
A light software architecture for
a Humanoid Soccer Robot

Alberto Maggi†, Tommaso Guseo∗, Federico Wegher†, Enrico Pagello∗†, Emanuele Menegatti∗†

∗ Intelligent Autonomous Systems Laboratory (IAS-Lab)
Department of Information Engineering

University of Padua, Italy

Abstract— In this paper, we present a software architecture
that can be implemented on a humanoid platform with low–
computational power to make it to autonomous. The platform
we used is the Robovie-V of V-Stone. the application we chose
is the RoboCup soccer competitions. We will present the simple
behaviour selection architecture implemented with a finitestate
machine (FSM) in our robot. We will present the highly optimized
algorithms used for image processing and we will give some
hints on how it is possibile to extend the flexibility of a low
computational power humanoid with a customized operating
system. These solutions are quite general and can be applied
to any humanoid platform with low-computational power.

I. I NTRODUCTION

Our robots are based on a modified Robovie-M platform
of VStone. These robots are fully autonomous: CPU, power
supply, sensor and obviously actuators are on-board. Two of
the main activities of an autonomous robot are: processing
the information gathered from the environment and select
the most appropriate behavior to act in the environment. In
the history of the RoboCup Humanoid League, there are
many successful examples of autonomous humanoid robots
performing complex tasks in a challenging environment, as
the soccer game. Most of these robots needs relatively large
computational resources to process the information gathered
from the environment and to appropriately plan and execute
their actions. For instance, the robots of Darmstadt Dribblers
[12] mount an Intel PXA 255 at 512 MHz, the robots of
NimbRo [11] mount a FSC Pocket Loox 720, which features
a 520MHz XScale processor PXA-272 with 128MB RAM.
In the end, the robots of the three-times World Champion
TeamOsaka [13] use two CPUs: a GeodeLX 800 MHz with
256 MB of RAM and a Renesas SH2-7054 with 384 + 64
KB of RAM. The main CPU, i.e. the Geode LX 800, is used
for image acquisition, image processing and robot behaviour
control, while the second CPU, i.e. the SH2-7054, is used
to generate the commands to be sent to the motors, to send
the commands to the single joint motors and to close the
loop on them. We present an autonomous platform that uses
only this second one CPU (i.e. the Renesas SH2-7054) to
completely control the robot from the image acquisition to the
motor control. With our platform, image processing has been
highly optimized in order to allow fast features extractionand
information gathering. The vision module collects information
that will be the input for the reasoning module that involves
the development of behavior control. Complexity of soccer

Fig. 1. Our version of Robovie-M.

make necessary playing with the development of complex
behaviors, for example situations of coordination or different
role assignment during the match. There are many types of
behavior control, everyone with advantages and disadvantages:
reactive control is the simplest way to make the robot playing,
but do not permit more elaborated strategies as explained for
example in [6]. On the other side behavior-based control, are
more complex but more difficult to implement, and enables in
general the possibility high-level behavior control, useful for
showing very good performances [7]. Our approach includes
the development of Finite State Machine (FSM) that permits
a good work.

II. T HE HARDWARE PLATFOM

The Robovie-M platform of VStone is an embedded low
cost system and has a low computatational power. It has been
modified, as shown in Fig. 1, in order to be compliant with
the rules of Humanoid Kid Size League, see [14].

Our Robovie-M has size of480×235×70mm and a weight
of 2.2kg. It is a fully autonomous humanoid robot that use as
only sensor a camera.

enrico
Text Box
 Proceedings of the
 Workshop on Humanoid Soccer Robots
 of the 2006 IEEE-RAS International Conference on Humanoid Robots
 Genoa, Italy, December 4, 2006
 pp. 25-31
 ISBN: 88-900426-2-1

Fig. 2. The software architecture implemented in our software RobotCore.

Our robots has 22 degrees of freedom distributed as follow:
six for each lower limb, four for each upper limb and two for
the trunk; the actuators that move all DOF are servomotors.
These actuators are directly controlled by the CPU with PWM
signals.

Instead of the standard Robovie-M main board we mounted
the VS–7054 board produced by VStone. The VS–7054
mounts a SH2–7054 MCU of Renesas running at 40Mhz
with an internal FLASH memory of 384KByte and a RAM
of 16KB. As external memory resources has got a RAM
of 256K×16bit and a EEPROM of64KB. This board can
control a digital camera and the CPU provides just enough
computational power to process image data, to control the
behaviors of the robot and to output the signals for the 22
motors. However, the Renesas SH2–7054 MCU has been
developed (and it is usually used) in automotive projects, so its
computational power is quite limited and it does not provide
a programming environment very friendly for the final user.

The digital camera is produced by OmniVision, the
OV7620. This camera is mounted front looking and can be
used in two resolution modes: low resolution (QVGA, i.e.
320x240) and high resolution (VGA, i.e. 640x480).

There is one additional internal sensor: an ADXL202E a
two axes accelerometer produced by ANALOG DEVICES.
This can sense, if the robot is standing or if it is laying down.

III. SOFTWARE ARCHITECTURE

The firmware of VS–7054 calledRobotCorewas developed
by our team following the paradigm “Sense, Plan and Act” as
defined in [8]: the robot senses the environment, plans the next
actions and then acts, as shown in Fig. 3. This very simple
architecture was mainly chosen because when the robot is
moving the displacement of the camera is not controlled. So,
in order to simplify the image processing software, the image
is grabbed only when the robot is standing still.

Fig. 3. The programming paradigm used in the software RobotCore.

The software architecture can be represented by three loops
running at different speeds, as shown in Fig. 2. The inner
loop controls the PWM motor output signals. These signals
are obtained in asynchronous mode using interrupts. The
medium loop include high speed functions as serial port
and motor interpolation. The outer loop is the slowest one.
In this loop is placed the behavior decision mechanism of
robots. This module acquires and elaborates information on
the surrounding environment, decides an action (accordingly
to team task) and starts the action.

A. Vision System and Image Processing

Even if up to now our robots are fitted only with perspective
cameras, the vision system has been designed to allow the use
of either perspective cameras or omnidirectional cameras.

1) Algorithm Flow.: The image processing algorithm pro-
ceeds as follows (Fig. 4):

1) acquisition of the image, either in QVGA mode to
acquire a complete frame covering the whole field of
view of the robot’s camera, or in VGA mode to acquire
at higher resolution only the regions of interest (ROI) in
which we want to focalize the attention;

2) demosaicing of Bayer pattern: for QVGA mode use
Periodic Reconstruction Interpolation, for VGA mode
usingLinear Interpolation with Laplacian Second–order
Correction Terms, as we described in [1];

3) color segmentation, with a look up table manually build
offline and saved in EEPROM;

4) blob detection with labeling of connected components;
5) compute the centroids and the variance in two orthog-

onal direction of the pixel distributions of the ball, the
goals, and the other robots.

B. High-Performance Image Processing

Usually, detecting several colors means creating several
binary image maps as shown in Fig. 4 for the colorred. In our
case, as mentioned in section II, the computational power and
the working memory are very limited, so we developed a way
to extract the desired information from the image by keeping
only three copies of the image in memory.In the following,
we present our algorithm implementation.

(a) Acquire. (b) Segmentation.

(c) Blob detection. (d) Ball extraction.

Fig. 4. Example of image processing and features extractionof the ball.

1) Eroding: After the steps of acquisition, demosaicing,
interpolation, and color quantization, we have a quantized
image (i.e., every pixel gets a numerical label associated to
one of the 8 colors of RoboCup). TheErosion procedure
eliminate noise from the image by scanning for every pixel
its its neighbors. If any of the neighbor pixels has a color
not recognized as one of the 8 RoboCup colors (i.e., if any
is labeledcolor unknown) the examined pixel is set to
unknown color.

2) Dilating: To achieve a fast implementation, we do dila-
tion and labeling in the same step, decreasing computational
cost.
In procedure III.1existNotNullNeighbor(image1,i,j)check if
there is a not null and methodgetNotNullNeighbor(blob,i,j)
gets the same color neighbor of processed pixel. When proce-
dure ends, we get the labeled and quantized image. Last step
consist of connecting labeled components.

3) Labeling of connected components:The image map that
we have at this moment, contains group of pixel having the
different label. The approach we adopted, extends the label
of a colored pixel to all their neighbors with the same color.
This way the output is an image sub standing this rule: for
every pixeli = 1...n×n with color x has labelj, every pixel
with color equal tox has the same labelj. The procedure
is composed of two label propagation wipes: top-down and
bottom-up.
In this procedure we call a method to find the minimum label
to extend, among pixel neighbors. This last operation in not
so immediate and we had to develop some color consistency
techniques.

Algorithm III.1 Dilation and labeling
1: input: image1←quantized, eroded image
2: ouput: image2←quantized, eroded, dilated, labeled image
3: ouput: image3←quantized, eroded, dilated image
4: for i := 0 to width do
5: for j := 0 to width do
6: if (image1(i, j) <> UNKNOWN) then
7: image2(i, j) := newLabel()
8: image3(i, j) := image1(i, j)
9: end if

10: if (image1(i, j) := 0 ∧

existNotNullNeighbor(image1, i, j)) then
11: image2(i, j) := newLabel()
12: pp = getNotNullNeighbor(blob, i, j)
13: if (pp <> 0) then
14: image3(i, j) := pp

15: elseimage3(i, j) := 0
16: end if
17: end if
18: end for
19: end for

C. Features estraction

Extracting information about blob is very fast with our
implementation: we scan the image, and insert every pixel pro-
cessed in the appropriate blob structure, that we had previously
created. Then we read blob information directly accessing to
structure parameters we are interested for. Some interesting
information are color, area, center of blob, statistical variance.

(a) Original. (b) Quantized.

(c) Main colors. (d) Recognition.

Fig. 5. Example of image processing and features extractionof several colors.

Fig. 6. Arbiter in context environment.

D. Complexity and time analysis

Given a square image composed byn× n pixels:

• Erosion: involvesn×n pixel and a four-pixel kernel, the
algorithm access every pixels five times in the worst case;

• Dilating and Labeling: every pixel is accessed five times,
as before. But now we access to a five pixel kernel in
another copy of the image to recover neighbor color of
not-null pixels.

• Connect components: every pixel is accessed three times,
but we have two phases, top-down and bottom-up.

• Blob detection: we simply collect every pixel and insert
in the appropriate blob structure.

The resulting complexity is summarized in table I:

Operation Complexity

Erosion O(5n
2)

Dilating and Labeling O(5n
2+5m)

Connecting components O(6n
2)

Blob detection O(n2)

TABLE I

COMPLEXITY OF OUR ALGORITHM. N ARE GENERIC PIXELS, M THE

“ COLOR UNKNOWN” PIXELS.

For time analysis we aided withHEW3, the Software
Development Kit used to write the firmware RobotCore.
During the executionHEW3 gave the CPU cycles, so mul-
tiplying these with frequency clock (40Mhz), lead us to get
the algorithm execution time. Obviously, the execution time
depends on the features to extract, but we can say that in a
general case the total processing of our algorithm involves
about6500000 cycles of clock , taking to a process time of
0, 025 s. A great result considering our platform.

IV. B EHAVIOR SELECTION ARCHITECTURE

The behavior selection module has to determine the correct
action to be taken accordingly to the measures of the sensors
and to the team-play policy. Each robot has a set of basic

movements (including walk, rotate, kick, lye down and stand
up).

The deliberative behavior of the robot is based on this
assumption: if the information extracted from the image pro-
cessing are enough the robot can take an action, if not, it
has to gather more information exploring the environment.
For example if the behavior selection module does not have
enough information to take its decision, then the robot move
its head right or left to get more data from scene and then
re-evaluate all acquired informations.

The behavior selection module logically stands and acts over
a context selection. This method was proposed in [9]. Four
different situations are provided depending on the quantity of
information collected (i.e., on the features identified in the
image): full information (ball and goals have been recognized),
partial information (only a goal or only the ball have been de-
tected) and lack of information (nothing has been recognized);
the context selected gives a different behavior.

There are additional sets of complex movements that can be
triggered only by a particular context such as peculiar game
situations (e.g., throw in, penalty kick, etc.) or a particular role
assumed by the robot: goalie, defender or attacker.

The context switching method enables to manage the com-
plexity of dynamical selection of the behaviors. The effective-
ness of this approach has been shown in [10]. Our aim was
the development of a FSM represented in Fig. 7 being able to
use the limited computational power of our platform.

V. EXTENDING THE SOFTWARE ARCHITECTURE

To improve both performance and robustness of the
firmware developed by our team, the software architecture
presented before has been extended with the introduction ofan
operating system layer. We provided the robot with a higher
abstraction layer based on the functionalities of FreeRTOS’s
core, an opensource realtime microkernel widely used in
embedded applications. Since no porting exists for the Renesas
SH2 architecture uptonow, our team developed the HAL in
order to use FreeRTOS on Robovie-M.

Fig. 7. The finite state machine implemented in RobotCore controlling the behaviour of the soccer robot.

The programming model offered by FreeRTOS comes from
the theory of realtime systems: a set of tasks which run
indipendently of each other, synchronized and communicating
through the kernel’s IPC services. The priority scheme adopted
by the scheduling algorithm lets the programmer enhance
flexibility in his/her code by using many different priority
queues; also the debug phase can be riduced thanks to the
tracing toolkit.

This software architecture is typical of embedded systems,
where memory resources are limited and high performance is
required by design specifications. The application level can
interact with the hardware platform either passing throughthe
OS layer or accessing the hardware by itself. This allows the
programmer to balance between flexibility and efficiency in
his/her code.

VI. CONCLUSION

In this paper, we introduced the software architecture imple-
mented on our humanoid robots named Leonardo and Galileo.
They are based on a Robovie-V platform by Vstone with 22
degrees of freedom and equipped with a low computational
power CPU. The memory and computation power constraint
fostered us to develop efficient image processing algorithms
and a very fast behavior selection architecture. The software
we presented in this paper was tested at RoboCup 2006 in
Bremen, Germany. In Fig. 8, three different phases of the
RoboCup competition.

VII. A CKNOWLEDGE

We wish to thanks IT+Robotics S.r.l. for its sponsorship
and its support. IT+Robotics is a spin–off of the Universityof
Padua, Italy.

REFERENCES

[] Cheng P. and LaValle S. M.: Reducing metric sensitivity inrandomized
trajectory design. In Procedings IEEE/RSJ Int’l Conference on Intelligent
Robots and Systems, 43–48 (2001).

[1] Guseo, T.:Architettura Software per Robot Umanoide Autonomo, Tesi di
laurea, University of Padova, Padova (2006) (In Italian).

[2] Guseo, T., Menegatti, E.:Demosaicing Low Resolution QVGA Bayer
Pattern for Focus of Attention in Humanoid Robots, submitted to an
international conference.

[3] Kuffner J.J., LaValle S.M.: RRT-Connect: An Efficient Approach to
Single-Query Path Planning, In Procedings IEEE Int’l Conf.on Robotics
and Automation, 995–1001, (2000).

[4] LaValle S.M.: Rapidly-Exploring Random Trees: A New Tool for Path
Planning, TR 98–11, Computer Science Dept., Iowa State University,
October (1998).

[5] Menegatti, E., Pagello, E., Wright, M.: Using Omnidirectional Vision
within the Spatial Semantic Hierarchy.ICRA 2002908–914, (2002).

[6] Sven Behnke and Raul Rojas. A hierarchy of reactive behaviors handles
complexity.In Balancing Reactivity and Social Deliberation in Multi Agent
Systems, volume 2103 of LNAI, pages 125-136. Springer, 2001.

[7] Sven Behnke. Playing soccer with humanoid robots, KI -Zeitschrift
Kuenstliche Intelligenz, vol. 3, pp. 51-56, 2006.

[8] Murphy, R.R.: Introduction to AI Robotics, A Bradford Book, The MIT
Press, Cambridge, Massachussetts, London, England (2000).

[9] Pagello, E., Montesello, F., Garelli, F., Candon, F., Chioetto, P., Griggio,
S.,: Getting Global Performance through Local Informationin PaSo-
Team’98 RoboCup 1998384–389 (1998).

[10] E.Pagello, A. D’Angelo, E. Menegatti Cooperation Issues and Dis-
tributed Sensing for Multi-Robot Systems IEEE Proceedingsof IEEE Vol.
94 Iss. 7, July 2006, pp. 1370- 1383

(a) Dribbling challenge. (b) Goalkeeper. (c) Ball Search.

Fig. 8. Three different situations at RoboCup 2006 in Bremen.

[11] S. Behnke, J. Mller, M. SchreiberToni: A Soccer Playing Humanoid
Robot In I. Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, editors,
RoboCup-2005: Robot Soccer World Cup IX, pp. 59-70, LectureNotes in
Artificial Intelligence, LNAI 4020, Springer, 2006.

[12] M. Friedmann, J. Kiener, R. Kratz, T. Ludwig, S. Petters, M. Stelzer, O.
von Stryk, D. Thomas Darmstadt Dribblers 2005: Humanoid Robot (Team
Description Paper)

[13] URL: http://www.vstone.co.jp/top/products/robot/v2/
[14] RoboCup, compiled by Sven Behnke:RoboCupSoccer Humanoid

League Rules and Setup for the 2006 competition in Bremen, Germany,
URL: http://www.robocup.org/ (2006).

