execution image of the parent process. The 

parent process creates shared memory regions and forks a 

child process. Then, they have independent access paths 

even though they use the same virtual address to access 

the same physical page. We let the parent process execute 

applications and the child process perform memory 

consistency mechanisms. Hence, the SDSM system can 

successfully update the shared memory region in a thread-

safe way through the child process's address space. 
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However, this method experiences additional latency 

due to communication and synchronization overheads 

between the parent and the child processes. Nonetheless, 

this method is very portable and it survives even under a 

harsh working environment like IBM SP Night Hawk. 

5. Experiments

We have implemented four methods in the ParADE 

runtime system. We first measured the costs of basic 

operations and compared the performance of the methods 

with several applications. Our experiments were 

performed on an IBM SP Night Hawk system and a 

Linux cluster. The IBM SP system consists of nine 

375Mhz POWER3 SMP nodes with sixteen processors 

and 16GB main memory per node. The Linux cluster 

consists of four dual-Pentium III 550Mhz SMP nodes and 

four dual-Pentium III 600Mhz SMP nodes. Each node has 

512 MB main memory and it is connected to a Giganet's 

cLAN VIA switch. Redhat 8.0 with a kernel of 2.4.18-14 

SMP version runs on each node. We used a GNU gcc 

compiler with the -O2 option for Linux cluster and an xlc 

complier with the -O2 -qarch=pwr3 -qtune=pwr3 -

qmaxmem=-1 -qstrict options for the IBM SP system. 

5.1. Costs of basic operations 

Table 1 shows the costs of the basic operations used by 

four methods. The operations in the top group are used in 

the initialization step, those in the middle are used at 

runtime, and those in the bottom are used at finalization. 

We take the average execution time after 100 executions 

of micro-benchmark programs. 

Since the top operations are used to create a shared 

memory pool, the execution time for handling large 

memory is important. Note that creating a 64-megabyte 

file is very expensive compared to System V shared 

memory and anonymous memory. The main difference 

between file mapping and the others is the time of actual 

memory allocation. In the case of file mapping, physical 

pages are allocated at the initialization step in the form of 

buffer cache or page cache. However, the other methods 

delay the page allocation until a page is actually 

referenced at runtime. 

Since the page size of both operating systems is 4 

kilobytes, the costs for the operations handling 4 

kilobytes memory are important at runtime. The cost of 

memcpy() operation for the mapped file is lower than that 

for the other methods. The shorter elapsed time mainly 

stems from the fact that the other methods experience 

additional memory allocation overhead.  However, the 

results with 64-megabyte memory are different. For file 

mapping on the IBM SP machine, the copy operation 

suffers from long latency because of buffer cache 

flushing overhead. 

To understand how these basic operations affect the 

system actually at runtime, we analyze the page fetch 

latency. Figure 6 shows the factors in fetching a page 

from a remote node on a read fault on two dual-Pentium 

III 600 MHz nodes. To avoid caching effect, we allocate 

Linux 

Pentium III 600Mhz 

IBM SP 

POWER3 375Mhz 

Operations 4 KB 64 MB 4 KB 64 MB 

mmap()-file mapping 5.0 35.9 21.2 88.9

mmap()-anonymous memory 6.5 43.9 19.4 82.7

shmget() 7.2 54.7 10.4 57.0

shmat() 4.9 31.4 6.7 25.4

mdup() 316.6 1720.7 N/A N/A

fork() 94.0 17348.8 2998.7 5777.1

write() 43.6 849617.2 47.6 865767.7

mprotect()-file mapping 3.4 37.5 10.9 40074.4

mprotect()-anonymous memory 2.9 33.7 9.4 20.7

mprotect()-System V shared memory 4.4 34.1 N/A N/A

memcpy()-file mapping 5.0 472543.6 16.2 1371498.1

memcpy()-anonymous memory 7.8 492053.5 32.6 659901.3

memcpy()-System V shared memory 7.9 530368.3 27.1 499294.0

SIGSEGV handler 9.8 10.2 

munmap()-file mapping 5.7 17117.9 19.1 108993.7

munmap()-anonymous memory 10.2 46934.5 27.1 174688.1

shmdt() 28.0 14528.1 6.0 30.2

shmctrl() 8.6 30821.6 16.8 110888.6

Table 1. Costs of basic operations (us) 
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large shared memory and measure the page fetch latency 

changing the accessing points in the shared memory area. 

Executing the SIGSEGV handler (Fault handler call) and 

sending a page request to the home node (Request 

transfer) are independent of the methods. In the case of 

protocol overhead, the fork() method experiences about 

twice longer latency than the others due to inter-process 

communication overhead between the parent and the 

child processes. The page preparation and page transfer 

factors are dependent on the methods. However, as shown 

in Table 1, all the methods have comparable performance 

of the mprotect() and the memcpy() system calls with 4 

kilobyte page. Figure 6 shows the similar result that these 

two factors little influence on the total page fetch latency 

regardless of the methods. 
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Figure 6. Page fetch latency on two Pentium III 600Mhz 

nodes (us) 

5.2. Application performance 

We compare the performance of four methods by 

measuring the execution time of the NPB CG kernel [11] 

and two real applications [12,13]. We ported the Fortran 

programs to the C versions. We take the average 

execution time after 10 executions of the programs. Only 

the results on the Linux cluster are presented because the 

System V shared memory method and the mdup() system 

call cannot be implemented in the SP system and the file 

mapping method reveals extremely long execution time 

due to the high memory copy overhead in a shared 

working environment. We use the vmstat command to 

monitor the system dynamics. 

The characteristics of the programs and the initialization 

costs of the methods are shown in Table 2 and Table 3, 

respectively. The CG and the Helmholtz programs have 

large shared memory while the MD program has small 

one. As shown in Table 1, the initialization cost of the file 

mapping method with large shared memory is very 

expensive. In case an application has relatively short 

execution time, this high initialization cost can be critical 

to overall performance. However, applications with small 

shared memory are little influenced by the initialization 

cost regardless of methods. 

One fundamental question about the atomic page update 

problem is whether it is serious in real applications. 

Figure 7 shows the ratio of the number of faults in the 

racing condition to the number of total read faults. It 

demonstrates that the atomic page problem is common 

and it is dependent on the computing pattern, not on the 

amount of shared memory. 
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Figure 7. Ratio of the number of racing faults to the 

number of read faults 

Application Input size Declared shared memory (MB) 

CG A-class 64 

Helmholtz 1000 x 1000 matrix 32 

MD 1000 iterations 1 

Table 2. Application characteristics 

Application File mapping System V shared memory mdup() fork() 

CG 0.891 0.002 0.002 0.001 

Helmholtz 0.446 0.001 0.002 0.002 

MD 0.015 0.001 0.002 0.001 

Table 3. Initialization costs on a dual-Pentium III 600 MHz node (s) 
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Figure 8 shows the execution time of the CG kernel of 

A class varying the number of nodes. With respect to the 

overall execution time, file mapping shows the worst 

performance though the performance difference is not 

huge. To understand the performance of file mapping, we 

monitor the number of block transfers. At the 

initialization step, over fifteen thousand blocks are read 

from disk and over one hundred thousand blocks are 

written to disk. However, only about one hundred blocks 

are written to disk at runtime. Therefore, the disk-write 

penalty affects the system severely at the initialization 

step but little at runtime. This phenomenon occurs 

consistently regardless of the number of nodes. As the 

portion of CPU resource assigned to communication 

increases with the number of nodes, the performance with 

8 nodes becomes worse than with 4 nodes.  

In the case of MD, the size of shared memory is only 

about 1 megabyte and the initialization cost does not 

affect the overall performance severely. The net execution 

time of file mapping is a few seconds longer than the 

others but it is hardly noticeable in Figure 9. Meanwhile, 

Helmholtz requires 32 megabytes shared memory but the 

initialization cost is amortized over the computation. One 

interesting result in Figure 10 is that the process creation 

method achieves the best performance. In fact, the 

number of context switchings of the process creation 

method is twice of the number of the others. However, 

other system dynamics overwhelm the context-switching 

overhead.

6. Conclusions

In this paper, we presented four methods to solve the 

atomic page update problem and studied their 

characteristics extensively. Experiments on a Linux based 

cluster and on an IBM SP2 machine showed that the three 

proposed methods overcome the drawbacks of the file 

mapping method such as high initialization cost and 

buffer cache flushing overhead. In particular, the method 

using a fork() system call is portable and preserves the 

whole address space to the application even though the 

others can use only the half of the virtual address space. 

The System V shared memory method shows low 

initialization cost and runtime overhead, and the new 

mdup() system call method has the least coding overhead 

in the application code. Not all the methods can be 

implemented on a given SMP cluster system due to the 

limitations of the operating system as observed in the 

IBM SP System. The methods proposed for thread-safe 

memory management will allow us to port the ParADE 

environment to various systems. 
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Figure 9. Execution time of MD using two processors 
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Figure 10. Execution time of Helmholtz using two 

processors 
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