
Chapter 6

INTRODUCTION TO ROBOT
PROGRAMMING

Dr. Mayez Al-Mouhamed
Computer Engineeing Department
King Fahd University of petroleum and Minerals

This chapter introduces the main features of VAL II programming language for the PUMA-
560 robot arm. First, we introduce the way VAL II allows to define the robot locations,
variables, and compound transformations. The later is very important in defining structured
objects. The idea consists of referencing sub-objects using frames attached to the base frame
of the main object. Therefore, moving the composite object leads to update the base frame
while the sub-objects frames are defined in a relative way. Second, the chapter investigate the
motion instructions and their meaning. Some motion primitives generate joint interpolated
motions while others generate straight-line path in the cartesian space. The later motion are
more suitable and predictable but slower.

6.1 The Unimate Puma 560

The Unimate Puma 560 is a compact, computer-controlled robot for medium-to-lightweight
assembly, welding, materials handling, packaging, and inspection applications.

The Series 500 is the most widely used model in the UNIMATE PUMA line of electrically
driven robots. With a 36 inch reach, and 5 pound payload capacity, the PUMA Series
500 robot is designed for assembly and applications requiring high degrees of flexibility and
reliability.

With thousands of units in the field, its capabilities are particularly suited to the electronics
and other industries where light-to-medium weight parts handling or processed functions are
carried out.

VALtm, a revolutionary advance in robot control systems, is used to control and program
PUMA robots. The system uses an LSI-11 as a central processing unit and communicates
with individual joint processors for servo control of robot arm motions. The results are ease
in set-up, high-tolerance repeatability, and greater application versatility.

VALtm combines a sophisticated, easy-to-use robot programming capability with ad-
vanced servo control methods. Intuitive English-language instruction provides fast, efficient
program generation and editing capabilities. All servo-path computations are performed in

1



real time, which makes it possible to interface with sensory-based systems.
With it’s high speed, repeatability, and flexibility, the PUMA 500 robot is suited to a

wide range of small parts-handling applications, and VALtm control makes it easy to design
application programs to carry out the most difficult robotic tasks.

Current assembly applications include automotive instrument panels, small electric mo-
tors, printed circuit boards, subassemblies for radios, television sets, appliances and more.
Other applications include packaging functions in the pharmaceutical, personal care, and
food industries. Palletizing of small parts, inspection, and electronic-parts handling in the
computer, aero-space and defense industries round out the present installed base.

Puma stands for Programmable Universal Machine for Assembly. Pumas are probably
the most common robot in university laboratories and designed by Vic Schienman in the
mid-70’s. Unimation PUMA-560 is a 6-R (revolution) type robot. It has 6 degree-of-freedom
and uses DC servo motors as its actuators. The range of these angles from θ1 to θ6 is the
following (320◦, 250◦, 270◦, 280◦, 200◦, 532◦). The corresponding link lengths from L1 to L6

are (432,432,433,56,56,37.5) mm.
The original controller LSI-11 uses the VAl robot language (Victor’s Assembly Language)

to communicate with the AIB (Arm Interface Board) through a bidirectional parallel bus. The
AIB communicates with six digital servo boards over a DEC backplane. These boards are
responsible for the execution of commands, parameter setting, and implementing the position
control loop. They are connected through the backplane to the analog servo boards which
implement nested velocity and current control loops.

However the VAL programming language does not support efficient real-time updating
of the manipulator trajectory based on sensory data (such as from force / torque or vision
sensors). Unimation has confirmed that there is an indocumented bug in the tool mode under
real-time path control. During real-time control, such as alter mode, the controller does not
update the rotation matrix for the tool coordinate system as the robot moves.

The features of the Unimate Puma 560 arm are the following. The arm has up to 6 degrees
of motion with electric DC servo controller. The main computer is a system computer (LSI-
11). It uses the teaching method by using a teach control and/or computer terminal. The
programming language is VAL PLUS or VAL II. The program capacity is 8K CMOS user
memory in VAL PLUS and 24K CMOS user memory in VAL II with options for additional
user memory. The external program storage is a floppy disk. The gripper control is a 4-
way pneumatic solenoid. The power requirement is 110-130 VAC, 50-60 Hz, 500 watts. The
optional accessories are the TTY Terminal, I/O module (8 input/8 output signals, isolated
ac/dc levels) up to 32 I/O capacity, pneumatic gripper without fingers, and special software
packages. The repeatability of motion is +/- 0.004 in. (0.1 mm) with straight line velocity of
49 in/sec. max (1.245m/sec.). The maximum payload for static Load 2.2 lbs. (1.0 kg).

6.2 VAL robot programming

VAL II is a language with which program specifications are related to locations that specify
either position in the cartesian space or frames that are attached to the objects. Information
regarding the operating system environment and the multiprocessor architecture (LSI-11)
under which VAL II is implemented should be developed in the laboratory. There are two
frames used: (1) the world frame, and the (2) tool frame.

The World frame is fixed at the end of link-1 of the robot. For an observator placed on
link 1 and looking forward to the robot hand, the Z axis goes up, the Y axis goes forward,
and the X axis goes to the right.

2



The Tool frame is located at the robot hand with its Z axis along the hand forward
direction, its X axis is going to the right of the hand, and its Y axis is going down from the
hand.

6.2.1 Robot Locations

A ’Point’ or a ’Position’ is a cartesian reference (X Y Z) in the work space. A ’Location’ is a
point plus an orientation. For example, when executing a motion instruction the robot moves
so that the tool point goes to the specified destination point and the tool frame is oriented to
the specified destination orientation.

1. Location Values

There are data defining the robot locations. To define them, two methods are possible:

(a) Precision Points : Location value is a precision point when the robot location is
represented by the exact individual robot joint angles. The advantage is that we
obtain maximum precision and there is no ambiguity regarding the robot configu-
ration. The drawbacks are that these are robot dependent, i.e. cannot be used for
other robot structures and they cannot be modified.

(b) Transformations: Is a robot independent representation of position and orientation
for the tool. The location consists of (X,Y, Z, O,A, T )inwhich(X,Y, Z) are the
coordinate of the Tool frame origin and angles (O, A, T ) are three Euler angles
defining the orientation of the Tool frame. The Tool frame is located at the robot
hand with its Z axis along the hand, its X axis going to the right of the hand, and
its Y axis going down from the hand. Based on the above, angle O is a ROTY for
the tool frame, angle A is a ROTX, and angle T is a ROTZ.

A location is then defined as a point (X Y Z) that is relative to the base coordinate
of the robot and three angles. For example, to shift a location in the X direction,
only the X component in the translation needs to be adjusted. For example, one
may define a location of a part ralative to a convoyer belt located relative to the
robot. Change in the coordinate of intermediate sub-objects can be made without
changing the other top ranked frames. These relative tranformations are called
Compound Tranformations. The advantage is that it can be used with other robot.
It can be modified by shifting a position or an angle. One important feature is
that a transformation can be a combination of relative transformation. This can be
used to define a location relative to another. The drawbacks is that no information
about robot configuration (obstacles) the user should include instruction to specify
configurations. They have less precision than precision points.

2. Location Variables

Symbols can be used to reference a location. Two types of variables (scalar and arrays)
are allowed:

(a) Variable names, these are assigned by the user to reference precision points and
transformation. Variable names should start with a letter (Upper case or Lower
case). Examples of location variables:

Valid : P, Feeder, pallet. to. part. 3

3



Invalid: 3p, part-x, hand (reserved)
Precision points must be preceded by (#):
(# pick) is a precision point.

Note : Once location variables are defined, they can
be referenced by any program in the system memory.

(b) Array variables: These are location variables that can be of array type:

Part {I} where I : 0, 65535 and Part{ } is part{0}
Using part in an Integer expression is valid.

3. Defining Variables

(a) Under VAL II Operating System

• using the teach pendant and recording a series of locations

• using HERE command to assign a name to current robot location.

• using POINT command to define locations based on other locations or from
component value entered by the user.

(b) During Program Execution

• Using HERE command

• Using SET command to give a value to a location variable.

6.2.2 Compound transformation

The objective of using compound transformation is to represent the robot position and ori-
entation relative to object positions and orientations. For example, the instruction

MOVE plate:object:grasp

where (grasp) is a location relative to (object) which is a location relative to (plate). Location
(plate) is relative to robot base frame of reference.

Another example is the instruction

APPROS base:plate:object:grasp:Trans(0,0,0,-90,90,0)

where APPROS is a location function, Trans(0,0,0,-90,90,0) is a compound transformation,
and base is the robot base frame. We note that the order of these transformations is crucial
and positioning errors may occur because of cumulative computational errors.

The Relative Transformations are defined as follows. Location ’plate’ is defined using
teach Pendant that allows moving the robot to location plate and using:

HERE plate

which defines the position and orientation of the transformation plate, next the tool (robot)
is located at object:

HERE plate: object

4



which sets the relative transformation object relative to plate, finally:

HERE plate: object: grasp

Using separate command, assuming plate and object were already defined:

MOVE plate: object: grasp !

Where ”!” indicate external references plate and object.
We now consider the Computational considerations of these instructions. Consider the

following two,set of instructions:

APPRO plate:object:grasp,100.0
MOVE plate:object:grasp

Here the robot goes to a location approaching location (plate:object:grasp) by a backward
translation of 100 mm with respect to the Z axis.

This set requires computing the transformation twice, therefore, the following sequence
requires less computing operations:

SET X = plate:object:grasp
APPRO X, 100.0
MOVE X

where (plate:object:grasp) will be evaluated only once

6.2.3 VAL II instructions

1. Format of an instruction:
<Step Number> {<label> < space >}{< Instruct >}{<space >}{< comment >}
where (step Number) is provided by Val II, and (Instruct) is to be < Instr. name >
{<space >< arguments >}.

2. Assignments

<variable> = <value>

where (value) is real or integer constant or arithmetic expression. Ex : n = n + 1,
X =radius*SIN(a)

3. Decomposition

DECOMPOSE <array name> { } = <Location>

where the location consists of (X, Y, Z,O, A, T )inwhich(X, Y, Z) are the coordinate of
the Tool frame origin and angles (O, A, T ) are three Euler angles defining the orienta-
tion of the Tool frame. The Tool frame is located at the robot hand with its Z axis
along the hand, its X axis going to the right of the hand, and its Y axis going down
from the hand. Based on the above, angle O is a ROTY for the tool frame, angle A
is a ROTX, and angle T is a ROTZ. To manipulate the above data we may use the
following example:

5



DECOMPOSE X{ } = point

where X{1, 2, .., 6} = {XY ZOAT} of location point. Assume (#ref) then (DECOM-
POSE X[]= #ref) stores the components into x[] so that to index them. The components
can then be used as (MOVE #ppoint(X[0],...,X[5])).

4. Transformation

The syntax is (TRANS(exp1,...,exp6)) like in the following instruction:

MOVE frame:TRANS(r*cos(a),r*sin(a),0,90,-90,0) or

SET X = frame:TRANS(r*cos(a),r*sin(a),0,90,-90,0)

where (frame) is a transformation defining the position of the center of a cercle, (r) is
the radius, and (a) id the angle. Another form is the (STRANS <array name> { })
where (array name) is to receive the robot hand data. For example: STRANS X{ }
produces the array X such that the first 9 components consists of the orientation matrix
and the last three components consists of the cartesian position.

5. Location variable assignments

(a) HERE < location var>
Allows copying the robot coordinate into a variable.
Ex1: (HERE part) where (part) becomes the current Robot location
Ex2: (HERE #part) where (#part) becomes the current Robot precision point

(b) SET <location var> = <location value>

Generally <location var > is a compound obj(1) : obj(2) : ... : obj(k) which should
be previously defined. obj(i) is set relative to obj(i+1) using <loaction variable>.

Ex. SET #ref = #ppoint(exp1, ..., exp6)
EX. SET picks = HERE: Shift

sets picks equal to transf. shift relative to current
robot location (HERE)
SET # place = # post
precision point ”# place” becomes = that of ”# post”

6. Motion Instructions

(a) Move <location>
Moves using joint interpolated motion (J.I.M), in the joint space, to a destination
specified as a location or a precision point.

Ex1: MOVE # picks
moves J.I.M. to precision point # picks
MOVE pallet
moves J.I.M. to location pallet

Ex2: MOVE #ppoint(exp1,exp2, ...,exp6)

6



Ex3: Here #ref
DECOMPOSE X[]= #ref
MOVE #ppoint(X[0],...,X[5])

(b) MOVET <location>, <hand opening>

moves J.I.M. to (location) and hand opening
EX. MOVET part1, Hand-5
moves J.I.M. to (part 1), and Hand Hand-5

(c) MOVES <location>

moves on a straight-line path (SLP) to ”Location”
Ex. MOVES place

(d) MOVEST <location> , <hand opening>

moves SLP and hand opening (mm)
EX. MOVEST part #, 25
moves SLP and hand 26 mm

(e) APPRO <location>, <Distance>

moves J.I.M. to Location - (Distance)
Ex. APPRO place, offset
moves J.I.M. to place, only z component to place
is affected by (- offset).

APPROS <location>, <Distance>
moves S.L.P. to Location - (Distance)

(f) DEPART < Distance >

moves J.I.M. from current robot location backs
by (Distance)
Distance > 0 .... > backs Z axis
Distance < 0 .... > forward Z axis

(g) DEPARTS <Distance>
moves SLP from current robot location backs (Distance)Z.

6.2.4 VAL II structured construct

1. The case structure Allows selecting actions depending on external conditions:

CASE <exp1> OF

VALUE <exp> {,...<exp>}: <group of steps>
VALUE <exp> {,...<exp>}: <group of steps>
{ANY} <group of steps> END

Description:

(a) <exp 1> is evaluated, let Val be its value,

7



(b) All the <exp> stat. following VALUE are evaluated, if any of these returns a value
equal to Val, then the <group of steps> is executed and control is transferred to
statement following the END.

(c) If there is no <exp> whose value matches with Val and if an ANY statement is
included, then the <group of steps> following ANY is executed and control is
transferred to the statement following the END.

Example: CASE INT(X) OF

VALUE 0, 2, 4, 6, 8, 10
TYPE ”The number is even”
VALUE 1,3,5,7,9
TYPE ”The number is odd”
ANY
TYPE ”The number is < 0 or > 10”

END

2. DO-UNTIL DO
{< group of steps >}
UNTIL <logical exp>

(a) The <group of steps> is executed as long as <logical exp> is false.

(b) When <log. exp> is true, then control is transferred to the statement following
the END.

3. FOR <log Var.> = <initial> TO <final> {STEP increm.>}
FOR part = 1 TO row.length

CALL move.part
SET hole = SHIFT (hole by 100,0,0)

END

This assumes that (move.part) is a subroutine to pitch up a part and it down at the
location ”hole”.

4. IF <log. exp> THEN
<group 1 of steps>
{ELSE
<group 2 of steps>}
END

5. WHILE
<logical exp> DO
{<group of steps> } END

8



Exercises

1. Give example of compound transformations and explain their benefits in manipulating
an object such as a cup

2. Find the mathematical transformations that are required to perform the following type
of motions:

(a) Joint interpolated motion

(b) Straight-line path in the cartesian space.

3. A robot is assigned to pick blocks off of a conveyer belt and deposit them in a pallet with
three-by-three array of positions for the blocks. Write a VAL II program to perform
this operations.

4. A robot gripper is equipped with three proximity sensors: left (SL), right (SR), and
hand(SH). All three sensors can be read by VAL II and give binary values.

5. If an object is in front of a sensor, then part of the emitted light is reflected on conse-
quently the value returned is logic 1. Otherwise it returns O. The opening or closing of
the robot hand can be programmed in an incremental way. Write a program in VAL II
language to perform the following:

(a) Search on the workspace table (L1, L2) an object. For this left and right motions
will be required until either SR or SL return a 1.

(b) Center the robot hand on the object: moves right or left (if SR = 1 or SL = 1,
respectively) until both sensors return 0. Then close the gripper by ∆d until either
SR = 1 or SL = 1. If both sensors generate 1 then exit.

(c) Now the robot hand is centered in front of the object. Moves to the object and
check all three sensors. If only Sr or SL return 1, then center again. If only SH
returns 1, then grasp the object and exit (success.)

9


