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Abstract- Sensor networks present the opportunity 
to accurately localize phenomena of interesi. To be able 
to do so however, sensor nodes, need to themselves be 
accurately localized. We present an algorithm to do this 
based on uncontrolled environmental sounds observed 
by each of the sensor nodes. A probabilistic generative 
model is presented and it is shown that the sensor 
node localization problem is equivalent to maximum 
likelihood estimation in the model. Experimental results 
are presented for both simulated sensor nodes and 
Crossbow MICA2 sensor nodes. 

I. INTRODUCTION 

Recent developments in manufacturing tech- 
nology have created a new generation of very 
small computers equipped with one of more 
sensors, limited computational capabilities, and 
wireless radio links. As the cost of manufac- 
turing these so called sensor nodes decreases, 
the possibility of using large numbers of sensor 
nodes in aggregate to form a sensor network has 
become possible. Such networks are essential for 
monitoring large environments unobtrusively and 
at a finer scale than was previously possible. 
Sensor networks can be used in a variety of 
civilian and military contexts, including factory 
automation, inventory management, environmen- 
tal and habitat monitoring, health-care delivery, 
and battlefield awareness. 

Most sensor network algorithms need to h o w  
the physical locations of individual sensor nodes. 
While it is sometimes possible to measure these 
locations by hand, a rich body of sensor network 
localization algorithms 111, [21, [31, [91, [IO], 
[ I l l  has emerged to allow the sensor network 
to do this task autonomously. These techniques 
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typically however take an active approach to lo- 
calization. Some approaches place special beacon 
nodes with known location into the environment 
while others require the sensor nodes to beep to 
one another. 

We offer a passive solution to the sensor net- 
work localization problem. Our algorithm allows 
sensor nodes to localize themselves from sounds 
naturally occurring in their environment. These 
sounds can be anything that has clear onsets, 
e.g. birds chirping. Our algorithm works despite 
knowing neither where nor when the external 
events generating these sounds take place. This 
passive approach expends less sensor node en- 
ergy, does not require infrastructure outlay, and 
makes the sensor network less detectable than 
when employing active methods. Moreover, it 
provides results almost on par with beacon- 
based localization methods [3], [9], [lo], [ I l l  
and more robust than other passive localization 
techniques [I], [2] .  

Our approach structures the relationship be- 
tween the sensor node locations, the locations and 
times of the external events generating the sounds 
heard by the sensor nodes, and the recorded 
times as a Bayesian network. We show how the 
localization problem reduces to maximum like- 
lihood estimation in the Bayesian network and 
explain how we do this via gradient descent in an 
expression monotonic to the negative likelihood. 

We synchronize the clocks of the sensor nodes 
with respect to one another with the Reference 
Broadcasts (RBS) protocol [4]. RBS is capable 
of synchronizing sensor node clocks to within 
microseconds of one another, which allows us to 
assume that a time recorded at one sensor node 
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is directly comparable to a time recorded at .an- 
other. We also assume that sounds are sufficiently 
well dispersed so as to prevent data association 
ambiguities between events. 

11. PROBLEM DEFINITION 
A. Overview 

Let the sensor network consist of N sensor 
nodes at locations S = {SI.. . SN}. Let S: refer 
to the x-coordinate of the location of the sensor 
node i and let St refer to the y-coordinate. We 
assume 2-D locations but the same technique will 
work in 3-D as well. These locations are not 
known to us. 

Second, let there be A4 sound-generating 
events at locations E = {El . . . EM}. Moreover, 
let E: and E," represent the respective coordi- 
nates. These locations are not known to us. 

Third, let the times of the sound-generating 
events be T = (2'1. . . TM} .  These times are not 
known to us. 

Fourth, let there exist up to A4 . N variables 
km that specify the time recorded at sensor node 
S, for sound E,. We will revisit these variables 
in Section IIl when we structure the relations 
between them as a Bayesian network. 

Given the sensor measurements R, we seek the 
sensor node locations S. 

B. Sensor Model 
We assume that R," is distributed as follows: 

d(Sm, E,) = J(S& - E p  + (5% - E:)2 
where s is the speed of sound in free space, U is 
the standard deviation of the error in recording 
times, and N ( p ,  U) is a Normal distribution with 
mean p and standard deviation U. 

111. OUR APPROACH 
In this section, we encapsulate the relations 

between variables as a Bayesian network and 
show how the sensor node localization problem 
reduces to that of maximum likelihood estimation 
in this Bayesian network. We start with the 
formal definition of our Bayesian network, give ! 

Fig. 1. Bayesian Network with Z sounds and 2 sensor nodes 

conditions for when an unique solution exists, 
compute the likelihood, and show how gradient 
descent is used to perform likelihood maximiza- 
tion. 

A. Bayesian Network 
A Bayesian network [7] is characterized by its 

variables and the prior and conditional probabili- 
ties relating the variables to one another. We start 
with the variables and what they represent, then 
move on to the prior and conditional probabili- 
ties. Figure 1 shows a Bayesian network for the 
case of two sounds and two sensor nodes. Each 
of these variables are identical to the variables 
discussed in Section 11-A. 

In the Bayesian network, there will exist a 
variable of the form R," whenever sensor node 
n hears sound m. These recorded times are 
stochastically determined by sensor node lo- 
cations, sound locations, and sound times as 
presented in Section 11-B. Thus the conditional 
probability is: 

P(R,"Isn, E m , T m )  = (2) 

). 
1 -(T3 + d(S1, Ej)/S - Rj)Z __ .  

2. U2 
e 4  

&U 

This equation is simply Equation 1 in an 
expanded form. 

B. Existence of an Unique Solution 
Since there is no global reference frame, we 

impose the following arbitrary conditions to reg- 
ularize our solution. S1 is set to be (0,O). Sz 
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is set to lie on the positive x-axis. S, is set 
to lie above the x-axis, i.e. have a positive y- 
coordinate. These conditions serve only to es- 
tablish a reference frame and does not further 
constrain the solution space. This canonical form 
of the solution space is easily adapted if one 
or more sensor nodes have known location with 
respect to a global reference frame. 

It is possible that R does not provide enough 
information to determine S. Sometimes, this lack 
of information is predictable given M ,  N, and P .  
Each variable S, has components SF and S: so 
introduces two unknown variables. Each variable 
Ej does the same and each Tj variable introduces 
one unknown variable. Each variable E:. intro- 
duces one equation. Moreover, when A4 2 2, the 
canonicalization of the solution sets SI to (0,O) 
and constrains LS2 to (x,O), thereby eliminating 
three unknown variables. 

Thus, it is neccessary for: 

P > 2 . M + 3 . N - 3  (3) 
to hold for there to exist an unique solution. In 
situations where the inequality is strict, we have 
an over-constrained set of equations. This infor- 
mation is necessarily not contradictory given the 
nature of the scenario. Even when the inequal- 
ity is satisfied, there exist degenerate situations 
where the information is not sufficient for unique 
localization. For example, the Bayesian network 
may not be connected and this will lead to two 
sets of sensor nodes whose relative positions may 
remain unknown. 

C. Maximum Likelihood Estimation 
Let L(RIS, E, T) be the likelihood of the data 

given the model in the Bayesian network. This 
likelihood is simply the product of each of the 
conditional probabilities. 

Expanding the likelihood, we obtain: 

Since a scalar multiple of the log-likelihood is 
monotonic in the likelihood, we can take the log 
of Equation 5 and multiply by 2 .  U' to obtain: 

Fig. 2. Twenty Sensor Sensor Nodes in Simulation 

+ I 
P 

Fig. 3. Seven Crossbow MICA2 Sensor Sensor N d e s  

We use gradient descent with both line search 
and momentum to maximize 1. Due to the mono- 
tonicity of 1 with the likelihood, this process ef- 
fectively finds the maximum likelihood estimate 
of the sensor node locations given the model 
parameters. 

IV. EXPERIMENTAL RESULTS 
We show in this section some examples of 

the sort of localization results the algorithm pro- 
duces. First, we define the metrics we will use 
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Fig. 4. Effects of Changing Sensor Noise 

to evaluate the quality of our results. Second, 
we present the results of two specific networks. 
Third, we show how the error varies as we 
modify different parameters of the localization 
scenario. 

A. Crossbow MICA2 Sensor Nodes 
The Crossbow MICA2 sensor nodes (see Fig- 

ure 5) have on-board microprocessors and two- 

municate with other MICA2 sensor nodes as 
well as MICAZ-PC conduits. In our experiments, 
these sensor nodes are typically stationary; capa- 
ble of both indoor and outdoor operation; and 
are equipped with a microphone, tone generator, 
light sensor, and thermometer. The simulator em- 
ulates the observed characteristics of these sensor 
nodes. 

I way radios through which they are able to com- 

B. Error Metrics 
I )  Metric I: Scaled Likelihood: We use g. 

s as our first metric. Intuitively, this metric 
measures the standard deviation of the expected 
distances between sounds and sensor nodes sug- 
gested by the data versus the distances stemming 
from the hypothesized solution. 

2)  Metric 2: Actual Error: For our second 
metric, we use the actual standard deviation of 
the predicted sensor node locations from the 
actual sensor node locations, given optimal align- 
ment between the two coordinate frames. 

I 

I 

Fig. 5. Crossbow MICA2 Sensor Node 

C. Specific Networks 
I )  Twenty Sensor Nodes in Simulation: Fig- 

ure 2 shows localization results for a scenario 
with twenty sensor nodes, twenty sounds, and a 
standard deviation in recording error that corre- 
sponds to 10 cm. The predicted error, given by 
Metric 1, is 5.1 cm and the actual error is 2.3 
cm. The circles in the figure represent the true 
sensor node location and the crosses represent 
the predicted location. 

2)  Seven Crossbow MICA2 Sensor Nodes: 
Figure 3 shows localization results using seven 
Crossbow MICA2 sensor nodes and seven 
sounds. The predicted error is 2.7 cm and the 
actual error is 7.4 cm. 

D. Effects of Changing Network Parameters 
In this section, we examine the effect of dif- 

ferent parameters on the localization algorithm. 
I) Effects of Changing Sensor Noise: Figure 4 

shows the effect of varying the standard deviation 
of the recording time to the equivalent of 0 cm to 
20 cm. Twenty sensor nodes and twenty sounds 
are used throughout. We find that both errors rise 
approximately linearly as the noise increases. 

2 )  Number of Sensor Nodes: Figure 6 shows 
the effect of varying the number of sensor nodes 
being localized from four to twenty. Twenty 
acoustic events are used and the standard devi- 
ation in the recording error is set to correspond 
to 10 cm. We find that the algorithm is initially 
overconfident when dealing with less than seven 
sensor nodes. With more than eight sensor nodes, 
the error levels off to approximately 3 cm. 

3) Number of Sounds: Figure 7 shows the 
effect of varying the number of sounds used for 
localization from four to twenty. Twenty sensor 
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Fig. 6. Effects of Changing Number of Sensor Nodes 

nodes are localized and the standard deviation in 
the recording error is set to correspond to 10 cm. 
We find that the error initially drops sharply and 
continues to decrease slowly as the number of 
sounds increases. 

V. PRIOR WORK 

A very popular technique often used outdoors 
is the Global Positioning System (GPS) [5]. It 
offers an inexpensive solution for many appli- 
cations but lacks the relative accuracy generally 
required for sensor network applications. 

Methods based on received signal strength 
(RSS) of radio signals as well as radio connec- 
tivity (e.g. [l], [2]) offer inexpensive passive so- 
lutions for both indoor and outdoor environments 
but are often not robust enough for many sensor 
network applications. 

Another class of localization schemes assume 
the presence of so called beacon nodes that know 
their location with respect to a global reference 
frame [3], [9], [lo]. While these methods are both 
robust and accurate, they require substantial cost 
and effort to set up beacon nodes and measure 
their locations by band. 

It is also possible to use ultrasonic ranging [ 111 
or laser-range finders to perform ranging as an 
input to a localization system. These schemes re- 
quire precise instrumentation or multiple micro- 
phones per sensor node because the sender and 
the receiver need to be precisely oriented to one 

another. The cost of this equipment substantially 
raises the cost of sensor network deployment. 

Ranging in the audible domain [11] offers a 
solution that is both relatively inexpensive and 
reliable. It requires the sensors to beep to one 
another though. This expends both extra energy 
and may cause unwanted disturbance by or de- 
tection of the sensor sensor nodes. 

In terms of algorithms, our problem has strong 
analogues to the statistical problem of multi- 
dimensional scaling. There, dissimilarities be- 
tween points are used to compute a planar em- 
bedding. Indeed, multi-dimensional scaling offers 
a direct solution to localization from ranging 
data but not knowing when the sounds occurred 
preempts its use in this domain. 

The problem also resembles the affine struc- 
ture from motion problem in computer vision 
when the sounds and the sensor nodes are suf- 
ficiently distant. There, corresponding points be- 
tween multiple images are used to recover both 
camera position as well as the 3-D structure of 
a scene. In both cases, we seek to recover the 
rotations and translations of sensors observing 
common phenomena and with this information, 
complete the locations of points in a higher 
dimensional space. 

VI. CONCLUSION 
We have presented herein a localization al- 

gorithm for sensor nodes that uses cheap, com- 
modity hardware and relies only on uncontrolled 
sounds for localization. A probabilistic generative 
model is presented and it is shown how the local- 
ization problem reduces to maximum likelihood 
estimation on this model. Experimental results 
are presented for both simulated sensor nodes and 
Crossbow MICA2 sensor nodes. 

While the algorithm works well when all sen- 
sor nodes hear all sounds, the algorithm unfortu- 
nately does not fare as well when only a subset 
of the sensor nodes hears each sound. There are 
two typical failure modes. 

First, the predicted error may be low but 
the actual error is high. This suggests that the 
problem is ill-conditioned in a way even when 
the condition of Equation 3 is met. We plan to 
explore the conditions under which the predicted 
error is or is not a reliable estimate of the actual 
error. 
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Fig. 7. Effects of Changing Number of Sounds 

Second, gradient descent may get stuck in 
local minima, even with random restarts. We plan 
to explore more robust probabilistic reasoning 
algorithms to help deal with this case. 
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