King Fahd University of petroleum and minerals
llage of Computer Science and Engineering

COE 484 - Robotics

Report on Motion Control modules

GT 2005 is a great Simulator for AIBO RoboCup league.
It is important to investigate whether parts of the
code could be used to program a Kondo humanoid
robot. Our goal is to program a Kondo smart enough
that it could play soccer against other robots.

Zuhair Y. Khayyat
4/7/2008

1. Objective:

The objective of this report is to identify the relationship between
MotionControl module and JointDataBuffer while analyzing how
MotionControl interacts with MotionRequest and HeadMotionRequest. There

are several classes that represents HeadControl module which are:
DebugMotionControl.cpp
DebugMotionControl.h
GT2005MotionControl.cpp
GT2005MotionControl.h
MotionControl.h
MotionControlSelector.h
MotionStabilizer.cpp
MotionStabilizer.h
WakeUpEngine.cpp

WakeUpEngine.h

2. MotionControl.h:

This header is considered a generic class for motion control modules
and it is responsible for setting values for the joints of the robot. The following

data are needed by the constructor:
1. Reference to the frame number.
2. Request from the behavior control.
3. Head joint values from the head control.
4. The current body sensor data.
5. The current body posture.

6. walking parameter sets to be used by the WalkingEngine

7. Indication that the Motion Process received a new

SensorDataBuffer.

8. Buffer of joint data.

9. The current PID servo gains.

10. Odometry value
11. The height of the neck and the body tilt to be calculated
12. Specifies if the head is blocked by a special action or walk

13. GT2005WalkingEngine

The following classes are needed by MotionControl.h:

= Tools/Module/Module.h

= Representations/Motion/HeadMotionRequest.h
= Representations/Motion/JointDataBuffer.h

= Representations/Motion/PIDData.h

= Representations/Motion/OdometryData.h

= Representations/Motion/Motioninfo.h

= Representations/Perception/SensorDataBuffer.h
= Representations/Perception/BodyPosture.h

= Modules/WalkingEngine/GT2004ParameterSet.h
* Modules/WalkingEngine/GT2005Parameters.h

= Modules/WalkingEngine/GT2005DebugData.h

Jointdatabuffer.h:

This header file controls the Number of frames in the buffer
where this number defines how many frames are computed each
run. In other words, Jointdatabuffer.h controlles how often

“Motion::execute” class will be called. JointDataBuffer.cpp is simply

an Implementation of class JointDataBuffer.h. JointDataBuffer.h
has two streaming operators to read an write JointDataBuffer data
from an to a stream. JointDataBuffer.h imports

“Tools/Streams/InOut.h" and "JointData.h".

b) Joindata.h:

It is considered as a data structure that contains the values for
all used joints and their names. It has Streaming operator that
reads from a stream and writes to a stream JointData data. It
implements “Tools/Streams/InOut.h” and
“Tools/Streams/Streamable.h”. Joindata.cpp is simply an
implements Jointdata.h where Jointdata.h can stream data to the
following components:

neckTilt headPan headTilt
mouth earl earR
legFR1 legFR2 legFR3
legFL1 legFL2 legFL3
legHR1 legHR2 legHR3
legHL1 legHL2 legHL3
tailPan tailTilt

c) InOut.h:

InOut.h is the Definition of the abstract base classes In and
Out used for streaming. It has two main classes which are In and
Out. The class Out is the abstract base class for all classes that
implement writing into streams while the class In is the abstract

base class for all classes that implement reading into streams. Both

classes provides function that handle reading and writing number

of bytes while supporting the following data types:

char unsigned char short int unsigned short int
int long int unsigned long int float
string endl-symbol
d) Streamable.h:

It is the base class for all types streamed by the
StreamHandler.h that streams directly. Streamable.h also includes
“Tools/Streams/InOut.h".

e) SensorDataBuffer.h:

This geader acts as a buffer for sensor data sets which contains
all frames receiced from sensors at the same time. It can control
the maximum number of frames in the buffer. It has Streaming
operators that reads and writes a SensorDataBuffer to and from a
stream. It includes the following classes:

" SensorData.h"

"Tools/Streams/InOut.h

"Tools/Streams/Streamable.h".

f) SensorData.h:

This header is a class representing a sensor data vector.

It has Streaming operators that reads and writes a
SensorDataBuffer to and from a stream. SensorData.h store both

the data from each sensor and its refrence value. It includes

"Tools/Streams/InOut.h" and "Tools/Streams/Streamable.h". The

sensors that SensorData.h communicate with is as fillowing:

neckTilt headPan headTilt backR
backF headPsdNear mouth chin
egFL1 legFL2 legFL3 pawFL
legHL1 legHL2 legHL3 pawHL
legFR1 legFR2 legFR3 pawFR
legHR1 legHR2 legHR3 pawHR
tailPan tailTilt wlan backM
accelerationX accelerationY accelerationZ head
headPsdFar bodyPsd

g) BodyPosture.h:

class represents the robots body percept the robot stands or is
crashed. It implements "Tools/Streams/InOut.h". The following

values are calculated and stored in this class:
1) neckHeightCalculatedFromLegSensors
2) bodyRollCalculatedFromLegSensors
3) bodyTiltCalculatedFromLegSensors
4) neckHeightProvidedByMotionControl
5) bodyRollProvidedByMotionControl
6) bodyTiltProvidedByMotionControl
7) bodyRollCalculatedFromAccelerationSensors

8) bodyTiltCalculatedFromAccelerationSensors

h)

GT2004ParameterSet.h:

It seems that this class controlls the hardware directly that was
used in RoboCup 2004. It has values for walking height, walking
width which is the distance from the center of the robot, and x-axis
center position. It also havs values of height of lifted foot and telt
angles for foot movment. It has Streaming operator that reads
GT2004ParametersSets and writes the to a stram.
GT2004ParameterSet.cpp is sinply an implementation for the
header class GT2004ParameterSet.h. GT2004ParameterSet.h

implements the following classes:
"InvKinWalkingParameters.h"
"Tools/Actorics/Kinematics.h"
"Tools/Evolution/Individual.h"

"Tools/Math/Pose2D.h"

GT2005Parameters.h:

This class is a parameter class for the GT2005 Walking Engine.
It is different than 2004 parameters in several walking aspects. it
implements several types of walking such as omnidirectional
walking, fast turning, smoothly walking forward, walking diagonal
forward, smoothly walking backwards, walking fast backwards, fast
sidesteps and dash walk. GT2005Parameters.cpp is an
implementation for GT2005Parameters.h. it impelents the

following classes:
"Tools/Math/Vector3.h"
"Tools/Math/Pose2D.h"
"Representations/Motion/MotionRequest.h"

"GT2005Polygon.h"

j)

"Tools/Debugging/Debugging.h"

GT2005DebugData:

This class detects both the average and diffarntal
Acceleration for x,y and z axis. GT2005DebugData.cpp is an
implemntation for GT2005DebugData.h

3. T2005MotionControl.h:

This class is the default solution for the module MotionControl. It

Integrates head joint values from the head control and joint values from

walking Engine. It determines the state of MotionControl while detecting last

executed Motion and the latest WalkRequest. GT2005MotionControl.cpp is the

implementation of the header class. T2005MotionControl.h includes the

following classes:

1)
2)
3)
4)
5)
6)
7)

8)

"MotionControl.h"

"WakeUpEngine.h"

"MotionStabilizer.h"
"Modules/WalkingEngine/WalkingEngine.h"
"Modules/SpecialActions/SpecialActions.h"
"Modules/GetupEngine/GetupEngineSelector.h"
"Modules/WalkingEngine/InvKinWalkingEngine.h"

"Tools/Module/ModuleHandler.h"

a. WalkingEngine.h:

This header is the interfaces of the module WalkingEngine.

Walking parameters can be set to be used by the WalkingEngine by

any behavior module such as evolution behavior. This class executs

walking type motions and Calculates the next joint data set. It

includes the following classes:
1) "Tools/Module/Module.h"
2) "Tools/RobotConfiguration.h"
3) "Representations/Motion/JointData.h"
4) "Representations/Motion/PIDData.h"
5) "Representations/Perception/SensorDataBuffer.h"
6) "Representations/Motion/OdometryData.h"
7) "Representations/Motion/Motioninfo.h"
8) "InvKinWalkingParameters.h"
9) "GT2004ParameterSet.h"
10) "GT2005Parameters.h"

11) "GT2005DebugData.h"

b. InvKinWalkingEngine.h:

This class is a walking engine based on calculation of rectangular
foot movement and inverse kinematics. It calculates new leg speeds
according to current motion request and relative foot position for
each leg. It also calculates current joint data values and calculate

current foot positions.

4. MotionStabilizer.h:

This class is considered as a function that tries to stabilize the robot
in such a way that no forces other then gravity act on the center of mass.
The main idea is to stabilize walking movement of the robot. This class

takes all parameters used to generate a motion and alters the joint datas in

order to stabilize the motion. MotionStabilizer.cpp is the implantation of

MotionStabilizer.h. The following classes are implemeted:
"Modules/WalkingEngine/WalkingEngine.h"
"Tools/Math/PIDsmoothedValue.h"

"Representations/Perception/SensorDataBuffer.h"

