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Abstract
This work explores how extended modeling of sen-
sors and robot motion can be used to improve
Markov localization by monitoring deviations of
actual measurements from expected sensor read-
ings. By comparing target and actual motions of
robot joints, proprioception is achieved yielding a
quality measure for the current odometry. a quality
measure for odometry that helps differentiate peri-
ods of unhindered motion from periods where robot
motion was impaired for whatever reason. By neg-
ative information we denote the absence of an ex-
pected sensor reading. Negative information is sel-
dom used in localization because it yields less in-
formation than positive information (i.e. sensing a
landmark) and a sensor often fails to detect a land-
mark, even if it falls within its sensing range. We
address these difficulties by carefully modeling the
sensor to avoid false negatives. In real world exper-
iments, we are able to demonstrate that a robot is
able to localize in positions where without the use
of negative information it could not.

1 Introduction
The estimation of position and orientation of a mobile robot
is a cruical task in mobile robotics. One of the most success-
fully applied approaches is called Monte-Carlo-Localization.
This method is used in numerous robot navigation applica-
tions, such as office navigation [2], museum tour guides [19],
RoboCup [11] [?], as well as outdoor or less structured envi-
ronments [13]. We propose 2 extensions affecting the sensor
model as well as the motion model.

1. We show how negative information can be incorporated
into Monte Carlo localization. The sensor model is
extended by modeling the probability of non-detection
events.

2. The motion model is improved by modeling of proprio-
ceptive information. The resulting model is incorporated
into the action update of the particle filter.

The presented adjustments and changes improve the gen-
eral ability to localize and also allow the robot to localize

in areas where it was previously unable to do so. They en-
able the robot to quickly recover its belief after collision
events and to adjust quickly to large displacements (kid-
napped robot).

Negative information denotes the ascertained absence of
expected sensor readings. This is incorporated into the cur-
rent belief much like an additional sensor. Proprioception is
based on the comparison of actual motion to intended mo-
tion. This information is used to enhance the influence of
action commands onto the belief.

This work is motivated by the desire to improve the lo-
calization of robots that compete in the RoboCup Sony Four
Legged League. In this league, two teams of four robots com-
pete on a field of green carpet sized 6 m x 4 m. There are
two colored goals and white field lines which define the di-
mensions of the field. There is also a center line, a center
circle and penalty areas near each goal. To help the robots
localize there are four cylindrical landmarks at the side of
the field. These beacons have a simple two color code that
uniquely identifies them. The Aibo robot itself has a camera
with a field of view of 55o and a resolution of only 208× 160
pixels YUV. It is built into the robot’s head which has 3 de-
grees of freedom. The robot’s legs have 3 degrees of freedom
each. Due to their small size and low power requirements the
robots have rather limited computational power (576 MHz
processor). This somewhat limits the sensory capabilities of
the Aibos compared to robots that are equipped with laser
range finders, sonars and a possibly high end notebook and
requires for efficient algorithms and attention control. The
nature of the soccer games in RoboCup Sony Four Legged
League makes the localization task even more challenging.
The robots have little evidence whether desired movements
were successful or not. Odometry data is of poor quality as
the robots often slip on the ground or run into each other.
Furthermore, the robots are required to track the ball which
makes localization even more difficult as landmarks are only
seen infrequently and may be occluded by other robots. In
the following sections we will present ways to address these
challenges.

2 Monte Carlo Localization
The Monte Carlo Localization method is a probabilistic
method, utilizing Bayes law and the Markov assumption. The
robot maintains a set of samples, called particles. The parti-



cles approximate the belief of the robot’s position, a prob-
ability distribution over the possible positions of the robot.
The current belief of the robot’s position is modeled as parti-
cle density, allowing for multi-modal probability distributions
and beliefs. Each particle represents a hypothetical position
of the robot. The belief Bel(st), the localization estimate
at time t, to be at position st is determined by all previous
robot actions ut and observations zt. Using Bayes law and
the Markov assumption, Bel(st) can be written as a function
that only depends on the previous belief Bel(st−1), the last
robot action ut−1, and the current observation zt:

Bel−(st) ←−
∫

p(st|st−1, ut−1)︸ ︷︷ ︸
motion model

Bel(st−1)dst−1(1)

Bel(st) ←− η p(zt|st)︸ ︷︷ ︸
sensor model

Bel−(st) (2)

with normalizing constant η. Equation 1 shows the a priori
belief Bel−(st) which takes into account the previous belief
and propagates it using the motion model of the robot. It is
the belief prior to the measurement. The measurement is then
incorporated into the belief as described in (2) using the sen-
sor model (‘sensor updating’). In Markov localization, given
an initial belief Bel(s0) at t = t0, the robot updates its belief
using odometry and then incorporates new sensor informa-
tion. Each time new information arrives the robot updates
its particle distribution using the previous motion command,
the resulting distribution is updated using the gathered sensor
information. This 2 step operation requires 2 models. The
motion model p(st|st−1, ut−1) tries to model the effect of
motion commands on the hypothetical positions. The sen-
sor model incorporates environment and sensor information
regarding this environment into the current belief. The parti-
cle filter employed for our work is based on the method de-
scribed in [16]. Here particles consist of a robot pose and
a probability (x, y, θ), p. The robot pose (x, y, θ) represents
the position and orientation of the robot (x,y coordinates on
the field in mm and orientation in radians). The likelihood p
is a measure of the plausibility of the hypothesis being at the
specified robot pose. The approach first moves all particles
according to the motion model of the action chosen. After-
wards the probabilities of the particles are adjusted using the
sensory input and the sensor model. In a third step, called
resampling particles are moved, deleted from the particle set
or injected from observation, based on their probability.

The RoboCup uses a color coded environment. The dis-
tance and bearing to landmarks and the goals are used for sen-
sor update. Other features of the domain are field lines which
are also used by some approaches [16]. Goals and landmarks
are identified by the camera located in the robot’s head. The
color pattern of the features is used to identify landmarks.
The sensory input of the leg and head joints is used to deter-
mine gaze direction, field of view, as well as the direction of
identified features. The motion model is usually determined
before the game by measuring the effect of motion commands
on the actual displacement of the robot (see next section).
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Figure 1: Sensor and actuator data (shoulder joint FL1) for
a freely walking robot. The corresponding difference func-
tion shows discrepancies between actuator and sensor data,
caused by walking motions (peaks in the curve).

3 Proprioceptive Motion Modeling
Many research efforts in mobile robotics aim at enabling the
robot to safely and robustly navigate and to move about both
known and unknown environments (e.g. the rescue scenar-
ios in the RoboCup Rescue League, planetary surfaces [21]).
While wheeled robots are widely used in environments where
the robot can move on flat, even surfaces (such as office envi-
ronments or environments that are accessible to wheelchairs
[10]), legged robots are generally believed to be able to deal
with a wider range of environments and surfaces. There are
many designs of legged robots varying in the number of legs
used, ranging from insectoid or arachnoid with 6, 8 or more
legs (e.g. [1]), 4-legged such as the Sony Aibo [4], humanoid:
2-legged (e.g. [14]).

Obstacle avoidance is often realized using a dedicated
(360◦) range sensor [20]. Utilizing vision rather than a dedi-
cated sensor is generally a much harder task since a degree
of image understanding is necessary. For the special case
of color coded environments, straight forward solutions exist
that make use of the knowledge about the robot’s environment
(such as the color of the surface or the color of obstacles [12],
see also previous section). If, however, obstacle avoidance
fails, robots are often unable to detect collisions since many
designs, like the robot used in this work, lack touch sensors
or bumpers. Such robots run into walls and continue to do so
since they have no way of telling that they are in a fatal sit-
uation. Apart from the current action failing (e.g. the target
position not being reached), collisions and subsequently be-
ing stuck have severe impact on the robot’s localization. This
is due to the motion update step in Bayesian filtering where
the current motion of the robot is incorporated into its belief
(cf. 1). This updating is usually limited to incorporating the
robot’s own motion which is commonly referred to as odom-
etry. While calculation of odometry is straightforward in a
wheeled robot (counting turns of the wheels), the task is much
more complex for a legged robot. Forward kinematic can be
used to a certain extent [15], but this requires well defined gait
patterns. Since gait optimization is often done using genetic
optimization, patterns tend to be highly complex and a phys-
ical simulation of the robot would be necessary to adequately
predict its motion. Such gaits require calibration for them to
be used in actual robotic applications [?]. However well the
odometry is calibrated, robot locomotion remains a stochas-
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Figure 2: Bottom: The collision sensor - values greater than
4 are interpreted as a collision. Top: The entropy of the belief
(represented by the sample set) with and without (thin line)
improving the motion model. When the enhanced model is
used, the entropy increases during collisions, because noise
is added to the distribution.

tic process and is never quite reproducible. In the RoboCup
domain, there is an additional source of errors: other robots
competing for the ball. Robots often push each other or in-
terlock their legs causing motions to have erratic outcome.
The following approach is based on work dealing with colli-
sions detection for a Sony Aibo using the walking engine and
software framework described in [?]. The approach uses the
servo motor’s direction sensors for the task of estimating the
quality of the odometry data gathered by the walking engine.
In analogy to biology we call this proprioception because in-
ternal sensors are used to determine the state of the robot’s
body.

3.1 Motion Model
The motion model consists of consecutive acquired odometry
data incorporated into the belief, as well as a random error
∆error, which is related to the distance traveled and the angle
rotated. Every particle is updated using the odometry offset
accumulated since the last update.

posenew = poseold + ∆odometry + ∆error (3)
Where ∆error is defined as

∆error =

( 0.1d× random(−1 . . . 1)
0.02d× random(−1 . . . 1)

(0.002d + 0.2α)× random(−1 . . . 1)

)
(4)

3.2 Collision Detection
The Aibo is not equipped with sensors to directly perceive the
contact with obstacles. We have shown ways of detecting col-
lisions using the sensor readings from the servo motors of the
robot’s legs in [?]. The comparison of motor commands and
actual movement (as sensed by the servo’s position sensor)
can be used to detect collisions (see fig.1). This comparison
has to compensate for the phase shift between the two signals
and has to cope with arbitrary movements and accelerations
produced by the behavioral layers of the robot. The method
provides a virtual collision sensor that can be used to improve
the motion model.

1) 2)



Figure 3: Belief distribution without (1) and with (2) odom-
etry quality used after a collision (marked by the star on the
robot’s path).

3.3 Extended Motion Model
The extended motion model accounts for the supplementary
information provided by the collision detection module, by
changing ∆error as well as affecting the accumulated odom-
etry update data in a random way. The binary decision of
the collision sensor has a static impact on the motion noise.
This means that ∆error is no longer dependent on the dis-
tance traveled and the angle rotated, but rather is a uniform
noise, within an interval expected to be a possible outcome
of collisions. But also odometry data can not be fully re-
lied upon, which is accounted for by randomly updating par-
ticles through the gathered odometry information, with the
assumption that the robot most probably ends up somewhere
between the requested destination and the starting point. The
noise tries to account for the severe and unforeseeable impact
of the collision. If collisions are detected, every particle is
updated by:

posenew = poseold + random(0...1) ·∆odometry + ∆error

Where ∆error is

∆error =

( 40× random(−1 . . . 1)
40× random(−1 . . . 1)
0.5× random(−1 . . . 1)

)
(5)

Otherwise, when no collision was detected, the motion model
is not extended and the update is performed as usual(3). The
effect of the changes can be seen in fig.2 and 3.

Entropy We use the expected entropy H as an information
theoretical quality measure of the position estimate Bel(st)
[3]:

Hp(st) = −
∑
st

Bel(st) log(Bel(st)) (6)

The sum runs over all possible states. The entropy of the par-
ticle distribution becomes zero if the robot is perfectly local-
ized in one position. Maximal values of H mean that Bel(st)
is uniformly distributed.

Fig. 3 illustrates the effect of the described motion model-
ing on the particle distribution. A robot is walking from the
center circle in the direction of the goal when a collision oc-
curs. It then continous towards the goal and turns left before
reaching the penalty area. When the collision is modeled, the
uncertainty in the belief is clearly visible and can be used to
trigger appropriate robot behavior.
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Figure 4a: (t = t0) Illustration of a robot localizing in an of-
fice hallway. The robot has a sensor to detect doors. At the
beginning, the robot does not know its position in the hall-
way (uniform belief distribution Bel?(st)). At this time, no
sensing of the world takes place.

s

p(zt|st)

sensing
action

s

Bel*(st) Bel*(st-1)

!

Figure 4b: (t = t1) The robot has moved down the hallway
and now senses a door p(zt|st) which results in the shown
belief Bel?(st). It has two peaks since the robot could be
standing in front of either door. The previous distribution is
illustrated by the dashed line.

4 Exploiting Negative Information
The classic example of negative information was described in
the Sherlock Holmes case “Silver Blaze.” In this case, a house
has been broken into. Under such circumstances, one would
expect the watch-dog to bark. The curious incident of the
non-barking of the dog in the nighttime provides Holmes with
the information that the dog must know the burglar, allow-
ing him to solve the case. Applied to mobile robot localiza-
tion, this means that conclusions can be drawn from expected
but actually missing sensor measurements [7]. Markov local-
ization methods, in particular Monte Carlo localization, have
proven their power in numerous robot navigation tasks, e.g.
in office environments [2], in the museum tour guide Min-
erva [19], in the highly dynamic RoboCup environment [11],
and outdoor applications in less structured environments [13];
an evaluation of the various algorithmic approaches is given
in [5].

Our work is focussed on localization based on landmarks.
Whenever a robot senses a landmark, the localization esti-
mate is updated using the sensor model. This sensor model is
acquired before the actual run. It describes the probability of
the measurement z given a state s (position, orientation, etc.)
of the robot. Sensor updates only occur when landmarks are
detected. If no landmark is detected, the state estimation is
updated using (only) the motion model of the robot.

p(zt*|st)

≈Bel(st)
Bel*(st-1)

s

s

Bel*(st)

Figure 5a: (t = t3) The robot moves on. There are no doors
nearby so the “door sensor” does not sense a door. The sensor
update distribution is shown in p(z?

t |st). This negative infor-
mation is of negligible use at this position: it does not help
differentiate between the peaks.
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Figure 5b: (t = t4) The robot moves on and the door sen-
sor still does not sense a door. Bel?(st) shows the belief if
negative information is taken into account, whereas Bel(st)
shows the belief without using negative information to bet-
ter illustrate the case. As can be seen from the diagram, using
negative information allows the robot to rule out the left peak.

Example. Consider a robot driving down a corridor as
shown in fig. 4a-5b. The robot has a sensor to detect doors
when it is standing in front of one. Let us assume further that
the robot is moving to the right but is oblivious of its starting
position. As it starts to move to the right it passes and senses
a door. Given this information, it could be standing in front
of either of the doors (states sleft and sright). As it moves on,
it does not pass another door for some time. At time t = t3,
if sleft had been the true position, the robot would have had
passed another door by now. Using the negative information
of not perceiving a door, the belief based on sleft can be ruled
out. As Thrun, Bugard, and Fox put it quite graphically, “not
seeing the Eiffel Tower in Paris implies that it is unlikely that
we are right next to it” [18].

We present a localization approach that incorporates such
negative information. To our knowledge, no explicit study
of using negative information in Markov localization has
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Figure 6: Probability of not sensing a landmark for a robot on
a RoboCup soccer field. For a robot located around the center
of the field, it is hard to miss landmarks.

been published. One difficulty is brought about by the fact
that, generally speaking, sensing a landmark constitutes a
greater information gain than not sensing one simply because
there are many positions within the robot’s environment from
where the landmark cannot be perceived. A landmark is, by
definition, something that stands out in an environment.

The other difficulty in implementing a system that uses
negative information on a real robot is that there are two main
reasons for the absence of an expected sensor reading: the tar-
get may not be there or the sensor may simply be unable to
detect the target (due to occlusions, sensor imperfections, im-
perfect image processing, etc.). Differentiating the two cases
is not a trivial task and requires careful sensor modeling. We
address this problem by considering the field of view of the
robot and by using obstacle detection to estimate occlusions.

Negative information modeling has been applied to ob-
ject tracking (see [17] for an introduction and [7] for an
overview). The event of not detecting an object is treated
as evidence that can be used to update its probability density
function [8]. In the RoboCup domain, not seeing the ball on
the field can be used to delete Monte Carlo particles in that
region as long as occlusions are considered [9]. Negative in-
formation is also mentioned in the context of simultaneous
localization and mapping (SLAM) where it is used to adjust
the confidence in landmark candidates [13].

4.1 The Notion Of Negative Information
Negative information describes the absence of a sensor read-
ing in a situation where a sensor reading is expected given the
current position estimate.

To integrate negative information, imagine a binary sensor
being added that fires whenever the primary sensor does not
detect a particular landmark l. Its probability of it firing is
given by:

p(z?
l,t|st) (7)

This sensor model can be used to update the robot’s belief
whenever it fails to detect a landmark, i.e. when negative evi-
dence is acquired. Fig. 6 shows the probability p(z?

t |xt, yt) of
not sensing a landmark on a RoboCup field at position (xt, yt)
summed over all possible robot orientations. This figure also
shows that it is most likely for the robot to sense a landmark
when it is standing in the middle of the field. The likelihood
of not sensing a landmark is highest for positions at the edge
of the field as the robot may be facing outwards.

Algorithm 1 Iterative Bayesian updating incorporating nega-
tive evidence

1: Bel−(st)←−
∫

p(st|st−1, ut−1)Bel(st−1)dst−1

2: if (landmark l detected) then
3: Bel(st)←− ηp(zt|st)Bel−(st)
4: else
5: Bel(st)←− ηp(z?

t,l|st, rt, ot)Bel−(st)
6: end if

This rather coarse way of incorporating negative informa-
tion can be refined by taking into account the sensing range rt

of the robot’s sensors and possible occlusions ot of land-
marks. The sensing range is the physical volume that the sen-
sor is monitoring. In case of a stationary robot, rt = r0 is
constant, for a mobile robot with a pan-tilt camera it is not.
By ot we denote a means of detecting whether or not occlu-
sions have occurred. In practice, this can be calculated from a
map of the environment, directly sensed by a sensor such as a
laser range finder, or derived from a model of moving objects
in the environment.

Combining the two yields the probability of not sensing an
expected landmark l:

p(z?
t,l|st, rt, ot) (8)

Whenever a landmark is not detected, it can be used in the
sensor update step of the Iterative Bayesian Updating (see Al-
gorithm 1).

4.2 Sensor Modeling For The Sony Aibo
Field of View
The ERS-7 is a legged robot with a camera mounted in its
head. The camera has a horizontal opening angle of 55o

and the robot’s head has 3 degrees of freedom (neck tilt,
head pan, head tilt). We abbreviate gaze direction by ϕ =
(ϕtilt1, ϕpan, ϕtilt2). The sensing range is calculated by consid-
ering the field of view (FOV) of the robot:

Occlusion
In order to account for occlusions, we opted for an approach
that has been used successfully for detecting obstacles, re-
ferred to as ‘visual sonar’ [6; 12]: The camera image is
scanned in vertical scan lines and unoccupied space in the
plane of the field is detected since it can only be of green
or white color (field lines). Scanning for these colors tells the
robot where obstacles are and where there is free space which
in turn can be used to determine if the visibility of the land-
mark is impaired, i.e. if it is occluded by other robot or some
other obstacle. More specifically, if the expected landmark
lies in an area where the robot has detected free space, the
likelihood of the corresponding pose estimate is decreased. If
it lies outside of the detected free space, no inference can be
made.



Taking FOV and occlusion into account, the sensor model
for not perceiving an expected landmark is given by:

p(z?
t |st, zt,obs) (9)

Where st = (xt, yt, ϑt, ϕt) describes the robot state that
consists of the robot pose (position xt, yt, and orientation ϑt)
and the current gaze direction ϕt.

4.3 Experimental Results
In the following experiments, unless otherwise stated, only
landmarks were used for localization to emphasize the effect
of using negative information.

Monte Carlo Localization, Implementation
This work is based on the Monte Carlo localization described
in [16] which also serves as a base line implementation. Sen-
sor updating was extended to account for FOV and occlusion
as described. This also requires sensor updating to be trig-
gered by new camera images regardless of whether or not
there was a percept. Before re-sampling, the weight of an
individual particle is calculated as follows: Of all landmarks
L, the subset of landmarks L′ is detected, the subset L? is
expected but not detected, and lastly the subset L� is not de-
tected but was also not expected: L = L′ ∪ L? ∪ L� and
L? ∩ L′ = ∅. The probability of a particle pi is calculated by
multiplying all the likelihoods of all gathered evidences:

pi =
∏
l∈L′

sl(αmeasd, αexpd)︸ ︷︷ ︸
detected

·
∏

l∈L?

s?
l (ϕ, αexpd)︸ ︷︷ ︸

expected and not detected

(10)

The function sl is an approximation of the sensor model
and returns the likelihood of sensing the landmark l at angle
αmeasd for a particle pi that expects this landmark to be at
αexpd. Function s?

l models the probability of not sensing the
expected landmark l ∈ L? given the current sensing range as
determined by ϕ, the robot pose associated with pi, and the
obstacles percept zobs.

Preliminary Experiment
For illustration purposes, we conducted a preliminary exper-
iment in simulation. In this experiment, the robot starts out
being well localized and is then displaced to a position where
it is not able to get any new sensor information (fig. 7). It
is similar to the kidnapped robot problem, but here we em-
phasize the moment right after the robot is displaced rather
than investigating how fast it can recover. The effect of the
displacement on the Monte Carlo particle distribution is the
following: particles which represent the previous belief be-
come less likely when negative information is taken into ac-
count (i.e. the information that the landmark is not detected
where it is expected). The distribution diverges towards par-
ticles which were less likely prior to the displacement. Parti-
cles representing the previous belief are eventually eliminated
from the distribution because they are inconsistent with the
current (negative) sensor data. Particles which differ from the
previous belief just enough to be compatible with the current
sensor data are favored; particles remain close to where the
robot was last able to localize. This does, in most cases, bet-
ter represent what has happened to the robot than distributing
the particles uniformly over the entire field.
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Figure 7: Incorporating negative information. White (out-
lined) arrows denote particles that receive negative informa-
tion and that are therefore less likely than others. In (1), the
effect of using negative information is shown for a robot that
is well localized and frequently sees landmarks. (2) Distri-
bution shortly after the robot has been displaced (kidnapped):
particles facing the goal are less likely and will eventually be
eliminated from the distribution.

4.4 Localization Experiment
The following experiment is a localization task using the real
robot. The robot is placed on the field at the location indi-
cated in fig. 9, facing outwards. The robot performs a scan-
ning motion with its head (pan range [−45o, 45o]) but does
not move otherwise. From its position, it can only see one
landmark. A panorama composed of actual robot camera im-
ages is shown in fig. 8. The a priori belief is assumed uni-
form. This position was chosen because it is a particulary
difficult spot for the robot to localize given the limited sensor
information. Two quantities can be used when a landmark is
seen: its size in the camera image can be used to estimate the
distance to the landmark dl and the relative angle to the land-
mark (bearing, αl) can be calculated from its position within
the image. In practice we only use the bearing because the
distance measurement is error prone. Using just the bearing,
only the orientation of the robot can be inferred. Note that
this differs from triangulation where distances are used.

In the following paragraphs, the basic localization not us-
ing negative information and localization incorporating nega-
tive information are compared. We first qualitatively analyze
the particle distribution and then show how the entropy of the
distribution decreases when negative information is consid-
ered.

Particle Distribution
The basic experiment was conducted using 100 particles for
Monte Carlo localization. It was repeated on a log file con-
taining camera images, robot joint angles, and odometry data
using an increased particle count of 2000 to get a better rep-
resentation of the probability distribution.

Not using negative information. Without using negative
information, the robot is unable to localize (fig. 10). Only
the orientation of the particles is adjusted according to the
sensor readings. The apparent clustering in the small sample
set in fig. 10 is not stable and, even after considerable time,



Figure 8: A panorama view generated from actual camera
images, single camera image highlighted. The robot can only
see one landmark.

Figure 9: Experimental setup: Robot is standing at the posi-
tion shown in the photo. It performs a scanning motion with
its camera.

the particles do not converge. The distribution for the larger
sample set is uniform (w.r.t. position).

Note that the distribution is not circular because the dis-
tance to the landmark was not used. Instead, only the bearing
to the landmark was used. This results in a radial distribution
resembling magnetic field lines.

Incorporating negative information. The negative infor-
mation gained in this experiment is not seeing but one land-
mark within the pan range (pardon the double negation).
Incorporating this information, the robot is able to local-
ize quickly. On average, the robot is reasonably well lo-
calized after about 10 secs with a pose error of less than
∆p = (25 cm, 25 cm, 20o).

Entropy
Entropy is considered for the localization task as defined in
equation 6. Fig. 12 shows the progression of the distribution’s
entropy over time for the above localization experiment cal-
culated from the 100 particle distribution.

Not using negative information. The run starts with a uni-
form particle distribution which equals to maximum entropy.
When the landmark comes into view, a decrease in entropy
is observed. This information gain is due to the robot being
able to now infer its relative orientation w.r.t. the landmark.
Since there are no constraints on the robot’s position, the en-
tropy remains at a relatively high level. This is easily seen
by separately calculating the entropy of the angle and posi-
tion distributions. Note that even though there is a drop in

Figure 10: Particle distribution not using negative informa-
tion, initial uniform distribution and distribution after 10s.
Solid arrows indicate Monte Carlo particles (100). The ex-
periment was repeated using 2000 particles (shaded lines) to
better represent the actual probability distribution. The actual
robot position is indicated by the white symbol, the estimated
robot pose by the solid symbol. Not using negative informa-
tion and only using the bearing to the landmark, the robot is
unable to localize. Some clusters of particles form but they do
not converge. As one would expect, the position distribution
is almost uniform but the relative angle is quite distinct.

entropy, the pose estimate itself is still highly uncertain.
Incorporating negative information. When using negative

information, the entropy decreases even before the first sen-
sor reading. The information gain is much smaller than that
caused by perceiving a landmark but nevertheless noticeable.
As soon as there is a percept, the negative information in com-
bination with the knowledge of the robot’s orientation results
in a quick convergence towards the actual robot pose. This is
remarkable since without using negative information, local-
ization was not possible.

Using field lines for localization. The previous experi-
ment was repeated using field lines for localization in addi-
tion to landmarks. This enables the robot to localize quickly
at the actual robot pose even when using the basic localiza-
tion (fig. 12, right). Adding negative information, however,
greatly increases the rate of convergence and the overall level
of entropy is reduced even further. The decrease of entropy
when incorporating negative information is not obscured by
the usage of lines for localization although field lines offer a
much greater information content than negative information.

Kidnapped Robot. The kidnapped robot problem is a com-
monly used benchmark for the flexibility and robustness of
localization algorithms [5]: a localized robot is displaced and
the time for it to recover is measured. Our kidnapped robot
experiments underlined and confirmed the already stated find-
ings. The robot is able to recover from displacements with-
out using negative information as soon as it successively sees
three landmarks. In regions where this is not guaranteed, the
case is different. Whereas without using negative informa-
tion, the robot does not have enough evidence to update its



Figure 11: Particle distribution when negative information is
incorporated, initial uniform distribution and distribution af-
ter 10s. When incorporating negative information, the robot
is able to localize quickly.

belief, incorporating negative information allows the robot to
localize quickly and reliably in such regions.

The ability to localize more quickly using negative infor-
mation is highly beneficial in real world applications where
the robot is trying to actually perform a task rather than to
localize perfectly. Such tasks often require the robot to focus
its attention on objects other than landmarks and the sensing
strategy may keep it from seeing as much of the world as it
potentially could. Integrating negative evidence thus allows
for more efficient sensing and improves overall robot perfor-
mance.

5 Conclusion
In this paper we demonstrated how integrating negative infor-
mation as well as information about collisions into Markov
localization can be used to achieve significantly better local-
ization performance for a mobile robot.

An odometry-based motion model is improved using the
knowledge about collisions with obstacles yielding a quality
measure for the odometry data. This knowledge is obtained
by comparing the motor commands and the sensor readings
of the leg joints. In the case of a collision, the influence of the
odometry on the motion model is reduced and extra noise is
added that models the impact of an obstacle.

Incorporating negative information into the sensor model
makes localization more stable even in areas where land-
marks are rarely visible. Because sensors are more likely to
overlook observable landmarks than hallucinate ones that are
not visible, extra care has to be taken in designing the sen-
sor model. To avoid false negatives, the model needs to take
into account the sensor’s sensing range and possible occlu-
sions of landmarks. We have presented how such modeling
can be achieved for a Sony Aibo robot in the RoboCup envi-
ronment. In real robot experiments, we have shown that using
negative information, a robot is able to localize in positions
where it otherwise would not. The entropy of the distribution
is greatly reduced when negative information is incorporated

0 0
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Figure 12: Expected entropy of the belief in the localization
task with (?) and without (thin line) using negative informa-
tion. 1) At first the robot does not see the landmark. As soon
as the landmark comes into the robot’s view (indicated by the
dashed vertical line), the entropy drops. Using negative infor-
mation, the quality of the localization is greatly improved and
the entropy continues to decrease over time. 2) Additionally
using field lines for localization enables the robot to localize
even without negative information. Incorporating negative in-
formation, however, yields a higher rate of convergence and
the entropy is significantly lowered.

and the rate of convergence towards the estimated position is
increased.

The additional information that is being incorporated into
the belief makes it more responsive. This improves localiza-
tion in areas where there are few landmarks visible and, on
the other hand, leads to a quick degradation of the belief when
collisions occur. The latter is often the case when two robots
fight over a ball and one tries to shot the ball; such action of-
ten fails because the robot is unaware of being badly localized
and then shoots the ball in an undesirable direction. Incorpo-
rating collision detection into the belief allows the robot to
recognize such situations and act accordingly.

Future work will focus on how negative information can
be used for other types of landmarks (e.g. field lines) and
other sensors. Performance evaluation will be continued in
more complex situations and the possibilities of reducing the
number of particles necessary for robust Monte Carlo local-
ization will be investigated. The increased responsiveness of
the probability distribution will allow for active vision ap-
proaches that take the current belief into account.
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[15] T. Röfer. Evolutionary Gait-Optimization Using a Fit-
ness Function Based on Proprioception. In D. Nardi,
M. Riedmiller, C. Sammut, and J. S.-V. (Eds.), editors,
8th International Workshop on RoboCup 2004 (Robot

World Cup Soccer Games and Conferences), volume
3276 of Lecture Notes in Artificial Intelligence, pages
310–322. Springer, 2005.
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