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1 Introduction 

As a research group, "Impossibles" team has been set up in Artificial Intelligence 
and Robotics Laboratory (AIRL) of Computer Science and Engineering Department 
at Sharif University of Technology since March 2004. Research Areas of 
"Impossibles" were categorized into three groups including Artificial Intelligence 
(Machine Learning, Multi-Agent Systems, and Reasoning), Theoretical Computer 
Science (Algorithms, and Data Structures), Soft Computing (Fuzzy Theory, and 
Genetic Algorithms).  

 
Having done the background researches, all of the members decided to exploit 

their knowledge in a practical and real world environment. Since several teams from 
Sharif University of Technology had achieved noticeable successes from 
RoboCup2000 in Melbourne to RoboCup2003 in Padua, RoboCup was selected as the 
first choice; therefore, we were able to employ their corresponding experiences. Table 
1 demonstrates a brief overview of these achievements.  

 
As explained above, RoboCup's interesting features attracted us to begin 

implementation of our previously designed ideas in Rescue Simulation Environment 
(RSE) to participate in RoboCup2005 in Osaka. So it was our first participation in 
such international competitions. Having coded from scratch, we applied our new 
ideas. Consequently, "Impossibles" got world championship in Rescue Simulation 
League in Osaka 2005.  

 
Once world championship was achieved, team members made decision on 

continuing their research objectives through AIBO 4-legged League. AIBO League 
was preferred over the other RoboCup Leagues because of the following four reasons 
which are also considered as “Impossibles” objectives in AIBO league. AIBO does 
support the real world challenges, whereas Rescue Simulation does not. Additionally, 
it is the only physical robot league in which there is no need to get involved into 
mechanical aspects of the robots' design, so it was the most similar league to the 
simulation leagues such as Rescue Simulation. Furthermore, AIBO 4-legged league 
supports most of the research interests of the team members such as machine learning. 
Lastly, several highly ranked universities (e.g. CMU and Texas-at-Austin) have done 
research on various branches of AI using AIBO robots; hence, it is thought to be a 
qualified infrastructure for our team members to do research on. On the other hand, 
we follow our competitive objective which is to be ranked as one of the first four 
teams of AIBO league in Bremen, Germany, 2006. 
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Since Vision and Image Processing were required in order to accomplish the 
AIBO project, defined in Artificial Intelligence and Robotics Laboratory (AIRL) of 
Computer Science and Engineering Department at Sharif University of Technology, 
we came to conclusion to invite some of the members of Vision Group at IPM School 
of Mathematics Scientific Computing Center. 

Table 1: Sharif University of Technology Teams in RoboCup Leagues 

Place Team League Rank 

RoboCup2000 Melbourne Sharif CE Soccer: Middle Size Third Place 

Arian Rescue Simulation Second 
Place RoboCup2001 

Seattle 
Sharif CE Engineering 

Challenge First Place 

RoboCup2002 
Fukuoka/Busan Arian Rescue Simulation First Place 

Arian Rescue Simulation First Place 
RoboCup2003 Padua 

CEDRA Rescue Robot Second 
Place 

RoboCup2005 Osaka Impossibles Rescue Simulation First Place 

RoboCup2006 Bremen Impossibles AIBO 4-Legged ??? 
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2 Architecture 

Our previous experience in Multi-Agent System (MAS) architecture design in 
Rescue Simulation Environment leaded us to World Model Based Architecture 
(WMBA). Having made some subtle modifications in WMBA, we employ it as our 
basic design architecture for concurrently-running objects of Open-R SDK. WMBA 
contains three major tasks that are done independently in following subsystems: 

 
1. Sensing Subsystem  

2. Communication Subsystem  

3. Action Subsystem  

These subsystems are run repeatedly with different frequencies. They are also 
managed in such a way that objectives are achieved and constraints are convinced. 
The main constraint of the AIBO robots is the limited resources such as CPU and 
maximum 500Kbps data transmission for wireless communication. 

 
Figure 1 demonstrates the World Model Based Architecture. As in DFD diagrams, 

subsystems are denoted by dotted rectangles, data flow is shown as arrows, and 
processes are shown via circles. 

 
Sensing subsystem is responsible for perception via vision and other sensors. 

Additionally, communication subsystem is employed to transmit information among 
AIBO robots. Furthermore, action subsystem is in charge of determining what the 
AIBO robots decide and perform. Decision Making (DM) is responsible for high level 
decision makings, whereas in Motion Controller (MC) low level skills are 
implemented. Last of all, Localization is considered as an input gate to World Model 
(WM). Localization’s main task is updating World Model (WM) using the data 
received from the adjacent subsystems, i.e. Motion Controller (MC), World Model 
(WM), Communication, and Vision. 
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Figure 1: "Imossibles" World Model Based Architecture (WMBA) 
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3 Fuzzy World Model 

In a real world robotics environment such as AIBO 4-legged league, agents have 
to have interactions with several physical objects, e.g. the orange ball. This interaction 
is typically implemented as a perception-action loop. AIBO Robots are equipped with 
sensors that perceive physical characteristics of the environment and they use these 
percepts to build an internal representation of the environment, i.e. World Model 
(WM). Once this world model is built, it is possible for agents to exploit in order to 
accomplish the tasks responsible for producing the required actions to be done by the 
agent, AIBO robot.  

 
Generally, the anchoring process consists of the following three steps: 
 

 Classification: each perceived object (i.e. set of features produced by a 
sensor) is classified according to the predefined features of known 
objects. 

 
 Fusion: Objects perceived by different sources, such as sensors or 

camera, that can be associated to the same physical object are merged. 
 
 Tracking: The perceived information via current inputs update the 

corresponding objects’ features in the world model. We assume that 
smart sensors produce sets of features, where each feature is a triple: 

ρ,, vlabel . The label of a feature is its name, v  is its numerical 
value, and ρ  is its reliability value, i.e. how the data is assumed to be 
reliable given the specific sensor and the acquisition situation.  

 
o If the perceived instances do not match any instance in the 

world model, a new instance is created with the value of the 
perceived instance. 

 
o If an instance in the world model does not match any perceived 

instance, the reliability values of its attributes are exponentially 
decreased by a coefficient between zero and one. 

 
o If a perceived instance matches an instance in the world model, 

their reliability values are composed by the arithmetic mean. 
 
 
The classification process matches features provided by the sensors with the 
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predefined properties of objects of interest. The reliability of the concept instance is 
computed as a ‘ min ’ of the reliability of the features related to substantial properties. 
The properties have a reliability value equal to the reliability of the corresponding 
features. The fusion process merges instances, thus obtaining new instances whose 
reliability is computed using evidence theory (See  5.2.1) and the reliability of the 
attributes. The perceived instances produced by the fusion module update the values 
of the instances in the world model.  

 
In this way, the reliability of the instances in the World Model (WM) follows the 

reliability of the perceived instances, and when an object is no longer perceived, the 
reliability of the related instance decreases until it is thrown out of the world model. 
This is needed in dynamical environments, where we cannot expect that data remain 
the same when we cannot fetch them. The decay is proportional to a constant ‘γ ’ 
defined by the user, which can be defined by considering the relative rate of change of 
the environment with respect to the data acquisition rate. 

 
Although it seems a good idea to collect all information somewhere, it may cause 

some problems, e.g. mutual exclusion. In order to solve mutual exclusion, two ideas 
are usually employed. First, World Model is itself considered as an object so it 
receives updating data and requests to send required data to other parts. Additionally, 
Data Structure (DS) design is in a way that no more than one part can update the 
world model; however, there is no limitation on number of parts which are reading 
data.  

 
As a real world environment, AIBO robots receive uncertain information of their 

surroundings via their sensors and camera. In order to keep uncertain data, we exploit 
fuzzy logic; therefore, the above explained fuzzy world model was designed to 
support the concept of vagueness.  
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4 Communication 

Sony AIBO ERS-7 model have a wireless LAN module (wi-fi certificated) [1]  
which made if able to communicate which other teammates to share useful 
information perceived from the environment to improve the quality of each agent’s 
world model eventually resulting in more accurate localization and object detection. 

 
Furthermore, Due to RoboCup 2006 rules, each team has a upper band limit of 

500 Kbps for communication among the agents which includes also game manager 
commands but every team has some special UDP port to broadcast on [2]. So ideally 
we can count on about 100 Kbps bandwidth for each AIBO robot. 

 
In what follows we will discuss various aspects of communication and will 

explain the way that our communication module is working. 

4.1 Communication module 

“Impossibles” AIBO communication module, as an independent module, works 
in parallel with other modules such as vision, and decision making. It is also in charge 
of sharing essential data amongst all players. For instance, knowing accurate positions 
of the players are only possible by having each player report his useful information 
such as its own position to the others. 

 
The communication module is to be reliable and eventually be aware of the packet 

loss if any exists. It will repeatedly choose entities from World Model (WM) objects 
based on their last report time, their reliability measure and also importance of data 
for other teammates. 

4.2 Information Level 

There are two general strategies for communication in Multi-Agent Systems 
(MAS) that a team can employ depending on system's general architecture and also on 
what kind of data the agents intend to share. 
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4.2.1 High level commands 

This strategy is best applicable in centralized system architecture where a center 
commands its agents; therefore, in this method, all critical and high level processes 
and decision makings are made in center. Consequently, only high level commands 
are sent to agents in order to make them aware of their behavior. 

4.2.2 Low level data 

In this method communication system is trying to share all raw data that each 
agent have and every thing could and should be distributed. The latter has several 
advantages over former in distributed systems which are discussed in “Impossibles” 
rescue simulation team description paper [3]. 

4.3 Centralized vs. Distributed Architecture 

Generally, we consider the communications amongst players distributed, but due 
to the large amount of transmitted data and hence time-consuming processes, agents 
themselves accomplish their own jobs and broadcast the results, i.e. processes data. 

 
If there wasn't any broadcast feature in our access media, having centralized 

communication may also reduce number of messages which are needed to share all 
information among agents. 

 

m = number of messages needed to have all information shared between agents 

• With broadcast message: 

o Centralized approach – 1+= nm   

[n peer to peer message + 1 broadcast] 

o Distributed approach – nm =  
[n broadcast message] 

 

• Without broadcast message: 

o Centralized approach – nnnm 2=+=  

o Distributed approach – ( )1−×= nnm   

 

As shown in Figure 2, when we are considering our access media properties 
including its broadcast ability and limited bandwidth and also the fact that defining an 
agent as center might be unreliable we decide to use distributed communication by 
broadcasting messages. 

 
The messages contain low level data sensed and acquired by agents from the 

surroundings such as ball, teammates, and opponent players which are used in  
localization and updating word model in with each agents self awareness. 
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Figure 3: Distributed Scenario 

 



 
18

4.4 UDP vs. TCP 

Selecting either UDP or TCP is thought to be the primary task, and according to 
‘NS2’ simulation result for both UDP and TCP scenarios and other teams hints [4, 
and 5] we decide to use UDP, because of lesser overhead in compare with TCP and 
ability of broadcasting by UDP which is essential for us to minimize our number of 
sent messages in our distributed strategy. 

 
NS2 simulator have also been employed to simulate UDP data transfer in wireless 

mobile networks, in order to select optimized value for our UDP packet size to 
achieve maximum bandwidth considering possible data collision and opponent team 
inference. The following figure (Figure 4) demonstrates a snapshot of our simulated 
situation. 

 

 
Figure 4: NAM Snapshot of Network Simulator 

 

In our simulated situation, there is just one access point [node #0], four players 
[nodes #1 2 3 4], and five other network traffic producers (4 hustler players and one 
manager). Also the simulated wireless network implements multicast packet 
switching and 802/11 MAC protocol and random movement for players. 
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5 Localization 

As mentioned before, Localization is in fact the interface for World Model that 
processes received data and consequently updates the World Model (WM). Unlike 
other processes running repeatedly without being blocked, Localization is not active 
until it receives a message from Vision, Motion Controller (MC), or Communication. 
The most important information is the position of robot itself which should be 
calculated in a reliable way. In “Impossibles” AIBO software, this calculation is done 
using Self-Localization module, discussed later. Other data such as position of other 
robots and ball are determined using Object-Localization. Both of these methods are 
explained in the following sections. 

5.1 Self-Localization 

“Impossibles” Self-Localization Module (SLM) takes the previous positions and 
differential locations as its input. Therefore, it receives its inputs from World Model, 
Vision and Motion Controller (MC) modules. Having processed the inputs, it then 
updates the World Model. In “Impossibles” implemented software positions are 
stored as (x, y, θ) triples that are 2D position of robot and its direction. 

 
Although, the most popular approach for position estimation of mobile robots is  

Monte Carlo Localization (MCL) [6] that was widely being used by 4-Legged AIBO 
soccer teams, we need a method that is compatible with our fuzzy probabilistic world 
model and also is able to support real time applications. In what follows, we present a 
new approach that is a probabilistic approach for mobile robot localization.   

5.1.1 Probabilistic Distribution Localization (PDL):  

It considers a probabilistic distribution function (PDF) for each variable (such as 
x, y and θ for AIBO).  In Monte-Carlo Localization (MCL), samples are stored by  
(x, y, θ) triples and a weight factor (p>0). In contrast, in Probabilistic Distribution 
Localization (PDL), we have three PDF for each sample (one PDF for each of x, y 
and θ). Also each differential motion, i.e. (Δx, Δy, Δθ), contains three corresponding 
PDFs. So we need to update the PDFs after movement update (from Motion 
Controller) and sensor update (from Vision). 
 

 Movement Update: We consider ‘X’ a random variable for probabilistic 
distribution of ‘x’ position and ‘ΔX’ as a random variable for probabilistic 
distribution of movement of ‘x’ so the new value for ‘X‘ will be ‘X+ΔX’. 
In this way the corresponding PDF for x is obtained. 

 Sensor Update: As mentioned above, each perceived data by vision 
module in “Impossibles” software contains a PDF for each variable for 
example ‘x’ and ‘p’ that is the probability that this sample is correct. Now 
we create a new PDF for ‘x’ by the following formula: 
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)()1()()( xpxpx fff XoldXvisionXnew

×−+×=   (1) 

  
 

Our PDF may become worthless after too many movements or sensor updates 
with small ‘p’. So we use the idea of "Sensor Resetting Localization" [7] that 
considers a threshold for average of ‘p’. Some new samples must replace when it 
becomes lesser than the assigned threshold. Similarly in PDL in such cases, more 
samples are fed by vision module.  

 
As explained before, Self-Localization’s main output is a probability distribution 

function (PDF) and not a crisp value, but PDL is required to provide more suitable 
results for other modules. So a kind of clustering algorithm can be employed. 

5.1.2 Triangular Probabilistic Distribution Localization (TPDL):  

In this section we are going to change PDL approach in such a way that it 
becomes simple and suitable for real-time applications, e.g. mobile robot such as 
AIBO. In order to simplify the PDL process, we employ triangular PDFs in order to 
make our calculation and storing much simpler. For storing PDF it is enough to store 
some point. For instance, for function shown in Figure 5, it is enough to store 
following points: ( (0,0) , (1,.5) , (2,.5) , (3,0) ). 
 

 
Figure 5: A sample Trapezoidal/Triangular PDF 

 
 

 Movement Update: With us considering both of random variables X and 
Y triangular PDF, sum of them is paranoid-segment PDF. To simplify the 
process, we approximate such functions to be triangular function. It could 
be done using convolution of these PDFs as a vector of possibility for each 
PDF. As an example Figure 6(a) is PDF of a variable before movement 
update. Figure 6(b) shows PDF of movement and Figure 6(c) is the final 
result of movement update. Figure 6(d) shows linear approximation of 
result via TPDL algorithm. 
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Figure 6:  An example of  Movement Update process. 

 
 Sensor Update: This step is straightforward in triangular PDF. A set of ‘x’ 

points, stored, are union of this ‘x’ of both PDF and the corresponding ‘y’ 
could be calculated by sum of corresponding ‘y’. Figure 7 illustrates a 
process of Sensor Update with p=0.7 and Figure 7 (c) is the final result. 
 

 
        Figure 7: An example of Sensor Update. (a) old PDF (b)sensor PDF (c) result by p=.7 

 
Also to decrease required memory for storing triangular PDF we omit points 

that have small magnitudes. Additionally, the function is scaled in a way that 
integral of the function becomes one. 

 
TPDL seems to be great that is compound of Monte-Carlo Localization and 

Sensor Resetting Localization with probability theory in the other hand it is 
compatible with our Probabilistic World Model and can be used real-time.  

 
Figure 8 demonstrates our Self-Localization flowchart using TPDL method. 

We explained sensor and movement updating and also storing triangular PDFs as a 
set of points. The next submodule is "PDF Filtering" which filters PDF in order to 
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omit small values and also non-reliable ones. Then, it is determined if some extra 
samples are required from vision. This decision is made using a threshold on PDF 
variance after clustering it. 

 
 
When it needs more samples it 

sends a signal to vision module to 
provide localization module with 
some extra samples. This signal 
also contains information about 
the accuracy of such a sample that 
may cause executing time-
consuming, i.e. Specific Vision 
Subsystem (SVS) which is 
computationally more expensive 
than GVS (See General vs. 
Specific Vision subsystems). 

 
Although we do not use 

information about positions of 
AIBO robots from its teammates, 
it can be employed if vision part is 
optimized so have enough time for 
more calculations; however it 
seems impossible with current 
CPUs of AIBO robots. Therefore, 
in TPDL we consider this 
information to be samples that of 
course are not as precise as robot 
vision. In this case, 
self-localization method may be 
fed from Communication 
subsystem too. 

 

 
Figure 8: Self-Lozalization Flowchart 

 

5.2 Object Localization 

Vision module supports data for possibly position of that robot that is needed by 
self-localization and also possible position of other objects such as ball and hostler 
AIBO, because the teammates’ locations are announced by wireless communication. 
Object localization is responsible for collecting data about object position from his 
vision submodule and communication from other teammates in order to estimate these 
positions.  

5.2.1 Evidence Theory 

We employed evidence theory [8] in order to estimate the locations of objects of 
interest on the field. Evidence theory begins with the familiar idea of using a number 
between zero and one to indicate the degree of support a body of evidence provides 
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for a proposition, i.e. the degree of belief one should accord the proposition on the 
basis of the evidence. Evidence theory focuses on the combination of degrees of belief 
or support based on one body of evidence with those based on an entirely distinct 
body of evidence. The heart of the theory is Dempster’s rule for effecting this 
combination. What follows is a brief explanation of evidence theory. The 
mathematical proofs of theorems are not given in details. 

5.2.1.1 Basic Probability Numbers 

We want to partition all of one’s belief among the different subsets of Θ , 
assigning to each subset ‘ A ’ that portion that is committed to ‘ A ’ and to nothing 
smaller. This suggests the following definition: 

 
• Definition: if Θ  is a frame of discernment, then a function 

[ ]1,02: →Θm  is called a basic probability assignment whenever 
(1) ( ) 1=∅m , and (2) ( )∑

Θ⊂

=
A

Am 1. 

 
The quantity ( )Am  is called A ’s basic probability number, and it is understood to 

be the measure of the belief that is committed exactly to A . Condition (1) reflects the 
fact that no belief ought to be committed to Θ , while (2) reflects the convention that 
one’s total belief has measure one. 

 
To reiterate, the quantity ( )Am  measures the belief that one commits exactly to 

A , not the total belief that one commits to A . To obtain the measure of the total 
belief committed to A , one must add to ( )Am  the quantities ( )Bm  for all proper 
subsets B  of A : 
 

( ) ( )∑
⊂

=
AB

AmABel       (2) 

 
A function [ ]1,02: →ΘBel  is called a belief function over Θ  if it is given by 

above equation for some basic probability assignment [ ]1,02: →Θm . 
 
The belief function with the simplest structure is surely the one obtained by 

setting ( ) 1=Θm  and ( ) 0=Am  for all Θ≠A . Since this belief function seems 
appropriate when one has no evidence, it is called the vacuous belief function.  

5.2.1.2 Belief Functions 

According to “Impossibles” AIBO architecture, the concept of belief functions is 
employed. As discussed earlier, the vision module of each agent (i.e. AIBO robot) 
provides a set of tuples in each of which a fuzzy reliability/belief degree is present. 
Each object on the field is represented by tuple. 
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• Theorem 5.2.1.2.1: If Θ  is a frame of discernment, then a function 
[ ]1,02: →ΘBel  is a belief function if and only if it satisfies the following 

conditions: 
 

(1) ( ) 0=∅Bel  
(2) ( ) 1=ΘBel  
(3) For every positive integer n  and every collection nAA ,,1 L  of 
subsets of Θ , 

    ( ) ( )∑
∅≠

⊂ ∈

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥∪∪

I
nI Ii

i
I

n ABelAABel
,,1

1
1 1

L
IL . 

Furthermore, the basic probability assignment, which produces a given belief 
function, is unique and can be recovered from the belief function: 

 
• Theorem 5.2.1.2.2: Suppose [ ]1,02: →ΘBel  is the belief function given 

by the basic probability assignment [ ]1,02: →Θm . Then 
 

( ) ( ) ( )∑
⊂

−−=
AB

BA BBelAm 1    (3) 

       For all Θ⊂A . 
 
A subset ‘ A ’ of a frame Θ  is called a focal element of a belief function Bel  over 

Θ  if ( ) 0>Am . The union of all the focal elements of a belief function is called its 
core. 

5.2.1.2.1 Bayesian Belief Functions 

In order to simplify the procedure, we decided to employ Bayesian belief 
functions. We are going to discuss Bayesian belief functions here. The first three of 
Bayes’ rules can also be expressed in terms of a frame of discernment: 

 
• Definition: if Θ  is a frame of discernment, then a function 

[ ]1,02: →ΘBel  is called a Bayesian belief function if 
 
(1) ( ) 0=∅Bel , 
(2) ( ) 1=ΘBel , 
(3) ( ) ( ) ( ) ∅=∩Θ⊂+=∪ BABABBelABelBABel and,whenever . 
 
• Theorem 5.2.1.2.1.1: A Bayesian belief function is a belief function. 
 
• Theorem 5.2.1.2.1.2: Suppose [ ]1,02: →ΘBel  is a belief function. Then 

the following assertions are equivalent: 
 

(1) Bel  is Bayesian. 
(2) All of Bel ’s focal elements are singletons. 
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• Theorem 5.2.1.2.1.3: A function [ ]1,02: →ΘBel  is a Bayesian belief 
function if and only if there exists a function [ ]1,0: →Θp  such that 

 
( ) 1=∑

Θ∈θ

θp ,  and  ( ) ( )∑
∈

=
A

pABel
θ

θ  

  for all Θ⊂A .  

5.2.1.3 Dempster’s Rule of Combination 

The concept of data fusion was explained in world model chapter. Having a set of 
belief functions by AIBO robots, we are to combine these belief functions in order to 
be able to exploit them. Belief functions are adapted to the representation of evidence 
because they admit a genuine rule of combination. Given several belief functions over 
the same frame of discernment but based on distinct bodies of evidence, Dempster’s 
rule of combination enables us to compute their orthogonal sum, a new belief function 
based on the combined evidence. In the special case of a frame of discernment 
containing only two elements, Depster’s rule of combination was accurately stated 
and used by J. H. Lambert [9]. 

5.2.1.3.1 Combining Two Belief Functions 

Dempster’s rule is most accessible to the intuition when it is expressed in terms of 
the basic probability numbers, and especially when these basic probability numbers 
are depicted geometrically. 

 
Suppose 1m  is the basic probability assignment for a belief function 1Bel  over a 

frame Θ , and denote 1Bel ’s focal elements by kAA ,,1 L . Then the probability 
masses measured by the basic probability numbers ( ) ( )kAmAm 111 ,,L  can be depicted 
as segments of a line segment of length as segments of a line segment of length one, 
as in Figure 9. 

 

 
 
 

In order to carry out the combination of 1Bel  and 2Bel , we now think of the 
square as representing our total probability mass and suppose that 1Bel  commits 
vertical strips to its focal elements, while 2Bel  commits horizontal strips to its focal 

elements. Figure 10 singles out, for example, a vertical strip of measure ( )iAm1  that is 

( )11 Am  ( )iAm1  ( )kAm1  ( )12 Bm  ( )jBm2  ( )ρBm2  

Figure 9: Probability Measures 
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exactly committed to iA  by 1m  and a horizontal strip of measure ( )jBm2  that is 
exactly committed to jB  by 2m . The intersection of these two strips has measure 

( ) ( )ji BmAm 21 × , and since it is committed both to iA  and to jB , we may say that the 
joint effect of 1Bel  and 2Bel  is to commit it exactly to ji BA ∩ .  
 

 

Figure 10: Schema of Combining Two Belief Functions  
 

 
Similarly, we can specify the exact commitment of every rectangle in Figure 10. 

A given subset A  of Θ  may have more than one of these rectangles exactly 
committed to it, of course; the total probability mass exactly committed to A  will 
have measure 
 

( ) ( )∑
=∩ ABA

ji
ji

ji

BmAm
,

21 . 

 
The only difficulty with this schema is that it may commit some of the square to 

the empty set ∅ . For there may well be a focal element iA  of 1Bel  and a focal 
element jB  of 2Bel  such that ∅=∩ ji BA , in which case 
 

( ) ( ) 0
,

21 >∑
∅=∩ ji BA

ji
ji BmAm . 

 
The only remedy is to “discard” all the rectangles thus committed to ∅ . If not all 

the rectangles are thus discarded, the measures of the remaining rectangles can then 
be inflated by multiplying them by the following factor. 
 

( )11 Am  ( )iAm1  ( )kAm1  

( )12 Bm  

( )jBm2  

( )ρBm2  
probability mass of 
measure 

( ) ( )ji BmAm 21 × , 
committed to ji BA ∩  
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( ) ( )
1

,
211

−

∅=∩
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
− ∑

ji BA
ji

ji BmAm     (4) 

 
So that the total probability mass will again have measure one. As the next two 

theorems show, this construction does indeed lead to a new basic probability 
assignment, provided only that 1Bel  and 2Bel  do not flatly contradicted each other. 

 
• Theorem 5.2.1.3.1.1: Suppose 1Bel  and 2Bel  are belief functions over the 

same frame Θ , with basic probability assignment 1m , 2m , and focal 
elements kAA ,,1 L  and ρBB ,,1 L  respectively. Suppose 

 
( ) ( ) 1

,
21 <∑

∅=∩ ji BA
ji

ji BmAm       

 
Then the function [ ]1,02: →Θm  defined by ( ) 0=∅m  and  

 

( )

( ) ( )

( ) ( )∑

∑

∅=∩

=∩

−
=

ji

ji

BA
ji

ji

ABA
ji

ji

BmAm

BmAm

Am

,
21

,
21

1
    (5) 

 
 

for all non-empty Θ⊂A  is a basic probability assignment. The core of the 
belief function given by m  is equal to the intersection of the cores of 1Bel  and 

2Bel . 
 

The belief function given by m is called the orthogonal sum of 1Bel  and 2Bel  and 
is denoted 21 BelBel ⊕ . If Equation.4 does not hold, then we say that the orthogonal 
sum 21 BelBel ⊕  does not exist. 

 
• Theorem 5.2.1.3.1.2: Suppose 1Bel  and 2Bel  are belief functions over the 

same frame Θ , then the following conditions are all equivalent:  
 

(1) 21 BelBel ⊕  does not exist. 
(2) The cores of 1Bel  and 2Bel  are disjoint. 

5.2.1.3.2 Combining Several Belief Functions from AIBO robots 

The rule of combination described in the preceding sections is a rule for 
combining a pair of belief functions, but by repeatedly applying it one can obviously 
combine any number of belief functions. Indeed, in order to combine a collection 

nBelBel ,,1 L  of belief functions, one can form the pairwise orthogonal sums: 
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  21 BelBel ⊕ , 
 

( ) 321 BelBelBel ⊕⊕ , 
 

( )( ) 4321 BelBelBelBel ⊕⊕⊕ , 
 
etc. containing until all the iBel  are included. If Dempster’s rule meets its purpose, 
then each stage of this process should correspond to the addition of the evidence 
underlying the iBel  entered at that stage, and the belief function Bel  finally issuing 
from the process should represent the pooled evidence from all the iBel . 
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6 Decision Making 

As explained in our architecture (chapter.2), Decision Making (DM) module plays 
the key role in logical decisions made by agents in a multi-agent environment such as 
AIBO soccer. DM is done in a completely distributed manner in “Impossibles” AIBO 
robots; however, communication is employed in order to propagate the information 
obtained from vision, sensors, and communication modules. Consequently, 
information is propagated by communication and decisions are made by agents 
themselves (Demonstrated in Figure 11). This section is organized as follows: The 
intra-DM architecture is explained in details in subsection 1. Team behavior is given 
in subsection 2. Subsection 3 is devoted to individual behaviors. Finally, goalie will 
be discussed independently in subsection 4. 
 
 

 
Figure 11: Distributed Reasoning with Information Communication 

 
 

6.1 Architecture 

Intra-DM module in "Impossibles" AIBO robots have a hierarchical layered 
architecture (shown in Figure 12). In fact, DM module consists of two major layers. 
Team Behavior (TB), i.e. tactics, layer is the highest one which determines the tactics 
of the soccer team. On the other words, team behavior layer plays a role similar to 
coach in real world soccer. Secondly, Individual Behavior (IB) layer is the techniques 
employed by individual players.  
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As demonstrated in Figure 12, Decision 

Making (DM) module gets its input from the 
system’s world model including opponent 
players’, teammates’, and ball’s locations 
accompanying with some degree of belief 
which is due to existing uncertainty in real 
system environment such as AIBO soccer. 

 
Having gotten the inputs from its world 

model, the AIBO robot will analyze the input 
in a two-step procedure. Team behavior (TB) 
sub-module gets DM inputs from world-model 
and then resolves the whole team behavior, e.g. 
tactics stored in a database (Section  6.2.3). 
Finally, TB passes the team behavior and 
world model information to the lower layer 
that is Individual Behavior (IB). 

 
As the second step, the Individual behavior 

(IB) sub-module obtains the whole team 
behavior and world model information form 
upper layer sub module (TB); then, analyzing 
its inputs, IB sub-module decides one of the 
possible actions to do. As a matter of fact, 
these actions are the outputs of the IB sub-
module and hence the outputs of the whole 
Decision Making (DM) module. These actions 
are limited in even a real world soccer game. 
This actions set includes (1)shooting in a 
specified direction with a particular power, 
(2)blocking the way in a special direction, 
(3)walking through a path determined by an 
array of points, (4)looking in one direction, and 
(5)grabbing the ball.  

 
 
 

 
Figure 12: Decision Making Module 

Architecture 

 

6.2 Team Behavior 

As explained above, “Impossibles” AIBO team tactics is resolved in Team 
Behavior (TB) sub-module. The final tactics of the team will be selected from tactics 
database.  

6.2.1 Determining Factors 

Tactics selection step needs two parameters. First, fuzzy membership degree in 
offense set is to be determined, i.e. Defense-Offense (DO). It is given in subsection 
 6.2.1.1. Teammates’ and Players’ sites is defined to be the second parameter (see 
subsection  6.2.1.2).  
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6.2.1.1 Defense vs. Offense 

Tactics of the team is defined by a fuzzy membership degree, i.e. DO, in offense 
set. Between complete defense condition, i.e. 0, and complete offense condition, i.e. 
1. The following three parameters are calculated and then employed to obtain the 
membership degree. 

6.2.1.1.1 Caution and Risk 

The first parameter which contributes to obtain DO is Caution-Risk (CR) fuzzy 
membership degree. We have employed a fuzzy logic controller (see Figure 13). In 
fact, the CR degree (demonstrated in Figure 18) is the output of a fuzzy controller 
which gets three inputs (shown in Figure 14 through Figure 16). The result of the 
game, time, and opponent’s strength are the mentioned inputs. Fuzzification, inputs, 
rule base, outputs, and defuzzification of the fuzzy controller are shown in Figure 13 
through Figure 17. 
 

 
Figure 13: Caution-Risk (CR) Fuzzy Controller Scheme 

 

 
Figure 14: Time input of the CR Fuzzy Controller 

 

 
Figure 15: Result input of the CR Fuzzy Controller 
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Figure 16: Opponent Strength input of the CR Fuzzy Controller 

 
Passed time (Figure 14) in a game has been represented as seven fuzzy 

membership functions covering the whole range between 0 and 20. Figure 5 shows 
the result as an important factor determining the caution-risk (CR) fuzzy membership 
degree of final strategy. Seven Possibility Distribution Functions (PDFs) are 
employed to symbolize the result; however, the result input in fact is integer number 
which represents the difference between goals scored by two teams. For instance, if 
the result input is ‘-3’, so our AIBO robots have scored three goals less than the 
opponent team. 
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Figure 17: Rule-Base employed for CR Fuzzy Controller 
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Figure 18: Caution-Risk output of CR fuzzy Controller 

 
To prevent repeating the above explanations, Figure 18 is not given in details. 

Lastly, Caution-Risk (CR) fuzzy logic controller produces the following surfaces 
(from Figure 19 to Figure 21) using its Rule-Base (Figure 17). Figure 19 illustrates 
caution-risk membership degree of variable time and result against a fixed opponent. 
The most interesting part of the Figure 19 is moving along the line ‘Result = -2’. As 
demonstrated below, our AIBO robots will attack in the middle first half time of the 
game; however, they will choose a more defensive strategy around minute 10 in order 
to let opponent team players to distribute all over the field to make it possible to find 
more open spaces in the opponent’s defensive third. The team will switch to the full-
attack strategy if it seems impossible for the robots to score. As shown in Figure 19 
robots with ‘Result = -2 & time = 19’ will attack completely to score, because the 
team hope to get the medium result. 

 

 
Figure 19: CR(Time, Result) with a fixed Opponent-Strength 
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Figure 20: CR(Opponent-Strength, Time)  with a fixed Result 

 
 

 
Figure 21: CR(Result, Opponent-Strength)  in a fixed Time 
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6.2.1.1.2 Ball Ownership 

Ball ownership is a critical factor which contributes in producing the final selected 
team strategy of an AIBO soccer team. In real world soccer environment we can 
define ball ownership as a crisp value which at least last long enough to determine 
team strategy. In fact it can be represented via digital magnitudes such as a Boolean 
variable. Ball ownership in AIBO cannot be defined in such a way. Because in AIBO 
soccer game robots intermittent lose the ball; therefore, selected team strategies will 
be changed so irregularly that it becomes impossible for a team either to defend or 
attack. Here we define a fuzzy membership degree in a Ball Ownership (BO) set.  

 
In “Impossibles” robots, the following formula is employed to calculate the BO of 

the team in order to evaluate the team membership degree in the complete ownership 
set.  
 

( ) ∑
∈

=
ij Teamm j

i d
TeamBO α

1     (6) 

 
The final Ball Ownership (BO) factor is obtained by means of the following 

equation as it follows: 
 

( )
( )TeamOpponent 

TeamOur 
BO

BO
BO =    (7) 

 

6.2.1.1.3 Hyperbolic Danger Safety Degree 

As explained above, Ball Ownership (BO) is a factor is due to players’ rational 
locations to the ball; however, players’ absolute locations are also important. In order 
to accomplish the job a Hyperbolic Factor (HF) is defined.  

 
A hyperbola [10]  is a conic section defined as the locus of all points P  in the 

plane the difference of whose distances PFr 11 =  and PFr 22 =  from two fixed points 
(the foci 1F  and 2F ) separated by a distance c2  is a given positive constant k  [11],  

 
krr =− 12 .  

Letting P  fall on the left x -intercept requires that  

aacack 2)()( =−−+= . 

So the constant is given by ak 2= , i.e., twice the distance between the x -intercepts 
(left figure below).  
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Figure 22: Hyperbola used to calculate Hyperbolic Factor (HF) 

 
We think of the AIBO soccer field to be locus of hyperbolas with variable positive 

‘ a ’ and goals to be the focuses of theses hyperbolas; therefore, ‘ c ’ is defined to be 
LengthField _5.0 × , i.e. distance of the goals from the center of the soccer field. 

Each point in the field is defined to have a danger degree (DD) if an opponent team 
member is located in this point. On the other hand, Safety Degree (SD) is defined if 
one of our team members is located in that point. 
 

( ) ( ) ( )
LengthField

PP
PDD ii

i _
Goalour ,distanceGoalopponent ,distance −

=   (8) 

 
 

( ) ( ) ( )
LengthField

PP
PSD ii

i _
Goalopponent ,distanceGoalour ,distance −

=   (9) 

 
 

According to above equations, points on a hyperbolic locus with a constant ‘ a ’ 
will have equal Danger Degrees (DD) in the case of having an opponent player in the 
point. Similarly, the points have equal Safety Degree (SD) if one of our team 
members is situated in one of those points. 

 
The final Hyperbolic Danger-Safety Degree (HDSD) factor is calculated  

employing players individual Danger Degree (DD), or Safety Degree (SD). 
 

( )( )
( )( )players eamopponent t

members our team

2

1

DDf
SDf

HDSD =    (10) 

 
As a significant factor, ( )xf  is selected according to coach basic idea of either 

defensive or offensive strategies. We have employed ‘ Averaging ’ function. 
Therefore, HDSD  factor is evaluated: 
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( )

( )∑

∑

∈

∈=

eamopponent tm
i

our teamm
i

i

i

m

m

DD

SD
HDSD     (11) 

 

6.2.1.2 Team Fear-Relax Emotional Degree 

As explained in 1.2.1.1, team behavior is determined according to Defense-
Offense Degree (DOD) which lies in the range of 0 to 1. In above subsections, three 
determining factors were defined: Caution-Risk (CR), Ball Ownership (BO), and 
Hyperbolic Safety Danger Degree (HDSD). Now these three parameters are to be 
combined to represent the final Team Behavior Defense Offense Degree (TBDOD). 

6.2.2 Team Strategy Database 

In AIBO robots, we usually face CPU over usage problems; in contrast, memory 
over usage does not seem to be a critical problem. In order to avoid having CPU over 
usage, we save predefined team strategies in a Team Strategy Database (TSD). In 
each moment of the game, a linear combination of the proper strategies is computed 
based on TBDOD and players’ locations. Selecting from TSD offers two priorities 
over computing dynamic team strategies. First it supports to have a more flexible 
team behavior, because further team strategies can be added to TSD later. Secondly, 
this approach helps to decreases the CPU usage.  
 

Generally, team strategies are categorized into three groups. Defensive strategies, 
midfield strategies, and offensive strategies are the mentioned groups. Two 
independent defensive team strategies (DTS) of “Impossibles” AIBO robots are 
presented. Figure 13 demonstrates the first DTS in which our players try to defend 
opponent’s forward players reaching the goal along a line from the center of the field 
to our goal. It is the most defensive strategy of the team employed in critical 
circumstances.  
 

Note that the following surfaces represent the values of points on the soccer field 
according to the team strategy. For instance, the dark red points in the diagrams 
indicate the most important regions of the field. On the other hand, the blues ones 
denote the regions which are not considered as significant regions. To clarify the 
problem it may be useful to declare that (0, 2.7) is the center of our goal. 
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Figure 23: the maximum defensive (MD) team strategy 

 
Figure 24 demonstrates the general defensive (GD) strategy of the “Impossibles” 

AIBO robots employed to some objectives such as preventing the game result being 
changed.  
 

 
Figure 24: General Defensive (GD) team strategy 

 
Midfield and offensive team strategies of “Impossibles” are in fact generated 

easily as a combination of the following basic strategies (from Figure 25 to Figure 
28). 
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Figure 25: Team strategy 1 

 

 
Figure 26: Team strategy 2 

 

 
Figure 27: Team strategy 3 

 
Figure 28: Team strategy 4 

 
 

The following equations are employed to generate the above shown team 
strategies. 
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In Figure 29 to Figure 32 denote midfield and offensive strategies of the team. 

These strategies are generated using the above basic strategies. Here we have 
employed the simplest operation, i.e. multiplication, to produce midfield and 
offensive team behaviors. 

 

 
Figure 29: Midfield Team Strategy 1 

 
Figure 30: Midfield Team Strategy 2 

 
Figure 31: Offensive Team Strategy 1 

 
Figure 32: Offensive Team Strategy 2 

 

6.2.3 Emotional Tactics Selection 

One of the most important aspects of human decision making is the role of 
emotions in its behavior and reactions [12]. Humans choose their actions and make 
their decisions due to several internal variables called emotions. Emotional decision 
making is employed by humankind to avoid time-consuming and computationally-
expensive approaches, e.g. using mathematical equations in decision making, to 
optimize the final result in critical circumstances such as danger [13].  

 
In AIBO soccer environment, CPU usage is a critical criterion; while memory 

usage is not. So in order to reduce the computation burden of the team behavior 
generation, we exploit Emotional Tactics Selection (ETS) approach. As presented in 
[12], agents’ Emotional Decision Making (EDM) is based on their different states, 
called emotions. As explained in  6.2.1.1.2, up to now the robots have calculated the 
fuzzy emotional Fear-Relax (FR) degree of the whole team. Given this degree, robots 
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are to compute the team strategy, i.e. a linear combination of Team Strategy Database 
(TSD) elements. Fundamentally, in [12], transitions from one emotional state to the 
other are thought of being a gradual change, i.e. not suddenly, as it is done in real 
world animals and human. In other words, emotions are believed to have inertia while 
changing. Therefore, we avoid quantization of the given FR degree. In contrast, based 
on the given FR degree, a linear combination of the strategies in TSD is computed as 
the whole team behavior, i.e. team strategy. 

6.3 Individual Behaviors (Techniques) 

“Impossibles” AIBO robots make use of a priority-based selection approach to 
choose the most proper action in various situations. In other words, after calculating 
some mathematical equations, each possible action is assigned to have a score; then, 
the most appropriate action is chosen. For instance, a player, who has the ball 
ownership, can select one of the following actions: (1) Moving with ball, (2) Passing 
to a teammate player, (3) Shooting toward the opponent team’s goal, or (4) Looking 
around. In this section, different individual behaviors are explained logically. A lower 
level design is provided in Motion Controller (MC) chapter. 

6.3.1 Predefined Dynamic Assigned Regions 

Generally, in multi-agent systems, decision making can be accomplished using 
one of these four solutions [14]: (1) No Sharing Decision Making, (2) Information 
Sharing Decision Making, (3) Centralized Decision Making, (4) Fully Centralized 
Decision making. “Impossibles” AIBO robots use the second above approach. In this 
method, communication is employed just for transporting the information; therefore, 
neither commands nor decisions made by center are transmitted. 

 
With us using Information Sharing decision making solution, the most critical 

problem was similar behaviors of the robots in the same situations. In other words, 
cooperation of the robots was not supported. So robots are assigned predefined roles 
as in real world soccer.  

 
Players are assumed to have tendency toward their dynamically assigned regions. 

This tendency is represented by a simple spring; hence, there will be a linear 
dependency ( 1=α ) between the player’s tendency and the distance from its current 
location to its assigned region.  
 

( ) ( ) ( )( )αiii PPKP egionAssigned_R,LocationdistanceTendency ×=  (12) 
 
Where ‘ K ’ is a positive constant which can be learned. Experiences show that 

setting ‘α ’ to be 1.3 results in the best known outcome. 

6.3.2 Outputs as Decision Making-Motion Engine Interface 

Last of all, having logically produced Individual Behaviors (IB) of the players, 
Decision Making (DM) module passes IBs to the lower level module, i.e. Motion 
Controller (MC); therefore, IBs are considered to the interfaces between the DM and 
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MC modules. In this section the employed Individual Behaviors are explained 
logically. 

6.3.2.1 Looking 

The objects stored in World Model (WM) own a saved parameter called Update 
Time (UT). It denotes the last time when a particular object has been seen by an 
agent. So it may be necessary for agents to refresh their knowledge about their 
surroundings limited to their vision capability, i.e. approximately 1.5 meters. ‘LOOK’ 
is called by Decision Making (DM) module with an argument denoting the 
coordination or direction of the region to be looked. When calculating this direction, 
three major parameters are considered. First of all, possibility degree to which a 
particular region is seeable. Possibility degree itself is calculated using the agent’s 
distance from the region to be looked and other players acting as obstacles. Moreover, 
the turning cost which the agent pay in order to look at the region. Additionally, 
importance which the region has is to be mulled over. For instance, looking at the ball 
is usually thought to a significant look. 

6.3.2.2 Walking & Running 

Walking and Running as two basic categorizations of motion should be 
implemented efficiently because of their importance. A lot of learning algorithms on 
AIBOs have been presented during the past few years [15, and 16].  

 
In “Impossibles” AIBOs, Walking and Running are called via just one command, 

i.e. ‘WALK’. ‘WALK’ takes three arguments. First, a trajectory is passed through 
which robot is to walk to the lower layer module, i.e. Motion Controller (MC). 
Trajectory is represented by an array of points in the field. Moreover, a flag is set to 
either ‘true’ or ‘false’ as the second argument. In fact, this flag shows if the player 
owns the ball while moving or not. Finally, a power degree is passed as the third 
argument. Power takes fuzzy values between 0 and 1, where 1 represents the highest 
speed with which an agent can run. 

6.3.2.3 Ball Grabbing 

In order to get the ball ownership, Decision Making (DM) module of a player 
passes ‘GRAB’ to the lower level module, i.e. Motion Controller (MC). In fact, 
‘GRAB’ takes no argument as input, because the motion controller gets one of its 
inputs from the World Model (WM) of the agent; therefore, no extra information is 
required to grab the moving/stationary ball on the field. 

6.3.2.4 Shooting & Passing 

Like ‘WALK’, Shooting and Passing are both called through ‘SHOOT’ which 
takes two arguments. Direction and the power degree are passed as the arguments of 
‘SHOOT’. According to the above explained details, no further details are needed 
here to clarify. 
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6.3.2.5 Blocking 

As a defensive behavior, ‘BLOCKING’ has been implemented. Its only argument 
is the direction. ‘BLOCKING’ is explained in details in Motion Controller (MC) 
module chapter of this article.  
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7 Vision 

 
According to “Impossibles” AIBO architecture (Chapter 2), each robot updates its 

world model using three inputs from its surroundings. Sensors, wireless 
communication, and vision are responsible for making these inputs ready to exploit; 
however, sound is also addable to the architecture which has not been implemented 
yet. In fact, the sensors and vision build the main inputs of the robot, because 
communication is only employed to propagate the information which is gathered by 
vision and sensors. Therefore, vision, as one the input modules of the architecture, 
plays a chief role in gathering information from the surroundings of the robot.  

 
Vision in AIBO robots is in charge of receiving two inputs and producing a set of 

two outputs [17]. These inputs and outputs are as follows: 
 

1. Inputs: 
• A stream of images taken by robot’s camera. Surely, these images 

contain a large amount of noise which has been caused by some issues 
such as robot’s motion or distance of the objects in image from the 
robot’s location in the field. 

• AIBO robots’ sensors provide us with a set of joints’ angles over time. 
So, direction of the camera and current condition of the robot is 
identified using this type of input. 

 
2. Outputs: 

• Distances and angles to a fixed set of color-coded objects with known 
locations, which can be used to localize the robot on the field. 

• Distances and angles for a varying set of mobile objects. 
 

Vision module of the “Impossibles” AIBO architecture (Chapter 2) will be 
clarified in this chapter. The following subsections present different approaches 
implemented in our vision subsystem. These approaches are categorized into to 
groups: General Vision Subsystem (GVS), and Specific Vision Subsystem (SVS) 
which are going to be explained later in this chapter. The GVS algorithms are mainly 
based on the UT Austin Villa vision system [18, and 17]. We have implemented SVS 
approaches which cannot be employed generally by robots, because of their overtime-
consumption. Hence, SVS approaches are used in special cases which will be given in 
the following subsections.  

7.1 Architecture 

Vision Module Architecture (VMA) will be briefly explained here to make the 
later subsections easy to understand. Generally, VMA consists of three major 
subsystems. Case Detection (CD) submodule, General Vision Subsystem (GVS), and 
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Specific Vision Subsystem (SVS) are the mentioned subsystems of VMA. First of all, 
the state of the AIBO robot is to be determined. State can be assigned one of the 
following values: Free Playing (FP), Blocked, and post-Kidnapped.  

 
AIBO robots are usually in FP state. In other words, robots are playing freely most 

of the time without other players interfering. GVS approaches are used in such 
situations in which robots have freedom of action, i.e. they can move towards every 
direction. As a matter of fact, GVS approaches are employed in such situations 
because they are not considered computationally expensive; therefore, as a limited 
resource, CPU can be used by other processes such as Decision Making (DM) 
module.  

 
First, Blocked state is encountered in situation that the AIBO has failed to move 

after trying for some time. SVS approaches are run in these cases to realize the reason 
of being blocked. SVS is exploited, because GVS has failed to detect objects exactly 
in order to let DM module decide what to do properly. Also post-Kidnapped state is 
happened in few moments. As a case in point, having booked, the robot is placed out 
of play for thirty seconds. In this status, the robot state is thought to be kidnapped. 
After repositioning on the field, the robot will make use of SVS approaches in the first 
moments to let the localization module self-localize exactly. Exact self-localization in 
the first few seconds of being repositioned on the field is an important factor. If the 
first self-localization is not done properly, the fault can be propagated until being in 
the situation that a land mark is recognizable by GVS. 

  

 

Figure 33: Intra-Vision Module Architecture 
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7.2 General vs. Specific Vision subsystems 

Up to now, we have provided a brief explanation of situations in which each of 
General Vision Subsystem (GVS) and Specific Vision Subsystem (SVS) are 
employed. In this subsection these sub-modules are given in detail. 

7.2.1 General Vision Subsystem 

The fundamental idea of our General Vision Subsystem (GVS) is based on UT 
Austin Villa Vision system. Figure 34 demonstrates the architecture of GVS. In fact, 
GVS consists of three major parts. Color segmentation, as the first step, will be 
discussed first. Second subsection is devoted to blob formation. Finally, object 
detection is given in the last part which itself is categorized into two subjects: marker 
detection and line detection. 
 

 

Figure 34: Intra-GVS Architecture 
 

7.2.1.1 Color Segmentation 

Image segmentation methods can be categorized as follows: 
 

• Histogram thresholding: assumes that images are composed of 
regions with different gray (or color) ranges, and separates it into a 
number of peaks, each corresponding to one region. 
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• Edge-based approaches: use edge detection operators such as 
Sobel, Laplacian for example. Resulting regions may not be 
connected; hence edges need to be joined. 

• Region-based approaches: based on similarity of regional image 
data. Some of the more widely-used approaches in this category 
are: Thresholding, Clustering, Region growing, Splitting and 
merging.  

• Hybrid: consider both edges and regions. 
 
Vision systems employing region segmentation by color are crucial in real-time 

interactive mobile robot applications such as object tracking (e.g. the ball in RoboCup 
soccer) and various forms of robot/human interaction. An important first step in many 
color vision tasks is to classify each pixel in an image into one of a discrete number of 
color classes. The leading approaches to accomplishing this task include linear color 
thresholding, nearest neighbor (NNr) classification, color space thresholding and 
probabilistic methods.  

 
Linear color thresholding works by partitioning the color space with linear 

boundaries (e.g. planes in 3dimensional spaces). A particular pixel is then classified 
according to which partition it lies in. This method is convenient for learning systems 
such as neural networks (NNs), or multivariate decision trees (MDTs) [19].  

 
A second approach is to use nearest neighbor (NNr) classification. Typically 

several hundred pre-classified exemplars are employed, each having a unique location 
in the color space and an associated classification. To classify a new pixel, a list of the 
K nearest exemplars is found, and then the pixel is classified according to the largest 
proportion of classifications of the neighbors [20]. Both linear thresholding and 
nearest neighbor classification provide good results in terms of classification 
accuracy, but do not provide real-time performance using off-the-shelf hardware.  

 
Another approach is to use a set of constant thresholds defining a color class as a 

rectangular block in the color space [21]. This approach offers good performance, but 
is unable to take advantage of potential dependencies between the color space 
dimensions. A variant of the constant thresholding has been implemented in hardware 
by Newton Laboratories [22]. Their product provides color tracking data at real-time 
rates, but is potentially more expensive than software only approaches on general 
purpose hardware.  

 
A final related approach is to store a discrete version of the entire joint probability 

distribution [23]. So, for example, to check whether a particular pixel is a member of 
the color class, its individual color components are used as indices to a 
multidimensional array. When the location is looked up in the array the returned value 
indicates probability of membership. This technique enables a modeling of arbitrary 
distribution volumes and membership can be checked with reasonable efficiency. The 
approach also enables the user to represent unusual membership volumes (e.g. cones 
or ellipsoids) and thus capture dependencies between the dimensions of the color 
space. The primary drawback to this approach is high memory cost—for speed the 
entire probability matrix must be present in RAM. 
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Color segmentation is the first step of our vision system; however, to reduce the 
computation burden of the algorithms we have employed mapping technique. As a 
brief explanation of mapping, the color of each pixel, which is in YCbCr, is mapped 
into a color class label of a set of limited number of classes, e.g. a 10-element set of 
colors defined in a LAB color space [24] explained below.  

 

Figure 35: LAB in luminance of 25% 

Figure 36: LAB in luminance of 50% 

CIE L*a*b* (CIELAB) is the most 
complete color model used conventionally to 
describe all the colors visible to the human 
eye. The three parameters in the model 
represent the luminance of the color (L, L=0 
yields black and L=100 indicates white), its 
position between red and green (a, negative 
values indicate green while positive values 
indicate red) and its position between yellow 
and blue (b, negative values indicate blue and 
positive values indicate yellow). 

The Lab color model has been created to 
serve as a device independent, absolute model 
to be used as a reference. Therefore it is 
crucial to realize that the visual 
representations of the full gamut of colors in 
this model are never accurate. They are there 
just to help in understanding the concept, but 
they are inherently inaccurate. So we 
employed Lab color model to recognize the 
objects in the image. 

Since the Lab model is a three 
dimensional model, it can only be represented 
properly in a three dimensional space. A 
useful feature of the model however is that the 
first parameter is extremely intuitive: 
changing its value is like changing the 
brightness setting in a TV set. Therefore only 
a few representations of some horizontal 
"slices" in the model are enough to 
conceptually visualize the whole gamut, 
assuming that the luminance would be 
represented on the vertical axis. 

CIE 1976 L*a*b* is based directly on the 
CIE 1931 XYZ color space [24]; however, we 
are not going to explain the details about XYZ 
color space model here. 

 

Figure 37: LAB of luminance of 75% 

Given the RGB magnitudes of a pixel, to obtain the Lab values, one has to pass a 
two-step procedure. First, XYZ scale should be calculated using the given RGB 
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values (See Equation.1). Finally, using the achieved XYZ values, Lab magnitudes are 
computed (Equation.2-4). 
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Mapping is done using 1-Nearest Neighbor (1-NNr) [25] algorithm with threshold 

in Lab color space model. Lab color space is used, because it is known as the most 
robust color space model [26, and 27]. For instance, ball color is usually realized to be 
red by the robot vision system in the case of YCbCr color space model. Nearest 
Neighbor (NNr) will be explained here briefly.  

 
To demonstrate a k-nearest neighbor (K-NNr) analysis, let's consider the task of 

classifying a new object (query point) among a number of known examples. This is 
shown in the figure below (Figure 38), which depicts the examples (instances) with 
the plus and minus signs and the query point with a red circle. Our task is to estimate 
(classify) the outcome of the query point based on a selected number of its nearest 
neighbors. In other words, we want to know whether the query point can be classified 
as a plus or a minus sign. 

 
To proceed, let's consider the outcome of KNN based on 1-nearest neighbor (1-

NNr). It is clear that in this case KNN will predict the outcome of the query point with 
a plus (since the closest point carries a plus sign). Now let's increase the number of 
nearest neighbors to 2, i.e., 2-nearest neighbors (2-NNr). This time KNN will not be 
able to classify the outcome of the query point since the second closest point is a 
minus, and so both the plus and the minus signs achieve the same score (i.e., win the 
same number of votes). 



 
51

For the next 
step, let's increase 
the number of 
nearest neighbors to 
5, i.e.  
5-nearest neighbors  
(5-NNr). This will 
define a nearest 
neighbor region, 
which is indicated 
by the circle shown 
in the figure above. 
Since there are 2 
and 3 plus and 
minus signs, 
respectively, in this 
circle KNN will 
assign a minus sign 
to the outcome of 
the query point. 

Figure 38: 1-NN, 2-NN, and 3-NN  Samples 

 
In order to remove the holes, the following convolution mask is employed (Figure 

39).  
 

1 3 4 3 1 

3 6 7 6 3 

4 7 10 7 4 

3 6 7 6 3 

1 3 4 3 1 

Figure 39: Smoothing Convolution Mask to remove the holes 
 

A sample process of color segmentation is shown in Figure 51 and Figure 52. In 
order to improve the efficiency of the algorithm, the following three-step color cube 
generation approach is employed [17]: 

 
• The off-board training phase in Lab color space results in an initial 

painting. 
• Nearest Neighbor classification is performed in the Lab color 

space. 
• Each cell in the output YCbCr color cube is labeled based on the 

value in the corresponding cell in the Lab color cube. 
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7.2.1.2 Blob Formation  

As the second phase of our vision system, blob formation is essential for object 
recognition; therefore, an efficient clustering algorithm is required such as K-Means 
clustering algorithm [28] to cluster pixels of the same color into meaningful groups, 
but it is known as a computationally-expensive technique to be implemented in AIBO 
robots; therefore, it cannot be used. Our heuristic blob formation algorithm is carried 
out on the output of the previous step, i.e. color segmentation; hence, only regions 
thought to be objects, in which robots are interested, are clustered in separated blobs. 
Additionally, we intend to employ run-length encoding to compress data in order to 
have an efficient memory usage. It has not been implemented yet. The following 
figure shows the outcomes of the blob formation sub-module. As shown in this figure, 
the pixels have been clustered to identify the ball on the field. 

7.2.1.3 Image Analysis 

7.2.1.3.1 Object Detection 

Once blobs are obtained, the objects of interest are to be recognized. The current 
object recognition techniques such as [29] cannot be used here, because they are  
time-consuming and computationally-expensive algorithms which prevent to be 
exploited in real-time environments such as AIBO soccer robots.  

 
In addition to costs of the current algorithms, since all the objects in AIBO robots’ 

environment are color coded, these algorithms may not be needed. Therefore, we 
employ a heuristic approach in order to decrease the processing cost. This approach 
gets the blobs, produced in the previous phase, i.e. blob formation. First, some of the 
blobs, which seem not be the objects of interest (e.g. the ball), are removed from the 
image. Some parameters such as size and position in the image are considered while 
removing these blobs. Then, the rest of the blobs are mapped into objects of interest 
on the field. Furthermore, we exploit their features as the inputs of our localization 
module in “Impossibles” AIBO architecture (chapter.2).  For instance, looking at a 
marker, the AIBO robot can estimate its distance from the object, i.e. the marker.  

7.2.1.3.2 Line/Corner Detection 

Lines and corners of the field can be considered a type of information source 
which is passed into our localization module. Consequently, if they are detected 
precisely, an accurate localization module is supported. 

 
Lines in AIBO environment is considered to be two parallel edges. These edges 

consist of green-white and white-to-green transitions. However, these two parallel 
edges change into one edge when the robot is far from the line.  

 
First of all, we employ the vertical scanning algorithm to detect the lines. During 

each scan, Green-to-white and white-to-green edges are searched for along the 
vertical scanning line. Since closer lines give more reliable information than the 
farther lines, an algorithm is used to label the lines based on their distance from the 
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AIBO robot. According to this idea, vertical scanning lines are processed from bottom 
of the image to its top. 

 
Then, having detected some white points along vertical scanning lines, we 

eliminate some these detected points which are not thought to be a point on a line of 
the field. Most of these employed algorithms are heuristic.  

 
After omitting the useless detected points, the main sub-procedure starts to 

function. Since the images are usually taken in an ambiguous environment, i.e. AIBO 
robots, the above explained algorithm outputs some inexact information about the 
points. Hence, we employed Least Square Fitting (LSF) [30] technique to find the 
best fitting line which passes through detected points. In the following subsection, 
LSF algorithm is explained briefly. 
 
 

 

Figure 40: LFS algorithm to find the best fitting line passing through a set of points 
 
 

As mentioned above, Least Fitting Square (LFS) is a mathematical procedure for 
finding the best-fitting curve to a given set of points by minimizing the sum of the 
squares of the offsets ("the residuals") of the points from the curve. The sum of the 
squares of the offsets is used instead of the offset absolute values because this allows 
the residuals to be treated as a continuous differentiable quantity. However, because 
squares of the offsets are used, outlying points can have a disproportionate effect on 
the fit, a property which may or may not be desirable depending on the problem at 
hand. 
 

 

Figure 41: Vertical offsets vs. Perpendicular offsets in LFS algorithm 
 



 
54

 
In practice, the vertical offsets from a line (polynomial, surface, hyper plane, etc.) 

are almost always minimized instead of the perpendicular offsets. This provides a 
fitting function for the independent variable ‘X’ that estimates ‘y’ for a given ‘x’ 
(most often what an experimenter wants), allows uncertainties of the data points along 
the ‘x’ and ‘y’ axes to be incorporated simply, and also provides a much simpler 
analytic form for the fitting parameters than would be obtained using a fit based on 
perpendicular offsets. In addition, the fitting technique can be easily generalized from 
a best-fit line to a best-fit polynomial when sums of vertical distances are used. In any 
case, for a reasonable number of noisy data points, the difference between vertical and 
perpendicular fits is quite small.  

 
The linear least squares fitting technique is the simplest and most commonly 

applied form of linear regression and provides a solution to the problem of finding the 
best fitting straight line through a set of points. In fact, if the functional relationship 
between the two quantities being graphed is known to within additive or 
multiplicative constants, it is common practice to transform the data in such a way 
that the resulting line is a straight line.  

7.2.2 Specific Vision Subsystem 

SVS is “Impossibles” AIBO 
robots Vision’s second submodule 
which is under implementation and has 
not been completed yet. As a matter of 
fact, SVS performs object detection 
much more accurately than General 
Vision Subsystem (GVS); however, 
SVS consists of a sequence of 
computationally-expensive and time-
consuming techniques; therefore, it 
seems impossible to generally employ 
SVS in games. Hence, as explained in 
vision architecture subsection, we only 
exploit SVS after specific situations 
such as positioned after being 
kidnapped. Also SVS is used when 
localization module sends a signal that 
it is unable to self-localize the AIBO 
robot; therefore, it is reasonable to 
employ SVS to detect objects more 
accurately; however, it causes to vision 
subsystem have more CPU usage than 
GVS submodule.  

As briefly discussed above and 
shown in Figure.10, Specific Vision 
Subsystem (SVS) consists of three 
major steps in order to accomplish the 
assigned task, i.e. proper object 
recognition.  

 

 
Figure 42: Intra-Architecture of  SVS 
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First of all, as a preprocessing step, image enhancement algorithms are employed 
to result an enhanced image in which it is much easier to detect objects. This step has 
been implemented completely. Second, segmentation phase is carried out. Now, we 
are discussing the algorithm to be implemented.  

 
Coding, i.e. a type of image feature extraction and image analysis are the third and 

fourth steps of the SVS. These phases will be explained completely in the following 
subsections. The final results of SVS is passed through Localization module which is 
responsible for updating world model of “Impossibles” AIBO architecture 
(chapter.2). 

7.2.2.1 Enhancement/Preprocessing 

As in most of image processing procedures, enhancement/preprocessing are 
considered as the first phase in “Impossibles” SVS subsystem. In fact, 
enhancement/preprocessing are the whole operations employed to produce other 
images from the original ones. These produced images contain only necessary 
information to be analyzed later in the following steps of SVS. 

 
As mentioned above, enhancement techniques transform an image into a "better" 

image, or one more suitable for subsequent processing to assure repeatable and 
reliable decisions. As a case in point, Figure 43 demonstrates a sample image and its 
corresponding enhanced version (Figure 44). There are three fundamental 
enhancement procedures: pixel or point transformations, image or global 
transformations, neighborhood transformations. “Impossibles” employ pixel and 
neighborhood transformations which are explained here. 

 

 
Figure 43: Original Image 

 

 
Figure 44: Enhanced Image 

 
 

7.2.2.1.1 Pixel Transformation 

There are a number of image enhancement routines that can be applied to improve 
the content of the image data before coding and analysis. Contrast and brightness 
enhancements alter an image's gray scale. Single pixel operators transform an image, 
pixel by pixel, based on one-to-one transformations of each pixel's gray level value. 
Some such operations include: Scaling, Addition or Subtraction of a constant to each 
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pixel and inverting. Figure 45 denotes the result of subtraction of Figure 44 from 
Figure 43. Moreover, a sample multiplication result is shown in Figure 46. 

 
 

 
Figure 45: Subtraction result of Figure 44 from 

Figure 43 

 
Figure 46: Multiplication result of Figure 45 by 

a Constant 
 
 

7.2.2.1.2 Neighborhood Transformation 

 
These take two forms, binary and gray scale processing. In both cases, operators 

transform an image by replacing each pixel with a value generated by looking at 
pixels in that pixel's neighborhood. 

 
Gray Scale Neighborhood Processing is the first neighborhood transformation 

explained here. A neighborhood is passed over the input image, except that the image 
is gray scale, the coefficients assigned to the neighborhood are real numbers, and the 
function is generally arithmetic. As the most important Neighborhood Processing 
techniques, Sobel Spatial Filtering, as an edge detector, will be employed. As an 
example, edge detection process is shown in the following figures. 

 
Moreover, binary neighborhood processing is mainly employed in “Impossibles” 

Specific Vision Subsystem (SVS). A binary image is transformed, pixel by pixel, into 
another binary image. At each pixel, the new value is generated by the old value of 
each pixel in the neighborhood. This can be thought of as a square matrix passing 
over the old image. At each pixel, all values inside the matrix are combined, giving 
one new value. The matrix moves to the next pixel, and the process repeats until the 
new image is generated. The following techniques are exploited in SVS subsystem: 
Dilation (Growing), Erosion (Shrinking), and Skeletonization. 
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Figure 47: Original Image 

 

 
Figure 48: Gray-Scaled Image 

 

 
Figure 49: Histogram Equalized Image 

 
Figure 50: After Edge Detection (Sobel) 

 
 

7.2.2.2 Segmentation 

A scene can be segmented by color, windows, regions, or boundaries. Boundary, 
color, and region segmentation are utilized in SVS submodule. Color Segmentation 
was discusses in GVS subsection. Region and boundary segmentation are briefly 
explained here.  

 

7.2.2.2.1 Region Segmentation 

This is the process of partitioning an image into elementary regions (adjacent 
pixels) with a common property (such as specific gray level or color range), and then 
successively merging adjacent regions having sufficiently small differences in the 
selected property until only regions with large differences between them remain. A 
popular execution of this segmentation is based on using thresholding techniques to 
establish a binary image. Figure 51, Figure 52, and Figure 53 demonstrate some 
samples of color segmented images.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 51: Samples of Segmented Images 
 

 

 

Figure 52: Color Segmented Image Figure 53: Region Segmented Image 
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Thresholding is the process of assigning a predefined value to each pixel in the 

image with value above a particular value. That particular value is the threshold. For 
instance, Areas that are lighter than the threshold become white; areas darker than the 
threshold become black. The resulting image, consisting of only black and white, is 
called a binary image. Thresholding was the first segmentation technique used, and 
almost all systems use it to some extent. It has a simplifying effect on the image. The 
number of pixels in the image does not change, but each pixel can now have one of 
only two values, usually written one or zero. 

 

7.2.2.2.2 Edge Segmentation 

Features can also be extracted based on edges. Again edges can be obtained from 
a binary image based on transition locations in a gray scale image. In the case of the 
latter, points of rapid change characterize an edge in gray level intensity. While 
sensitive to changes in pixel intensity of a single pixel, edge detection is not related to 
the individual intensities within patterns. Analysis of the edge intensity within a single 
pixel results in sub-pixel calculations of the location of an edge. The process is shown 
from Figure 54 to Figure 59.  

 
 

 
Figure 54: Original Image 

 
Figure 55: Gray Scaled Image 

 
Figure 56: Green Layer of the Image 

 
Figure 57: Edge Detected Image 
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Figure 58: Dilated version of the above Image  

 
Figure 59: Detected Ball 

 
 

Many edge-segmenting systems are based on detecting patterns of increasing and 
decreasing intensities or gradients generally found at the edges of objects. Since they 
are based on gradients, they are less sensitive to illumination variations and can 
handle lower contrast scenes.  

 
Neighborhood processing techniques have evolved which are generally employed 

in conjunction with edge segmentation systems. These techniques involve evaluating 
each individual pixel according to its relation with its nearest neighbor pixels using a 
template or an array designed to detect some invariant regional property to perform 
the convolution. Figure 60 depicts a point template. The idea is to get a template 
response at every pixel location by centering the mask over each pixel in the image. 
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Figure 60: Edge Segmentation point template 
 

7.2.2.3 Coding and Feature Extraction 

The next step in “Impossibles” SVS subsystem is feature extraction which is the 
process of deriving some values from the enhanced and/or segmented image. Some 
feature extraction methods require a binary image, while others operate on gray scale 
intensity or gray scale edge-enhanced images. As explained above, we have employed 
edge-enhanced images. The coding methods include: miscellaneous scalar features; 
shape features; and pattern matching extraction. Of the mentioned features, shape 
features and pattern matching are explained below. 
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7.2.2.3.1 Shape Features 

Some computationally more intensive image analysis approaches are employed in 
SVS subsystem. They are based on extracting geometric features. We will employ the 
most popular approach (developed at Stanford Research Institute International) which 
involves performing global feature analysis (GFA) on a binary picture. In this case, 
the features are geometric: centroid, area, radius, perimeter, and so on. As a case in 
point, we exploit detected ball’s radius to find out the location of the ball. In GFA, no 
inferences are made about the spatial relationships between features, and generally the 
parts are isolated. 

 

7.2.2.3.2 Pattern Matching 

As our last try to identify the template objects on the field such as ball, goal and 
opponent players we employ pattern matching. Pattern matching, also called 
correlation, pattern recognition, or template matching is a mathematical process for 
identifying the region in an image that looks most like a given reference subimage, 
e.g. ball. The reference subimage, or template, is overlaid on the image at many 
different locations. At each, goodness of match is evaluated. The location with the 
best is recorded, and the process is complete. Notice that process is inherently robust 
since it uses all the information in the image. Note, however, that a "match'' operation, 
involving the template and part of the subimage, must be performed for each location 
in the image; this is a very time-consuming task.  
 

7.2.2.4 Image Analysis 

For some applications, the features, as extracted from the image, are all that is 
required. Most of the time, however, one more step must be taken; classified 
interpretation.  

 
The most important interpretation method is conversion of units. Rarely will 

dimensions in "pixels" or "gray levels" be appropriate for an industrial application. As 
part of the “Impossibles” AIBO software, a calibration procedure will define the 
conversion factors between vision system units and real world units. Most of the time, 
conversion simply requires scaling by these factors. Occasionally, for high accuracy 
systems, different parts of the image may have slightly different calibrations (the parts 
may be at an angle, etc.). In any case, the system should have separate calibration 
factors in X and Y. 

 
Reference points and other important quantities are occasionally not visible on the 

part, but must be derived from measurable features. For instance, a reference point 
may be defined by the intersection of two lines. To derive the location of this point, 
enough points must be measured to define the two lines and find their intersection by 
geometry.  

 
Another common indirect measurement is to locate the center of a circle (e.g. Ball 

on the field) by finding points on its perimeter. Most systems have fast methods for 
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doing this. In fact, indirect measurement calculations should present no problem to an 
experienced applications engineer. 
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8 Motion 

“Impossibles” AIBO robots employ a Layered Motion Controlling approach 
(LMC). This section discusses the architecture and abilities of this system. 

8.1 Architecture 

The architecture of Motion Controller system is shown in Figure 61. Motion 
Controller (MC) system consists of two submodules: Skills and Inverse Kinematics 
[36] module.  There are five skills in Skills part: Shooting, Walking, Looking, 
Blocking and Grabbing. Each of the skills could be used by Decision Making system 
to move the robot.  

 
 

 
Skills are OPEN-R [37] objects and are run concurrently. They give the necessary 

information about the actions from Decision Making (DM) submodule and produce 
trajectories for joints.  

 
Using concurrent Skills as separate modules makes development easier but has 

some disadvantages. By using this architecture, adding a new skill requires some 
changes in World Model and Inverse Kinematics module.  

Figure 61: Architecture of Motion Controller 
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Like Skills, Inverse Kinematics module is also an OPEN-R object. It sends 

commands to the joints and receives joint values. As discussed earlier in this report, 
Self-Localization system uses joint values; therefore, having received the joints’ 
values, the Inverse Kinematics module sends the values of the joints to the Self-
Localization system. Skills Conflict Prevention (SCP) is also done by Inverse 
Kinematics submodule. As a matter of fact, it guaranties not to have conflicts 
amongst skills. When two skills are trying to simultaneously use a joint, Inverse 
Kinematics submodule selects the more important skill and reports failure to the skill 
with the lower priority. This module will be discussed later. 

8.2 Skills 

Each skill has its own input parameters and uses specific information from World 
Model (WM). Skills are responsible for executing the received commands from 
Decision Making (DM) subsystem and reporting the state of the robot’s joints when 
executing the command and notifying the Decision Making (DM) module when 
execution is finished. In what follows, skills are given in words. 

8.2.1 Shoot 

Shooting skill is considered as one of the most important skills in the AIBO 
soccer environment. “Impossibles” AIBO robots have about fifteen methods for 
shooting the ball. They differ in delay, speed, stability of the robot and accuracy. We 
classify our shooting methods into two groups: Controlled shoots and Non-controlled 
shoots.  

 
In Controlled shoots robot should own the ball before shooting. In this type, 

motions of robot after grabbing ball are predefined and joint trajectories could be 
looked up from a Look Up Table (LUT). Although these shoots have more delay, 
they are accurate. The famous example of this type is the Chest shoot witch is widely 
used in competitions. Another example is UMIGAME [38] that is a backward 
shooting method. 

 
Non-controlled shoots are faster but they are inaccurate and need good prediction 

of ball movement. They could be used in cases that the robot is far from ball and can’t 
reach ball (maybe because of obstacles or speed). One of the best examples for this 
type is German Team [39]’s One-hand shooting method. 

 
Shooting Skills receives two parameters from Decision Making (DM) subsystem; 

Direction and Power. Currently the power parameter is ignored and robots always use 
maximum power for shooting. Steps of chest shoot are shown in Figure 62. Steps for 
Chest Shoot: 

 
1. Holding the ball with chin: This is the start state of shooting. It 

returns failure signal if the ball was not grabbed before.  
2. Turning to direction: Then the robot should turn to the desired 

direction without releasing the ball. This is just like normal 
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turning. The most important difference is that robot should hold 
the ball with its chin. 

3. Kick the ball: The last part is the final shooting step. Joint 
trajectories for this part is predefined and are tuned for maximum 
speed of the ball after pushing. 

 

 

Figure 62: Chest Shoot 
 

This type of kick is accurate and straightforward but the robot should completely 
grab the ball before the shoot. Sometimes this limitation makes the performance slow 
and even sometimes the failure. So it seems that another shoot method is necessary 
for such cases. 

Currently we are working on a faster and more stable shoot method that uses just 
one leg; however, this shoot is less accurate. 

8.2.2 Walk 

Moving for legged robot is too different from wheeled robots. Legged robots have 
capabilities that wheeled robots don’t like changing their height but on the other hand 
creation and optimization of walking for legged robots is more challenging. This is 
because legged robots have many degrees of freedom. Number of parameters that 
affect the style of walking, its speed and stability is too big that tuning the walking 
manually is too hard and time consuming. We are using learning techniques that we 
have described in more detail below. 

 
Walking is too important for robots of a soccer team and strongly affects the 

result of the team. Not only it is too important to walk fast when racing with rival 
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dogs to reach to ball but also it is important to have a smooth walking which not only 
doesn’t make problems for vision but also makes the robot stable. We think it is 
important to be stable while walking because many times the dog will be in a 
situation that other dogs hit it. As mentioned above our walking gets its parameters 
from the behavior layer. 
These parameters are as follows: 
 

• Walking Direction (θ angle) 
• Type of walking (We have some handmade walking styles and also we have 

reached to a walking style using parameter learning) 
• Height of rear and front hips 
• Walking Speed(If the speed is more than available robot walks with its 

maximum available speed) 
• If the walking is backward or forward 

 
The walking engine decides the walking style considering these parameters. We 

have taken two sub-modules for walking. The first module of walking is Predefined 
Walk which gets all needed parameters from the upper layer. The second type is Fast 
Walk. Also we have two types of fastest walk, the Fastest Available Walk and the 
Fastest Stable Walk. The former is used when we want the robot to reach a far point 
in minimum time and the latter is responsible for the fastest walk which is resistant 
against falling when the robot is pushed by others also is smooth to avoid problems 
for vision. 

8.2.2.1 Walking Module’s Input 

The input variables for this module are power and an array of points from the 
Decision Making layer. The power is a double variable between 0 and 1 and defines 
how fast the robot should move. Considering the current position and direction of the 
robot and the next position, θ is computed. The walking module uses data from world 
model to decide the type of walking, height of rear and front hips and also if the 
walking is backward or forward. 

8.2.2.2 Walking Module’s Output 

Output of the walking module is an array of joint angles which is given to the 
lower level. These joint angles are computed using inverse kinematics. The distance 
and number of points are dependent to the trajectory and speed required. Joint angles 
are attended to be in the available range considering the degree of freedom for each 
joint. 

8.2.2.3 Predefined Walking 

As described above, all parameters are passed to this walk engine. We are 
working on Policy Gradient Reinforcement Learning [42] to define the trajectory of 
transition from the states of walking to one another for the fastest stable walk. 
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8.2.2.4 Fast Walking 

The angle of swing-joints in rear legs affects the height of front and rear hips of 
robot. Height of the rear and front hips are effective on the distribution of the robot’s 
weight on each leg. Of course the posture of legs has a direct relation with the height 
of hips but we can’t look at them as a unique issue. This is because there isn’t a  
one-to-one mapping between the height of a leg and its joint angles. The best style of 
standing should be computed or defined using learning algorithms. The style of 
standing is not very related to the friction or type of the surface. A larger distribution 
of weight on a leg causes bigger friction force. Rear legs can move with a less slip 
when they have a larger friction with the land surface. 

 
However; when the weight distribution on a leg is big, lifting that leg may cause 

the AIBO to fall also the robot will be less stable than when legs which cause motion 
suffer less pressure from the body and are farther from the center of gravity. Less 
pressure in front legs benefit to less friction and they will slip easier on the ground. 
So it is a tradeoff! 

 
If the behavior level defines the height of front and rear hips there is no need for 

making decision on how to distribute the weight. If not it needs to be decided. There 
are some parameters that need to be defined. These parameters are listed below: 

 
• Posture of leg while standing: This parameter is very important. 

Because it affects many other parameters. It defines the back and front 
hip height. This is important as mentioned above because it affects the 
friction of legs with the ground while lifting the ground for rear legs 
and while slipping on the ground for front legs. Also height of the 
robot is one of the three parameters that affect the stability of the 
robot. 

• Cycle of a walk: This parameter is important because it affects the 
stability of the robot. When the number of frames a leg is not on the 
ground is big it makes the AIBO unstable and will fall easier by a hit. 
Also if cycles a leg is not on the ground are large, robot's speed will be 
higher when using a good trajectory. 

• Trajectory of moving of the rear legs: This parameter is very 
important and we are using temporal learning to choose the best 
trajectory. The trajectory is important from two points of views. The 
former is when lifting the ground and is very important because it may 
cause the leg to slip on the ground. The latter is the length of the path 
and trajectory of moving between the Cartesian points defined for each 
frame. Not only we need a short path but also we need to use the 
motors efficient. It means ideally we have to use each motors 
maximum potential in each frame. 

• Friction of surface: Some technical reports have noted that when a 
leg wants to start a step it is better to lift it vertical from the ground to 
avoid its slipping. But it is clear it can be inclined to a degree 
considering the friction of ground. By making the lifting oblique the 
speed of moving forward will increase. But this angle should be 
identified using learning on each surface. Also when one leg is moving 
on the space the other leg(s) are support and their friction will stop the 
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robot from slipping. So it is important to calculate how the style of 
legs should be to avoid slipping. 

 
Considering the input variables for Fast Walking we reached two styles of fast 
walking which are described below: 

8.2.2.5 Fastest Available Walk 

This style of walking is used when there is a long distance to the goal (e.g. ball). 
Also this walking is not smooth and do not consider if the head will have shaking. We 
are using learning for defining the best trajectory and cycle time. As mentioned above 
firstly by learning we define the “alpha” angle for the surface. Then the trajectory has 
to be tuned using learning to reach the best speed. 

8.2.2.6 Fastest Available Stable Walk 

This walking style is very different from fastest available walk. Comparing to 
fastest available walk it is very smooth and stable. Steps are too much smaller and 
hips are closer to the ground. We have two goals in this kind of fast walking learning. 
Not only we want to have the fastest available walk but also we want the smoothest 
walk. We used some calculations in our vision module to define how smooth is the 
walking. For our learning the robot starts from its penalty region and walks to the 
other goal. We defined that the upper line of the goal must be in the middle of the 
camera picture. The diversity of the line from the center of the picture defines how 
much the walking is smooth. Also we took an upper limit for the step length of a foot 
to get to a stable walking. We choose the fastest walking which its smoothness is not 
less than a threshold.  

8.2.3 Looking & Head Movement 

This function gets as its input a point on the ground with its X, Y from a reference 
point. Our robot is always looking to the ground because everything is on the ground 
while plying. Also it avoids noises which come when looking to spectators. If the 
robot can look to the point it sets its three head joints otherwise it rotates its body up 
to when it can look at that point. It is clear that if we know robots X and Y position 
relative to the reference point it is easy to compute the angles using inverse 
kinematics. 

 
Head movement usually occurs in two major cases. When we want the robot to 

trace an object and when the robot should look for an object. Decision making layer 
decides where the robot should look to and just tells the X and Y to this layer as 
described so this layer just decides the style of movement. 

8.2.4 Grab 

To grab the ball first the robot should chase the ball and then catch it. First, the 
robot should determine the ball’s position to call a proper walk skill command to 
reach the ball. Doing the second part is not straightforward when the ball is moving 
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fast. In such cases we should use Block skill first. But when it is fixed the robot 
catches it with its hands and chin. 

In AIBO 4-legged soccer matches the ball is light and doesn’t move straight. So 
using the way explained above will fail most of the times. So currently our robots just 
try to get close to the ball. And catch the ball when it is in a grabable range. Figure 63 
shows an “Impossibles” AIBO robot grabbing the ball. 

 

Figure 63: “Impossibles” AIBO grabbing the Ball 

8.2.5 Block 

Due to uncertainty of ball velocity and position in AIBO robots’ real world 
environment there are some difficulties with grabbing the ball when it is moving with 
high speed. For example, catching the opponent’s shoot for the goalie is hard. So we 
use another action in such cases. Block action tries to avoid fast moving balls. We use 
an estimate of ball position and velocity for blocking. Better estimate results in more 
chance of success. 

 

Figure 64: “Impossibles” AIBO Blocking the Ball 
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Blocking is useful but to do this the robot should fall and stand up again; 

therefore, it is a time-consuming skill. So it should be used when it is required. As 
discussed earlier, Decision Making (DM) module is responsible for this part. 

8.3 Kinematics 

There will be two kind of problem solving while planning to move from one point 
or state of the robot to the next: First problem is when we have decided on joint 
angles and want to compute the position of leg or head relative to the body of robot 
which is called forward kinematics and the second problem is when we have the 
position of an effector and want to compute the angle of joints which is called inverse 
kinematics. 

8.3.1 Forward Kinematics 

For each joint we define a three dimensional frame. Each frame is represented 
using a “4*4” matrix containing the orientation and position of the frame relative to a 
reference frame. We have defined a point on the robot as reference frame and each 
frame is computed relative to that frame. This frame’s X axis is in direction of the 
body of the robot and the Y and Z axes are as shown in the following figure. 
 

 
Figure 65: Reference Frame of the AIBO Robot 

 
For each leg 3 joint frames exist. Also each joint has an angle. The frame of the 

shoulder can be computed from the constants defined which present translational 
matrices which transfer the reference frame to shoulders. We will be able to use D-H 
method considering Swing and Paw angles to compute the frame for knees. We have 
defined two polygons one for the front legs and one for the rear legs which are used 
to achieve the contact point of the leg with ground. A polygon is a sequence of points 
in a plane. 

 
For head there exist three joints. Computing the position of head relative to the 

reference frame is too easier. Because it is not in contact with ground and won’t be 
affected as legs do. There will be three transformation matrices from each joint to the 
other and by multiplying them the coordinate of the head will be achieved. 
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referenceframe TAAAT ×××= 321      (18) 

 
αθ RotTransTransRotA daii ×××=     (19) 

 

8.3.2 Inverse Kinematics 

For the inverse kinematics we have positions and want to compute the joint angles 
of the robot. Computation of inverse kinematics for legs is too challenging and hard. 
When we want to break a trajectory to a number of points we have to compute the 
joint angles for each point to give this sequence of joint angles to the lower level for 
movement. The problem arises when the leg is on the ground because of its 
sophisticated shape. To solve this by inverse kinematics we have created a lookup 
table which robot sets its joints to the most similar condition in the lookup table. 

 
Computation of the joint angles for head is too much easier. It is available to 

compute it using the inverse matrices in the equations above; 
 

referenceframe TAAAT ×××= −−− 1
3

1
2

1
1     (20) 

 

Figure 66: Two snapshots of the AIBO robot while walking 
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